1
|
Mestinšek Mubi Š, Kunej U, Vogrinčič V, Jakše J, Murovec J. The effect of phytosulfokine alpha on haploid embryogenesis and gene expression of Brassica napus microspore cultures. FRONTIERS IN PLANT SCIENCE 2024; 15:1336519. [PMID: 38425801 PMCID: PMC10902448 DOI: 10.3389/fpls.2024.1336519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Microspore embryogenesis (ME) is the most powerful tool for creating homozygous lines in plant breeding and molecular biology research. It is still based mainly on the reprogramming of microspores by temperature, osmotic and/or nutrient stress. New compounds are being sought that could increase the efficiency of microspore embryogenesis or even induce the formation of haploid embryos from recalcitrant genotypes. Among these, the mitogenic factor phytosulfokine alpha (PSK-α) is promising due to its broad spectrum of activity in vivo and in vitro. The aim of our study was to investigate the effect of PSK-α on haploid embryogenesis from microspores of oilseed rape (Brassica napus L., DH4079), one of the most important oil crops and a model plant for studying the molecular mechanisms controlling embryo formation. We tested different concentrations (0, 0.01, 0.1 and 1 µM) of the peptide and evaluated its effect on microspore viability and embryo regeneration after four weeks of culture. Our results showed a positive correlation between addition of PSK-α and cultured microspore viability and a positive effect also on the number of developed embryos. The analysis of transcriptomes across three time points (day 0, 2 and 4) with or without PSK-α supplementation (15 RNA libraries in total) unveiled differentially expressed genes pivotal in cell division, microspore embryogenesis, and subsequent regeneration. PCA grouped transcriptomes by RNA sampling time, with the first two principal components explaining 56.8% variability. On day 2 with PSK, 45 genes (15 up- and 30 down-regulated) were differentially expressed when PSK-α was added and their number increased to 304 by day 4 (30 up- and 274 down-regulated). PSK, PSKR, and PSI gene expression analysis revealed dynamic patterns, with PSK2 displaying the highest increase and overall expression during microspore culture at days 2 and 4. Despite some variations, only PSK1 showed significant differential expression upon PSK-α addition. Of 16 ME-related molecular markers, 3 and 15 exhibited significant differential expression in PSK-supplemented cultures at days 2 and 4, respectively. Embryo-specific markers predominantly expressed after 4 days of culture, with higher expression in medium without PSK, while on day 0, numerous sporophyte-specific markers were highly expressed.
Collapse
|
2
|
Chen Y, Wang Y, Xu L, Su X, Zhai L, Zhao Y, Zhang C, Liu L. Effects of genotype and culture conditions on microspore embryogenesis in radish ( Raphanus sativus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:43. [PMID: 37313515 PMCID: PMC10248703 DOI: 10.1007/s11032-022-01312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Radish (Raphanus sativus L.), an important annual or biennial root vegetable crop, is widely cultivated in the world for its high nutritive value. Isolated microspore culture (IMC) is one of the most effective methods for rapid development of homozygous lines. Due to imperfection of the IMC technology system, it is particularly important to establish an efficient IMC system in radish. In this study, the effects of different factors on radish microspore embryogenesis were investigated with 23 genotypes. Buds with the largest population of late-uninucleate-stage microspores were most suitable for embryogenesis, with a ratio of petal length to anther length (P/A) in buds of about 3/4 ~ 1. Cold pretreatment was found to be genotype specific, and the highest microspore-derived embryoid (MDE) yield occurred for treatment of the heat shock of 48 h. In addition, the supplement of 0.75 g/L activated charcoal (AC) could increase the yield of embryoids. It was found that genotypes, bud size, as well as temperature treatments had significant effects on microspore embryogenesis. Furthermore, somatic embryogenesis-related kinase (SERK) genes were profiled by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, which indicated that they are involved in the process of MDE formation and plantlet regeneration. The ploidy of microspore-derived plants was identified by chromosome counting and flow cytometry, and the microspore-derived plants were further proved as homozygous plants through expressed sequence tags-simple sequence repeats (EST-SSR) and genetic-SSR markers. The results would facilitate generating the large-scale double haploid (DH) from various genotypes, and promoting further highly efficient genetic improvement in radish. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01312-w.
