1
|
Illingworth EJ, Rychlik KA, Maertens A, Sillé FCM. Sex-specific transcriptomic effects of low-dose inorganic arsenic exposure on bone marrow-derived macrophages. Toxicology 2025; 510:153988. [PMID: 39515575 PMCID: PMC12023008 DOI: 10.1016/j.tox.2024.153988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Both tissue-resident macrophages and monocytes recruited from the bone marrow that transform into tissue-resident cells play critical roles in mediating homeostasis as well as in the pathology of inflammatory diseases. Inorganic arsenic (iAs) is the most common drinking water contaminant worldwide and represents a major public health concern. There are numerous diseases caused by iAs exposure in which macrophages are involved, including cardiovascular disease, cancer, and increased risk of (respiratory) infectious diseases. Notably, prenatal iAs exposure is also associated with negative birth outcomes and developmental immunotoxicity (DIT) contributing to long-term adverse outcomes of these immune-related diseases. Therefore, understanding the effects of iAs exposure on macrophages, particularly during immune development or tissue injury and inflammation, can help us better grasp the full range of arsenic immunotoxicity and better design therapeutic targets for iAs-induced diseases particularly in exposed populations. In contrast to prior published studies which often only focused on the effect of iAs on mature macrophages after development, in this study, we analyzed the transcriptome of M0-, M1- and M2-polarized male and female murine bone marrow-derived macrophages (BMDMs) which were exposed to iAs during the differentiation phase, as a model to study iAs (developmental) immunotoxicity. We identified differentially expressed genes by iAs in a sex- and stimulation-dependent manner and used bioinformatics tools to predict protein-protein interactions, transcriptional regulatory networks, and associated biological processes. Overall, our data suggest that M1-stimulated, especially female-derived, BMDMs are most susceptible to iAs exposure during differentiation. Most notably, we observed significant downregulation of major proinflammatory transcription factors, like IRF8, and its downstream targets, as well as genes encoding proteins involved in pattern recognition and antigen presentation, such as TLR7, TLR8, and H2-D1, potentially providing causal insight regarding the role of (early-life) arsenic exposure in perturbing immune responses to infectious diseases. We also observed significant downregulation of genes involved in processes crucial to coordinating a proinflammatory response including leukocyte migration, differentiation, and cytokine and chemokine production and response. Finally, we discovered that 24 X-linked genes were dysregulated in iAs-exposed female stimulation groups compared to only 3 across the iAs-exposed male stimulation groups. These findings elucidate the potential mechanisms underlying the sex-differential iAs-associated immune-related disease risk.
Collapse
Affiliation(s)
- Emily J Illingworth
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristal A Rychlik
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Public Health Program, School of Health Professions, Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Alexandra Maertens
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Ma F, Tsou PS, Gharaee-Kermani M, Plazyo O, Xing X, Kirma J, Wasikowski R, Hile GA, Harms PW, Jiang Y, Xing E, Nakamura M, Ochocki D, Brodie WD, Pillai S, Maverakis E, Pellegrini M, Modlin RL, Varga J, Tsoi LC, Lafyatis R, Kahlenberg JM, Billi AC, Khanna D, Gudjonsson JE. Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis. Nat Commun 2024; 15:210. [PMID: 38172207 PMCID: PMC10764940 DOI: 10.1038/s41467-023-44645-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Systemic sclerosis (SSc) is a devastating autoimmune disease characterized by excessive production and accumulation of extracellular matrix, leading to fibrosis of skin and other internal organs. However, the main cellular participants in SSc skin fibrosis remain incompletely understood. Here using differentiation trajectories at a single cell level, we demonstrate a dual source of extracellular matrix deposition in SSc skin from both myofibroblasts and endothelial-to-mesenchymal-transitioning cells (EndoMT). We further define a central role of Hippo pathway effectors in differentiation and homeostasis of myofibroblast and EndoMT, respectively, and show that myofibroblasts and EndoMTs function as central communication hubs that drive key pro-fibrotic signaling pathways in SSc. Together, our data help characterize myofibroblast differentiation and EndoMT phenotypes in SSc skin, and hint that modulation of the Hippo pathway may contribute in reversing the pro-fibrotic phenotypes in myofibroblasts and EndoMTs.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Olesya Plazyo
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xianying Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Kirma
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Hile
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Enze Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mio Nakamura
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Danielle Ochocki
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - William D Brodie
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shiv Pillai
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Matteo Pellegrini
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Modlin
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - John Varga
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Dinesh Khanna
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA.
| | | |
Collapse
|
3
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
4
|
Iacobas D, Wen J, Iacobas S, Schwartz N, Putterman C. Remodeling of Neurotransmission, Chemokine, and PI3K-AKT Signaling Genomic Fabrics in Neuropsychiatric Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:251. [PMID: 33578738 PMCID: PMC7916450 DOI: 10.3390/genes12020251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction and mood changes are prevalent and especially taxing issues for patients with systemic lupus erythematosus (SLE). Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its cognate receptor Fn14 have been shown to play an important role in neurocognitive dysfunction in murine lupus. We profiled and compared gene expression in the cortices of MRL/+, MRL/lpr (that manifest lupus-like phenotype) and MRL/lpr-Fn14 knockout (Fn14ko) adult female mice to determine the transcriptomic impact of TWEAK/Fn14 on cortical gene expression in lupus. We found that the TWEAK/Fn14 pathway strongly affects the expression level, variability and coordination of the genomic fabrics responsible for neurotransmission and chemokine signaling. Dysregulation of the Phosphoinositide 3-kinase (PI3K)-AKT pathway in the MRL/lpr lupus strain compared with the MRL/+ control and Fn14ko mice was particularly prominent and, therefore, promising as a potential therapeutic target, although the complexity of the transcriptomic fabric highlights important considerations in in vivo experimental models.
Collapse
Affiliation(s)
- Dumitru Iacobas
- Center for Computational Systems Biology, Personalized Genomics Laboratory, Roy G. Perry College of Engineering, Prairie View A & M University, Prairie View, TX 77446, USA;
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jing Wen
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Noa Schwartz
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
| | - Chaim Putterman
- Department of Medicine (Rheumatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.W.); (N.S.)
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat 52100, Israel
- Galilee Medical Center, Research Institute, Nahariya 22100, Israel
| |
Collapse
|
5
|
Iacobas S, Amuzescu B, Iacobas DA. Transcriptomic uniqueness and commonality of the ion channels and transporters in the four heart chambers. Sci Rep 2021; 11:2743. [PMID: 33531573 PMCID: PMC7854717 DOI: 10.1038/s41598-021-82383-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profiled with Agilent microarrays to identify the differences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantified 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited differential expression between the atrium and the ventricle, while 5.8% of genes were differently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber differences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantified binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side.
Collapse
Affiliation(s)
- Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Bogdan Amuzescu
- Department Biophysics and Physiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA. .,DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
6
|
Iacobas DA. Powerful quantifiers for cancer transcriptomics. World J Clin Oncol 2020; 11:679-704. [PMID: 33033692 PMCID: PMC7522543 DOI: 10.5306/wjco.v11.i9.679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Every day, investigators find a new link between a form of cancer and a particular alteration in the sequence or/and expression level of a key gene, awarding this gene the title of “biomarker”. The clinician may choose from numerous available panels to assess the type of cancer based on the mutation or expression regulation (“transcriptomic signature”) of “driver” genes. However, cancer is not a “one-gene show” and, together with the alleged biomarker, hundreds other genes are found as mutated or/and regulated in cancer samples. Regardless of the platform, a well-designed transcriptomic study produces three independent features for each gene: Average expression level, expression variability and coordination with expression of each other gene. While the average expression level is used in all studies to identify what genes were up-/down-regulated or turn on/off, the other two features are unfairly ignored. We use all three features to quantify the transcriptomic change during the progression of the disease and recovery in response to a treatment. Data from our published microarray experiments on cancer nodules and surrounding normal tissue from surgically removed tumors prove that the transcriptomic topologies are not only different in histopathologically distinct regions of a tumor but also dynamic and unique for each human being. We show also that the most influential genes in cancer nodules [the Gene Master Regulators (GMRs)] are significantly less influential in the normal tissue. As such, “smart” manipulation of the cancer GMRs expression may selectively kill cancer cells with little consequences on the normal ones. Therefore, we strongly recommend a really personalized approach of cancer medicine and present the experimental procedure and the mathematical algorithm to identify the most legitimate targets (GMRs) for gene therapy.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, United States
| |
Collapse
|
7
|
Iacobas S, Ede N, Iacobas DA. The Gene Master Regulators (GMR) Approach Provides Legitimate Targets for Personalized, Time-Sensitive Cancer Gene Therapy. Genes (Basel) 2019; 10:genes10080560. [PMID: 31349573 PMCID: PMC6723146 DOI: 10.3390/genes10080560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