Collapse
Affiliation(s)
- Yaru Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiaojun Su
- Institution of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Lulu Zhai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Yanling Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Cuiping Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225100 People’s Republic of China
| |
Collapse
|
3
|
Dubas E, Castillo AM, Żur I, Krzewska M, Vallés MP. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC PLANT BIOLOGY 2021; 21:586. [PMID: 34886809 PMCID: PMC8656030 DOI: 10.1186/s12870-021-03345-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A mannitol stress treatment and a subsequent application of n-butanol, known as a microtubule-disrupting agent, enhance microspore embryogenesis (ME) induction and plant regeneration in bread wheat. To characterize changes in cortical (CMT) and endoplasmic (EMT) microtubules organization and dynamics, associated with ME induction treatments, immunocytochemistry studies complemented by confocal laser scanning microscopy (CLSM) were accomplished. This technique has allowed us to perform advanced 3- and 4D studies of MT architecture. The degree of MT fragmentation was examined by the relative fluorescence intensity quantification. RESULTS In uni-nucleated mannitol-treated microspores, severe CMT and EMT fragmentation occurs, although a complex network of short EMT bundles protected the nucleus. Additional treatment with n-butanol resulted in further depolymerization of both CMT and EMT, simultaneously with the formation of MT aggregates in the perinuclear region. Some aggregates resembled a preprophase band. In addition, a portion of the microspores progressed to the first mitotic division during the treatments. Bi-nucleate pollen-like structures showed a high MT depolymerization after mannitol treatment and numerous EMT bundles around the vegetative and generative nuclei after n-butanol. Interestingly, bi-nucleate symmetric structures showed prominent stabilization of EMT. CONCLUSIONS Fragmentation and stabilization of microtubules induced by mannitol- and n-butanol lead to new configurations essential for the induction of microspore embryogenesis in bread wheat. These results provide robust insight into MT dynamics during EM induction and open avenues to address newly targeted treatments to induce ME in recalcitrant species.
Collapse
Affiliation(s)
- E Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - A M Castillo
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain
| | - I Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M P Vallés
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
4
|
Miroshnichenko D, Klementyeva A, Dolgov S. The Effect of Daminozide, Dark/Light Schedule and Copper Sulphate in Tissue Culture of Triticum timopheevii. PLANTS (BASEL, SWITZERLAND) 2021; 10:2620. [PMID: 34961089 PMCID: PMC8706679 DOI: 10.3390/plants10122620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Triticum timopheevii Zhuk. is a tetraploid wheat that is utilized worldwide as a valuable breeding source for wheat improvement. Gene-based biotechnologies can contribute to this field; however, T. timopheevii exhibits recalcitrance and albinism in tissue cultures, making this species of little use for manipulation through genetic engineering and genome editing. This study tested various approaches to increasing in vitro somatic embryogenesis and plant regeneration, while reducing the portion of albinos in cultures derived from immature embryos (IEs) of T. timopheevii. They included (i) adjusting the balance between 2,4-D and daminozide in callus induction medium; (ii) cultivation using various darkness/illumination schedules; and (iii) inclusion of additional concentrations of copper ions in the tissue culture medium. We achieved a 2.5-fold increase in somatic embryogenesis (up to 80%) when 50 mg L-1 daminozide was included in the callus induction medium together with 3 mg L-1 2,4-D. It was found that the dark cultivation for 20-30 days was superior in terms of achieving maximum culture efficiency; moreover, switching to light in under 2 weeks from culture initiation significantly increased the number of albino plants, suppressed somatic embryogenesis, and decreased the regeneration of green plants. Media containing higher levels of copper ions did not have a positive effect on the regeneration of green plants; contrarily, the elevated concentrations caused albinism in plantlets. The results and relevant conclusions of the present study might be valuable for establishing an improved protocol for the regeneration of green plants in tissue cultures of T. timopheevii.
Collapse
Affiliation(s)
- Dmitry Miroshnichenko
- Kurchatov Genomics Center of All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street 42, 127550 Moscow, Russia
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russion Academy of Science, 142290 Pushchino, Russia; (A.K.); (S.D.)
| | - Anna Klementyeva
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russion Academy of Science, 142290 Pushchino, Russia; (A.K.); (S.D.)
| | - Sergey Dolgov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russion Academy of Science, 142290 Pushchino, Russia; (A.K.); (S.D.)