The dynamic and never exactly repeatable tumor transcriptomic profile of people affected by the same form of cancer requires a personalized and time-sensitive approach of the gene therapy. The Gene Master Regulators (GMRs) were defined as genes whose highly controlled expression by the homeostatic mechanisms commands the cell phenotype by modulating major functional pathways through expression correlation with their genes. The Gene Commanding Height (GCH), a measure that combines the expression control and expression correlation with all other genes, is used to establish the gene hierarchy in each cell phenotype. We developed the experimental protocol, the mathematical algorithm and the computer software to identify the GMRs from transcriptomic data in surgically removed tumors, biopsies or blood from cancer patients. The GMR approach is illustrated with applications to our microarray data on human kidney, thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines. We proved experimentally that each patient has his/her own GMRs, that cancer nuclei and surrounding normal tissue are governed by different GMRs, and that manipulating the expression has larger consequences for genes with higher GCH. Therefore, we launch the hypothesis that silencing the GMR may selectively kill the cancer cells from a tissue.
Collapse
Affiliation(s)
- Sanda Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Nneka Ede
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|
8
|
Oveisgharan S, Arvanitakis Z, Yu L, Farfel J, Schneider JA, Bennett DA. Sex differences in Alzheimer's disease and common neuropathologies of aging. Acta Neuropathol 2018; 136:887-900. [PMID: 30334074 DOI: 10.1007/s00401-018-1920-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022]
Abstract
Alzheimer's dementia is significantly more common in women than in men. However, few pathological studies have addressed sex difference in Alzheimer's disease (AD) and other brain pathologies. We leveraged postmortem data from 1453 persons who participated in one of two longitudinal community-based studies of older adults, the Religious Orders Study and the Rush Memory and Aging Project. Postmortem examination identified AD pathologies, neocortical Lewy bodies, DNA-binding protein 43 (TDP-43), hippocampal sclerosis, gross and micro infarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy. Linear and logistic regressions examined the association of sex with each of the pathologic measures. Two-thirds of subjects were women (n = 971; 67%), with a mean age at death of 89.8 (SD = 6.6) years in women and 87.3 (SD = 6.6) in men. Adjusted for age and education, women had higher levels on a global measure of AD pathology (estimate = 0.102, SE = 0.022, p < 0.001), and tau tangle density in particular (estimate = 0.334, SE = 0.074, p < 0.001), and there was a borderline difference between women and men in amyloid-β load (estimate = 0.124, SE = 0.065, p = 0.056). In addition, compared to men, women were more likely to have more severe arteriolosclerosis (OR = 1.28, 95% CI:1.04-1.58, p = 0.018), and less likely to have gross infarcts (OR = 0.78, 95% CI:0.61-0.98, p = 0.037), although the association with gross infarct was attenuated after controlling for vascular risk factors. These data help elucidate the neuropathologic footprint of sex difference in AD and other common brain pathologies of aging.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jose Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
9
|
Iacobas DA, Iacobas S, Tanowitz HB, Campos de Carvalho A, Spray DC. Functional genomic fabrics are remodeled in a mouse model of Chagasic cardiomyopathy and restored following cell therapy. Microbes Infect 2018; 20:185-195. [PMID: 29158000 DOI: 10.1016/j.micinf.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
We previously found that, in a mouse model of Chagas cardiomyopathy, 18% of the 9390 quantified unigenes were significantly regulated by Trypanosoma cruzi infection. However, treatment with bone marrow-derived mononuclear cells (MNCs) resulted in 84% transcriptomic recovery. We have applied new algorithms to reanalyze these datasets with respect to specific pathways [Chagas disease (CHAGAS), cardiac muscle contraction (CMC) and chemokine signaling (CCS)]. In addition to the levels of expression of individual genes we also calculated gene expression variability and coordination of expression of each gene with all others. These additional measures revealed changes in the control of transcript abundances and gene networking in CHAGAS and restoration following MNC treatment, not accessible using the conventional approach limited to the average expression levels. Moreover, our weighted pathway regulation analysis incorporated the contributions of all affected genes, eliminating the arbitrary cut-off criteria of fold-change and/or p-value for significantly regulated genes. The new analyses revealed that T. cruzi infection had large transcriptomic consequences for the CMC pathway and triggered a huge cytokine signaling. Remarkably, MNC therapy not only restored normal expression levels of numerous genes, but it also recovered most of the CHAGAS, CMC and CCS fabrics that were altered by the infection.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Department of Pathology, New York Medical College School of Medicine, 15 Dana Rd, Valhalla, NY, USA; Center for Computational Systems Biology at Prairie View A&M University, TX 77446, USA.