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street 42, 127550 Moscow, Russia
| |
Collapse
|
5
|
Canonge J, Roby C, Hamon C, Potin P, Pfannschmidt T, Philippot M. Occurrence of albinism during wheat androgenesis is correlated with repression of the key genes required for proper chloroplast biogenesis. PLANTA 2021; 254:123. [PMID: 34786602 DOI: 10.1007/s00425-021-03773-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The phenomenon of albinism in wheat androgenesis is linked to the transcriptional repression of specific genes involved in chloroplast biogenesis during the first weeks of in vitro culture. Isolated microspore culture is widely used to accelerate breeding programs and produce new cultivars. However, in cereals and particularly in wheat, the use of this technique is limited due to the high proportion of regenerated albino plantlets. The causes and mechanisms leading to the formation of albino plantlets in wheat remain largely unknown and, to date, no concrete solution has been found to make it possible to overcome this barrier. We performed a molecular study of proplastid-to-chloroplast differentiation within wheat microspore cultures by analyzing the expression of 20 genes specifically involved in chloroplast biogenesis. Their expression levels were compared between two wheat genotypes that exhibit differential capacities to regenerate green plantlets, i.e., Pavon and Paledor, which produce high and low rates of green plants, respectively. We observed that chloroplast biogenesis within wheat microspores was affected as of the very early stages of the androgenesis process. A successful transition from a NEP- to a PEP-dependent transcription during early plastid development was found to be strongly correlated with the formation of green plantlets, while failure of this transition was strongly correlated with the regeneration of albino plantlets. The very low expression of plastid-encoded 16S and 23S rRNAs within plastids of the recalcitrant genotype Paledor suggests a low translation activity in albino plastids. Furthermore, a delay in the activation of the transcription of nuclear encoded key genes like GLK1 related to chloroplast biogenesis was observed in multicellular structures and pro-embryos of the genotype Paledor. These data help to understand the phenomenon of albinism in wheat androgenesis, which appears to be linked to the transcriptional activation of specific genes involved in the initial steps of chloroplast biogenesis that occurs between days 7 and 21 of in vitro culture.
Collapse
Affiliation(s)
- Julie Canonge
- Vegenov, Pen ar Prat, 29250, Saint-Pol-de-Léon, France
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | | | - Céline Hamon
- Vegenov, Pen ar Prat, 29250, Saint-Pol-de-Léon, France
| | - Philippe Potin
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | - Thomas Pfannschmidt
- Institut für Botanik, Pflanzenphysiologie, Leibniz-Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | | |
Collapse
|
6
|
Krzewska M, Dubas E, Gołębiowska G, Nowicka A, Janas A, Zieliński K, Surówka E, Kopeć P, Mielczarek P, Żur I. Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (× Triticosecale Wittm.) after 5-azacytidine treatment. Sci Rep 2021; 11:22215. [PMID: 34782682 PMCID: PMC8593058 DOI: 10.1038/s41598-021-01671-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Effective microspore embryogenesis (ME) requires substantial modifications in gene expression pattern, followed by changes in the cell proteome and its metabolism. Recent studies have awakened also interest in the role of epigenetic factors in microspore de-differentiation and reprogramming. Therefore, demethylating agent (2.5-10 μM 5-azacytidine, AC) together with low temperature (3 weeks at 4 °C) were used as ME-inducing tiller treatment in two doubled haploid (DH) lines of triticale and its effect was analyzed in respect of anther protein profiles, expression of selected genes (TAPETUM DETERMINANT1 (TaTPD1-like), SOMATIC EMBRYOGENESIS RECEPTOR KINASE 2 (SERK2) and GLUTATHIONE S-TRANSFERASE (GSTF2)) and ME efficiency. Tiller treatment with 5.0 µM AC was the most effective in ME induction; it was associated with (1) suppression of intensive anabolic processes-mainly photosynthesis and light-dependent reactions, (2) transition to effective catabolism and mobilization of carbohydrate reserve to meet the high energy demand of cells during microspore reprograming and (3) effective defense against stress-inducing treatment, i.e. protection of proper folding during protein biosynthesis and effective degradation of dysfunctional or damaged proteins. Additionally, 5.0 µM AC enhanced the expression of all genes previously identified as being associated with embryogenic potential of microspores (TaTPD1-like, SERK and GSTF2).