| | - Sanda Iacobas
- Department of Pathology, New York Medical College School of Medicine, 15 Dana Rd, Valhalla, NY, USA
| | - Herbert B Tanowitz
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY, USA; Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY, USA
| | - Antonio Campos de Carvalho
- Center for Computational Systems Biology at Prairie View A&M University, TX 77446, USA; Laboratório de Cardiologia Celular e Molecular, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - David C Spray
- Center for Computational Systems Biology at Prairie View A&M University, TX 77446, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY, USA
| |
Collapse
|
10
|
Murphy E, Amanakis G, Fillmore N, Parks RJ, Sun J. Sex Differences in Metabolic Cardiomyopathy. Cardiovasc Res 2017; 113:370-377. [PMID: 28158412 PMCID: PMC5852638 DOI: 10.1093/cvr/cvx008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
In contrast to ischemic cardiomyopathies which are more common in men, women are over-represented in diabetic cardiomyopathies. Diabetes is a risk factor for cardiovascular disease; however, there is a sexual dimorphism in this risk factor: heart disease is five times more common in diabetic women but only two-times more common in diabetic men. Heart failure with preserved ejection fraction, which is associated with metabolic syndrome, is also more prevalent in women. This review will examine potential mechanisms for the sex differences in metabolic cardiomyopathies. Sex differences in metabolism, calcium handling, nitric oxide, and structural proteins will be evaluated. Nitric oxide synthase and PPARα exhibit sex differences and have also been proposed to mediate the development of hypertrophy and heart failure. We focused on a role for these signalling pathways in regulating sex differences in metabolic cardiomyopathies.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, MSC 1770, 10 Center Dr, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
11
|
Iacobas DA. The Genomic Fabric Perspective on the Transcriptome Between Universal Quantifiers and Personalized Genomic Medicine. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13752-016-0245-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Murphy E, Steenbergen C. Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 2014; 5:6. [PMID: 24612699 PMCID: PMC3975301 DOI: 10.1186/2042-6410-5-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/21/2014] [Indexed: 01/20/2023] Open
Abstract
Sex differences in cardiovascular disease and cardiac physiology have been reported in humans as well as in animal models. Premenopausal women have reduced cardiovascular disease compared to men, but the incidence of cardiovascular disease in women increases following menopause. Sex differences in cardiomyocytes likely contribute to the differences in male-female physiology and response to disease. Sex differences in the heart have been noted in electrophysiology, contractility, signaling, metabolism, and cardioprotection. These differences appear to be due, at least in part, to differences in gene and protein expression as well as in posttranslational protein modifications. This review will focus primarily on estrogen-mediated male-female differences in protein expression and signaling pathways in the heart and cardiac cells. It should be emphasized that these basic differences are not intrinsically beneficial or detrimental per se; the difference can be good or bad depending on the context and circumstances.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Laboratory of Cardiac Physiology, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20824-0105, USA
| | | |
Collapse
|
13
|
Ambrosi CM, Yamada KA, Nerbonne JM, Efimov IR. Gender differences in electrophysiological gene expression in failing and non-failing human hearts. PLoS One 2013; 8:e54635. [PMID: 23355885 PMCID: PMC3552854 DOI: 10.1371/journal.pone.0054635] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022] Open
Abstract
The increasing availability of human cardiac tissues for study are critically important in increasing our understanding of the impact of gender, age, and other parameters, such as medications and cardiac disease, on arrhythmia susceptibility. In this study, we aimed to compare the mRNA expression of 89 ion channel subunits, calcium handling proteins, and transcription factors important in cardiac conduction and arrhythmogenesis in the left atria (LA) and ventricles (LV) of failing and nonfailing human hearts of both genders. Total RNA samples, prepared from failing male (n = 9) and female (n = 7), and from nonfailing male (n = 9) and female (n = 9) hearts, were probed using custom-designed Taqman gene arrays. Analyses were performed to explore the relationships between gender, failure state, and chamber expression. Hierarchical cluster analysis revealed chamber specific expression patterns, but failed to identify disease- or gender-dependent clustering. Gender-specific analysis showed lower expression levels in transcripts encoding for Kv4.3, KChIP2, Kv1.5, and Kir3.1 in the failing female as compared with the male LA. Analysis of LV transcripts, however, did not reveal significant differences based on gender. Overall, our data highlight the differential expression and transcriptional remodeling of ion channel subunits in the human heart as a function of gender and cardiac disease. Furthermore, the availability of such data sets will allow for the development of disease-, gender-, and, most importantly, patient-specific cardiac models, with the ability to utilize such information as mRNA expression to predict cardiac phenotype.