Collapse
Affiliation(s)
- Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Gabriela Gołębiowska
- Chair of Genetics, Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 31-084, Kraków, Poland
| | - Anna Nowicka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Agnieszka Janas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Kamil Zieliński
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 ave., 30-059, Kraków, Poland
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
7
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
8
|
Tuvesson SD, Larsson CT, Ordon F. Use of Molecular Markers for Doubled Haploid Technology: From Academia to Plant Breeding Companies. Methods Mol Biol 2021; 2288:49-72. [PMID: 34270004 DOI: 10.1007/978-1-0716-1335-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular markers are employed for doubled haploid (DH) technology by researchers and applied plant breeders in many crops. In the 1990s, isozymes and RFLPs were commonly used marker technologies to characterize DHs and were later replaced by PCR- based markers (e.g., RAPDs, AFLPs, ISSRs, SSRs) and today by SNPs. Markers are used for multiple purposes in DH production, that is, for the study of genes underlying haploid induction and confirming homozygous plants of gametophytic origin. Furthermore, they are tools for investigating segregation in DH populations and for mapping simple and complex traits using DHs. The deployment of DHs and markers for developing trait-linked markers are demonstrated with examples from rapeseed, wheat, and barley. Marker development for resistance to viruses derived from genetic resources and their use in, for example, pyramiding of resistance genes, are given as an example for the combination of DH-technology and marker development in research. Today, marker systems amenable to automation are frequently used in applied plant breeding. Practical examples are given from Lantmännen (LM) ( https://Lantmannen.com ) using large-scale genotyping for variety development based on SSRs and SNPs.
Collapse
Affiliation(s)
| | | | - Frank Ordon
- Julius Kühn-Institut (JKI) Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
9
|
Zieliński K, Dubas E, Gerši Z, Krzewska M, Janas A, Nowicka A, Matušíková I, Żur I, Sakuda S, Moravčíková J. β-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110700. [PMID: 33288013 DOI: 10.1016/j.plantsci.2020.110700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 05/18/2023]
Abstract
This work presents the biochemical, cytochemical and molecular studies on two groups of PR proteins, β-1,3-glucanases and chitinases, and the arabinogalactan proteins (AGP) during the early stages of androgenesis induction in two breeding lines of rye (Secale cereale L.) with different androgenic potential. The process of androgenesis was initiated by tillers pre-treatments with low temperature, mannitol and/or reduced glutathione and resulted in microspores reprogramming and formation of androgenic structures what was associated with high activity of β-1,3-glucanases and chitinases. Some isoforms of β-1,3-glucanases, namely several acidic isoforms of about 26 kDa; appeared to be anther specific. Chitinases were well represented but were less variable. RT-qPCR revealed that the cold-responsive chitinase genes Chit1 and Chit2 were expressed at a lower level in the microspores and whole anthers while the cold-responsive Glu2 and Glu3 were not active. The stress pre-treatments modifications promoted the AGP accumulation. An apparent dominance of some AGP epitopes (LM2, JIM4 and JIM14) was detected in the androgenesis-responsive rye line. An abundant JIM13 epitopes in the vesicles and inner cell walls of the microspores and in the cell walls of the anther cell layers appeared to be the most specific for embryogenesis.
Collapse
Affiliation(s)
- Kamil Zieliński
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Ewa Dubas
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Zuzana Gerši
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic.
| | - Monika Krzewska
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Agnieszka Janas
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Anna Nowicka
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Institute of Experimental Botany of the Czech Academy of Sciences v. v. i. (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, 783 71, Olomouc, Czech Republic.
| | - Ildikó Matušíková
- Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic.
| | - Iwona Żur
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551, Japan.
| | - Jana Moravčíková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic; Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P.O.B. 39A, 95 007, Nitra, Slovak Republic.
| |
Collapse
|
10
|
Żur I, Gajecka M, Dubas E, Krzewska M, Szarejko I. Albino Plant Formation in Androgenic Cultures: An Old Problem and New Facts. Methods Mol Biol 2021; 2288:3-23. [PMID: 34270002 DOI: 10.1007/978-1-0716-1335-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye - the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.
Collapse
Affiliation(s)
- Iwona Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland.
| | - Monika Gajecka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
11
|
Hale B, Phipps C, Rao N, Wijeratne A, Phillips GC. Differential Expression Profiling Reveals Stress-Induced Cell Fate Divergence in Soybean Microspores. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1510. [PMID: 33171842 PMCID: PMC7695151 DOI: 10.3390/plants9111510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023]
Abstract
Stress-induced microspore embryogenesis is a widely employed method to achieve homozygosity in plant breeding programs. However, the molecular mechanisms that govern gametophyte de- and redifferentiation are understood poorly. In this study, RNA-Seq was used to evaluate global changes across the microspore transcriptome of soybean (Glycine max [L.] Merrill) as a consequence of pretreatment low-temperature stress. Expression analysis revealed more than 20,000 differentially expressed genes between treated and control microspore populations. Functional enrichment illustrated that many of these genes (e.g., those encoding heat shock proteins and cytochrome P450s) were upregulated to maintain cellular homeostasis through the mitigation of oxidative damage. Moreover, transcripts corresponding to saccharide metabolism, vacuolar transport, and other pollen-related developmental processes were drastically downregulated among treated microspores. Temperature stress also triggered cell wall modification and cell proliferation-characteristics that implied putative commitment to an embryonic pathway. These findings collectively demonstrate that pretreatment cold stress induces soybean microspore reprogramming through suppression of the gametophytic program while concomitantly driving sporophytic development.
Collapse
Affiliation(s)
- Brett Hale
- College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467-1080, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
| | - Callie Phipps
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
| | - Naina Rao
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
| | - Asela Wijeratne
- College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467-1080, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
| | - Gregory C. Phillips
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
- College of Agriculture, Arkansas State University, Jonesboro, AR 72467-1080, USA
- Agricultural Experiment Station, University of Arkansas System Division of Agriculture, Jonesboro, AR 72467-2340, USA
| |
Collapse
|
12
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110321. [PMID: 31928659 DOI: 10.1016/j.plantsci.2019.110321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 05/19/2023]
Abstract
Developing plants from in vitro culture of microspores or immature pollen grains (androgenesis) is a highly genotype-dependent process whose effectiveness in cereals is significantly reduced by occurrence of albino regenerants. Here, we examined a hypothesis that the molecular differentiation of plastids in barley microspores prior to in vitro culture affects the genotype ability to regenerate green plants in culture. At the mid-to-late uninucleate (ML) stage, routinely used to initiate microspore culture, the expression of most genes involved in plastid transcription, translation and starch synthesis was significantly higher in microspores of barley cv. 'Mercada' producing 90% albino regenerants, than in cv. 'Jersey' that developed 90% green regenerants. The ML microspores of cv. 'Mercada' contained a large proportion of amyloplasts filled with starch, while in cv. 'Jersey' there were only proplastids. Using additional spring barley genotypes that differed in their ability to regenerate green plants we confirmed the correlation between plastid differentiation prior to culture and albino regeneration in culture. The expression of GBSSI gene (Granule-bound starch synthaseI) in early-mid (EM) microspores was a good marker of a genotype potential to produce green regenerants during androgenesis. Initiating culture from EM microspores that significantly improved regeneration of green plants may overcome the problem of albinism.
Collapse
Affiliation(s)
- Monika Gajecka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Beata Chmielewska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Janusz Jelonek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Justyna Zbieszczyk
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland.
| |
Collapse
|
13
|
Begheyn RF, Yates SA, Sykes T, Studer B. Genetic Loci Governing Androgenic Capacity in Perennial Ryegrass ( Lolium perenne L.). G3 (BETHESDA, MD.) 2018; 8:1897-1908. [PMID: 29626084 PMCID: PMC5982819 DOI: 10.1534/g3.117.300550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/29/2018] [Indexed: 01/17/2023]
Abstract
Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful for species where inbreeding is hampered by effective self-incompatibility systems. Therefore, increasing the generally low androgenic capacity of perennial ryegrass (Lolium perenne L.) germplasm would enable the efficient production of homozygous plant material, so that a more effective exploitation of heterosis through hybrid breeding schemes can be realized. Here, we present the results of a genome-wide association study in a heterozygous, multiparental population of perennial ryegrass (n = 391) segregating for androgenic capacity. Genotyping-by-sequencing was used to interrogate gene- dense genomic regions and revealed over 1,100 polymorphic sites. Between one and 10 quantitative trait loci (QTL) were identified for anther response, embryo and total plant production, green and albino plant production and regeneration. Most traits were under polygenic control, although a major QTL on linkage group 5 was associated with green plant regeneration. Distinct genetic factors seem to affect green and albino plant recovery. Two intriguing candidate genes, encoding chromatin binding domains of the developmental phase transition regulator, Polycomb Repressive Complex 2, were identified. Our results shed the first light on the molecular mechanisms behind perennial ryegrass microspore embryogenesis and enable marker-assisted introgression of androgenic capacity into recalcitrant germplasm of this forage crop of global significance.