Collapse
Affiliation(s)
- Christina M. Ambrosi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kathryn A. Yamada
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeanne M. Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Igor R. Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Iacobas S, Neal-Perry G, Iacobas DA. Analyzing the Cytoskeletal Transcriptome: Sex Differences in Rat Hypothalamus. THE CYTOSKELETON 2013. [DOI: 10.1007/978-1-62703-266-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Iacobas S, Iacobas DA, Spray DC, Scemes E. The connexin43-dependent transcriptome during brain development: importance of genetic background. Brain Res 2012; 1487:131-9. [PMID: 22771707 PMCID: PMC3501561 DOI: 10.1016/j.brainres.2012.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/31/2012] [Indexed: 01/27/2023]
Abstract
Use of null mutant mice is a powerful way to evaluate the role of specific proteins in brain function. Studies performed on knockout mice have revealed some unexpected roles of the gap junction proteins (connexins). Thus, analyses of gene expression in connexin43 (Cx43) null brains indicated that deletion of a single gene (Gja1) induced expression level change of numerous other genes located on all chromosomes and involved in a wide diversity of functional pathways. The significant overlap between alterations in gene expression level, control and coordination in Cx43 knockout and knockdown astrocytes raised the possibility that Gja1 represents a transcriptomic node of gene regulatory networks. However, conditional deletion of Gja1 in astrocytes of two mouse strains resulted in remarkably different phenotypes. In order to evaluate the influence of the genetic background on the transcriptome, we performed microarray studies on brains of GFAP-Cre:Cx43(f/f) C57Bl/6 and 129/SvEv mice. The surprisingly low number of Cx43 core genes (regulated in all Cx43 nulls regardless of strain) and the high number of differently regulated genes in the two Cx43 conditional knockouts indicate high influence of mouse strain on brain transcriptome. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- S Iacobas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410, Pelham Parkway, Kennedy Center, Room 203, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
16
|
Iacobas S, Thomas NM, Iacobas DA. Plasticity of the myelination genomic fabric. Mol Genet Genomics 2012; 287:237-46. [PMID: 22246408 DOI: 10.1007/s00438-012-0673-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/03/2012] [Indexed: 01/11/2023]
Abstract
This study aimed to quantify the influence of the astrocyte proximity on myelination genomic fabric (MYE) of oligodendrocytes, defined as the most interconnected and stably expressed gene web responsible for myelination. Such quantitation is important to evaluate whether astrocyte signaling may contribute to demyelination when impaired and remyelination when properly restored. For this, we compared changes in the gene expression profiles of immortalized precursor oligodendrocytes (Oli-neu), stimulated to differentiate by the proximity of nontouching astrocytes or treatment with db-cAMP. In a previous paper, we reported that the astrocyte proximity upregulated or turned-on a large number of myelination genes and substantially enriched the Ca(2+)-signaling and cytokine receptor regulatory networks of MYE in Oli-neu cells. Here, we introduce the "transcriptomic distance" to evaluate fabric remodeling and "pair-wise relevance" to identify the most influential gene pairs. Together with the prominence gene analysis used to select and rank the fabric genes, these novel analytical tools provide a comprehensively quantitative view of the physio/pathological transformations of the transcriptomic programs of myelinating cells. Applied to our data, the analyses revealed not only that the astrocyte neighborhood is a substantially more powerful regulator of myelination than the differentiating treatment but also the molecular mechanisms of the two differentiating paradigms are different. By inducing a profound remodeling of MYE and regulatory transcriptomic networks, the astrocyte-oligodendrocyte intercommunication may be considered as a major player in both pathophysiology and therapy of neurodegenerative diseases related to myelination.