Collapse
Affiliation(s)
- Rachel F Begheyn
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Steven A Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Timothy Sykes
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Seifert F, Bössow S, Kumlehn J, Gnad H, Scholten S. Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar "Svilena". BMC PLANT BIOLOGY 2016; 16:97. [PMID: 27098368 PMCID: PMC4839079 DOI: 10.1186/s12870-016-0782-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/14/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microspore embryogenesis describes a stress-induced reprogramming of immature male plant gametophytes to develop into embryo-like structures, which can be regenerated into doubled haploid plants after whole genome reduplication. This mechanism is of high interest for both research as well as plant breeding. The objective of this study was to characterize transcriptional changes and regulatory relationships in early stages of cold stress-induced wheat microspore embryogenesis by transcriptome and small RNA sequencing using a highly responsive cultivar. RESULTS Transcriptome and small RNA sequencing was performed in a staged time-course to analyze wheat microspore embryogenesis induction. The analyzed stages were freshly harvested, untreated uninucleate microspores and the two following stages from in vitro anther culture: directly after induction by cold-stress treatment and microspores undergoing the first nuclear divisions. A de novo transcriptome assembly resulted in 29,388 contigs distributing to 20,224 putative transcripts of which 9,305 are not covered by public wheat cDNAs. Differentially expressed transcripts and small RNAs were identified for the stage transitions highlighting various processes as well as specific genes to be involved in microspore embryogenesis induction. CONCLUSION This study establishes a comprehensive functional genomics resource for wheat microspore embryogenesis induction and initial understanding of molecular mechanisms involved. A large set of putative transcripts presumably specific for microspore embryogenesis induction as well as contributing processes and specific genes were identified. The results allow for a first insight in regulatory roles of small RNAs in the reprogramming of microspores towards an embryogenic cell fate.
Collapse
Affiliation(s)
- Felix Seifert
- />Developmental Biology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Sandra Bössow
- />Saaten-Union Biotec GmbH, Am Schwabenplan 6, 06466 Seeland, OT Gatersleben Germany
| | - Jochen Kumlehn
- />Plant Reproductive Biology, Leibnitz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| | - Heike Gnad
- />Saaten-Union Biotec GmbH, Am Schwabenplan 6, 06466 Seeland, OT Gatersleben Germany
| | - Stefan Scholten
- />Developmental Biology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
- />Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
15
|
Ahmadi B, Masoomi-Aladizgeh F, Shariatpanahi ME, Azadi P, Keshavarz-Alizadeh M. Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.: implication for microspore embryogenesis and plant regeneration. PLANT CELL REPORTS 2016; 35:185-93. [PMID: 26449417 DOI: 10.1007/s00299-015-1878-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/12/2015] [Accepted: 09/29/2015] [Indexed: 05/19/2023]
Abstract
The BnSERK1 and BnSERK2 are involved in the process of microspore embryogenesis induction, development, and plantlet regeneration. Little is known about regulatory role of somatic embryogenesis-related kinase (SERK) genes family in the induction of microspore embryogenesis, development and plant regeneration. In this study, the expression of two SERK genes (SERK1 and SERK2) was assessed during the microspore embryogenesis and plantlet regeneration in Brassica napus L. The BnSERK1 was severely up-regulated 1-5 days following microspore culture and its expression drastically decreased in the globular-heart and also torpedo staged microspore-derived embryos (MDEs). In addition, high levels of BnSERK1 transcript were detected in the MDE maturation phase and in the roots and shoots of the regenerated plantlets which indicates a broader role(s) of BnSERK1 in the organ formation, rather than being specific to the embryogenesis. Results of partial sequencing indicated that the BnSERK1 shares a conserved serine-threonine kinase catalytic domain and exhibited 95 % similarity with AtSERK1, CsSERK1, BrSERK1, NaSERK1, and NbSERK1. A steady increase in the expression of BnSERK2 was observed during the MDE initiation and development so that, the highest expression was noted in the MDE maturation phase i.e., late cotyledonary MDEs. Our results also indicated low amounts of BnSERK2 transcript at the onset of rhyzogenesis but significantly higher expression in the developing roots. In contrast, the BnSERK2 strongly up-regulated during the both initially and developed shoots. The BnSERK2 shares highly conserved LRR-RLK domain when compared with different species tested so that, high homology (100 %) was noticed with BrSERK2. Based on our findings, MDE formation and plantlet regeneration seem to be correlated with both BnSERK1 and BnSERK2 expression.
Collapse
Affiliation(s)
- Behzad Ahmadi
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| | - Farhad Masoomi-Aladizgeh
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| | - Mehran E Shariatpanahi
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran.
| | - Pejman Azadi
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| | - Mehdi Keshavarz-Alizadeh
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| |
Collapse
|
16
|
Röper AC, Orabi J, Lütken H, Christensen B, Thonning Skou AM, Müller R. Phenotypic and Genotypic Analysis of Newly Obtained Interspecific Hybrids in the Campanula Genus. PLoS One 2015; 10:e0137537. [PMID: 26352688 PMCID: PMC4564236 DOI: 10.1371/journal.pone.0137537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 08/18/2015] [Indexed: 12/29/2022] Open
Abstract
Interspecific hybridisation creates new phenotypes within several ornamental plant species including the Campanula genus. We have employed phenotypic and genotypic methods to analyse and evaluate interspecific hybridisation among cultivars of four Campanula species, i.e. C. cochleariifolia, C. isophylla, C. medium and C. formanekiana. Hybrids were analysed using amplified fragment length polymorphism (AFLP), flow cytometry and biometrical measurements. Results of correlation matrices demonstrated heterogeneous phenotypes for the parental species, which confirmed our basic premise for new phenotypes of interspecific hybrids. AFLP assays confirmed the hybridity and identified self-pollinated plants. Limitation of flow cytometry analysis detection was observed while detecting the hybridity status of two closely related parents, e.g. C. cochleariiafolia × C. isophylla. Phenotypic characteristics such as shoot habitus and flower colour were strongly influenced by one of the parental species in most crosses. Rooting analysis revealed that inferior rooting quality occurred more often in interspecific hybrids than in the parental species. Only interspecific hybrid lines of C. formanekiana ‘White’ × C. medium ‘Pink’ showed a high rooting level. Phenotype analyses demonstrated a separation from the interspecific hybrid lines of C. formanekiana ‘White’ × C. medium ‘Pink’ to the other clustered hybrids of C. formanekiana and C. medium. In our study we demonstrated that the use of correlation matrices is a suitable tool for identifying suitable cross material. This study presents a comprehensive overview for analysing newly obtained interspecific hybrids. The chosen methods can be used as guidance for analyses for further interspecific hybrids in Campanula, as well as in other ornamental species.
Collapse
Affiliation(s)
- Anna-Catharina Röper
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 9-13, 2630, Taastrup, Denmark
- * E-mail:
| | - Jihad Orabi
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 9-13, 2630, Taastrup, Denmark
| | - Brian Christensen
- AgroTech A/S, Institute for Agri-Technology and Food Innovation, Højbakkegaard Allé 21, 2630, Taastrup, Denmark
| | - Anne-Marie Thonning Skou
- AgroTech A/S, Institute for Agri-Technology and Food Innovation, Højbakkegaard Allé 21, 2630, Taastrup, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 9-13, 2630, Taastrup, Denmark
| |
Collapse
|
17
|
|
18
|
|
19
|
Makowska K, Oleszczuk S. Albinism in barley androgenesis. PLANT CELL REPORTS 2014; 33:385-92. [PMID: 24326697 PMCID: PMC3921450 DOI: 10.1007/s00299-013-1543-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 05/18/2023]
Abstract
Androgenesis is highly useful for plant breeding, significantly reducing breeding cycle times, as well as in a wide range of biological research. However, for widespread use this process must be efficient. Despite several decades of research on the phenomenon of androgenesis, many processes involved are obscure and there is much to be understood about androgenesis. One of the problems inherent in androgenesis, and reducing its efficiency, is albinism. This article reviews albinism in barley anthers and microspores in vitro cultures. Of special interest is the fate of plastids throughout androgenesis, which is important at several levels, including the genes responsible for driving the green-to-albino ratios. We also summarize the external factors that reduce the incidence of albino plants that are regenerated via androgenesis.
Collapse
Affiliation(s)
- Katarzyna Makowska
- Plant Breeding and Acclimatization Institute, National Research Institute, Radzikow, 05-870, Blonie, Poland,
| | | |
Collapse
|
20
|
Sánchez-Díaz RA, Castillo AM, Vallés MP. Microspore embryogenesis in wheat: new marker genes for early, middle and late stages of embryo development. PLANT REPRODUCTION 2013; 26:287-96. [PMID: 23839308 DOI: 10.1007/s00497-013-0225-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/26/2013] [Indexed: 05/21/2023]
Abstract
Microspore embryogenesis involves reprogramming of the pollen immature cell towards embryogenesis. We have identified and characterized a collection of 14 genes induced along different morphological phases of microspore-derived embryo development in wheat (Triticum aestivum L.) anther culture. SERKs and FLAs genes previously associated with somatic embryogenesis and reproductive tissues, respectively, were also included in this analysis. Genes involved in signalling mechanisms such as TaTPD1-like and TAA1b, and two glutathione S-transferase (GSTF2 and GSTA2) were induced when microspores had acquired a 'star-like' morphology or had undergone the first divisions. Genes associated with control of plant development and stress response (TaNF-YA, TaAGL14, TaFLA26, CHI3, XIP-R; Tad1 and WALI6) were activated before exine rupture. When the multicellular structures have been released from the exine, TaEXPB4, TaAGP31-like and an unknown embryo-specific gene TaME1 were induced. Comparison of gene expression, between two wheat cultivars with different response to anther culture, showed that the profile of genes activated before exine rupture was shifted to earlier stages in the low responding cultivar. This collection of genes constitutes a value resource for study mechanism of intra-embryo communication, early pattern formation, cell wall modification and embryo differentiation.
Collapse
Affiliation(s)
- Rosa Angélica Sánchez-Díaz
- Departamento de Genética y Producción Vegetal, Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av Montañana 1005, 50080, Zaragoza, Spain
| | | | | |
Collapse
|
21
|
Qiu WM, Zhu AD, Wang Y, Chai LJ, Ge XX, Deng XX, Guo WW. Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray. BMC Genomics 2012; 13:397. [PMID: 22897898 PMCID: PMC3495689 DOI: 10.1186/1471-2164-13-397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/11/2012] [Indexed: 01/11/2023] Open
Abstract
Background Seedlessness is an important agronomic trait for citrus, and male sterility (MS) is one main cause of seedless citrus fruit. However, the molecular mechanism of citrus seedlessness remained not well explored. Results An integrative strategy combining suppression subtractive hybridization (SSH) library with cDNA microarray was employed to study the underlying mechanism of seedlessness of a Ponkan mandarin seedless mutant (Citrus reticulata Blanco). Screening with custom microarray, a total of 279 differentially expressed clones were identified, and 133 unigenes (43 contigs and 90 singletons) were obtained after sequencing. Gene Ontology (GO) distribution based on biological process suggested that the majority of differential genes are involved in metabolic process and respond to stimulus and regulation of biology process; based on molecular function they function as DNA/RNA binding or have catalytic activity and oxidoreductase activity. A gene encoding male sterility-like protein was highly up-regulated in the seedless mutant compared with the wild type, while several transcription factors (TFs) such as AP2/EREBP, MYB, WRKY, NAC and C2C2-GATA zinc-finger domain TFs were down-regulated. Conclusion Our research highlighted some candidate pathways that participated in the citrus male gametophyte development and could be beneficial for seedless citrus breeding in the future.
Collapse
Affiliation(s)
- Wen-Ming Qiu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education); National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Rodríguez-Serrano M, Bárány I, Prem D, Coronado MJ, Risueño MC, Testillano PS. NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2007-24. [PMID: 22197894 PMCID: PMC3295391 DOI: 10.1093/jxb/err400] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/01/2011] [Accepted: 11/14/2011] [Indexed: 05/18/2023]
Abstract
Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores.
Collapse
Affiliation(s)
| | | | | | | | | | - Pilar S. Testillano
- Plant Development and Nuclear Architecture, Centro de Investigaciones Biológicas, CIB-CSIC. Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
23
|
Abstract
The first haploid angiosperm, a dwarf form of cotton with half the normal chromosome complement, was discovered in 1920, and in the ninety years since then such plants have been identified in many other species. They can occur either spontaneously or can be induced by modified pollination methods in vivo, or by in vitro culture of immature male or female gametophytes. Haploids represent an immediate, one-stage route to homozygous diploids and thence to F(1) hybrid production. The commercial exploitation of heterosis in such F(1) hybrids leads to the development of hybrid seed companies and subsequently to the GM revolution in agriculture. This review describes the range of techniques available for the isolation or induction of haploids and discusses their value in a range of areas, from fundamental research on mutant isolation and transformation, through to applied aspects of quantitative genetics and plant breeding. It will also focus on how molecular methods have been used recently to explore some of the underlying aspects of this fascinating developmental phenomenon.
Collapse
Affiliation(s)
- Jim M Dunwell
- School of Biological Sciences, University of Reading, Whiteknights, Reading, UK.
| |
Collapse
|