Collapse
Affiliation(s)
- Sanda Iacobas
- D.P. Purpura Department of Neuroscience, Kennedy Center, Albert Einstein College of Medicine of Yeshiva University, Room 713, 1300 Morris Park Avenue, Bronx-New York, NY, 10461, USA
| | | | | |
Collapse
|
17
|
Adesse D, Goldenberg RC, Fortes FS, Jasmin, Iacobas DA, Iacobas S, Campos de Carvalho AC, de Narareth Meirelles M, Huang H, Soares MB, Tanowitz HB, Garzoni LR, Spray DC. Gap junctions and chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:63-81. [PMID: 21884887 DOI: 10.1016/b978-0-12-385895-5.00003-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gap junction channels provide intercellular communication between cells. In the heart, these channels coordinate impulse propagation along the conduction system and through the contractile musculature, thereby providing synchronous and optimal cardiac output. As in other arrhythmogenic cardiac diseases, chagasic cardiomyopathy is associated with decreased expression of the gap junction protein connexin43 (Cx43) and its gene. Our studies of cardiac myocytes infected with Trypanosoma cruzi have revealed that synchronous contraction is greatly impaired and gap junction immunoreactivity is lost in infected cells. Such changes are not seen for molecules forming tight junctions, another component of the intercalated disc in cardiac myocytes. Transcriptomic studies of hearts from mouse models of Chagas disease and from acutely infected cardiac myocytes in vitro indicate profound remodelling of gene expression patterns involving heart rhythm determinant genes, suggesting underlying mechanisms of the functional pathology. One curious feature of the altered expression of Cx43 and its gene expression is that it is limited in both extent and location, suggesting that the more global deterioration in cardiac function may result in part from spread of damage signals from more seriously compromised cells to healthier ones.
Collapse
Affiliation(s)
- Daniel Adesse
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Thomas N, Jasmin J, Lisanti M, Iacobas D. Sex differences in expression and subcellular localization of heart rhythm determinant proteins. Biochem Biophys Res Commun 2011; 406:117-22. [DOI: 10.1016/j.bbrc.2011.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/01/2011] [Indexed: 11/15/2022]
|
19
|
Abstract
Extensive literature documented that astrocytes release neurotransmitters, cytokines and other signaling molecules to modulate migration, maturation and myelin synthesis of oligodendrocytes through mechanisms primarily converging on cytosolic [Ca2+] transients. Considering the long-term effects, it is expected that astrocyte-conditioned medium is a major regulator of gene expression in oligodendrocytes even in the absence of cytosol-to-cytosol communication via astrocyte-oligodendrocyte gap junction channels. Indeed, by comparing the transcriptomes of immortalized precursor oligodendrocyte (Oli-neu) cells when cultured alone and co-cultured with non-touching astrocytes we found profound changes in the gene expression level, control and networking. Remarkably, the astrocyte proximity was more effective in remodeling the myelination (MYE) gene fabric and its control by cytokine receptor (CYR)-modulated intercellular Ca2+-signaling (ICS) transcriptomic network than the dibutyryl-cAMP (db-cAMP) treatment-induced transformation into myelin-associated glycoprotein-positive oligodendrocyte-like cells. Moreover, astrocyte proximity up-regulated 37 MYE genes and switched on another 14 MYE, 23 ICS and 4 CYR genes, enhancing the roles of the leukemia inhibitory factor receptor and connexins Cx29 and Cx47. The novel prominent gene analysis identified the enhancer of zeste homolog 2 as the most relevant MYE gene in the astrocyte proximity, notch gene homolog 1 in control and B-cell leukemia/lymphoma 2 in differentiated Oli-neu cells.
Collapse
|
20
|
Schlagenhauf P, Adamcova M, Regep L, Schaerer MT, Rhein HG. The position of mefloquine as a 21st century malaria chemoprophylaxis. Malar J 2010; 9:357. [PMID: 21143906 PMCID: PMC3224336 DOI: 10.1186/1475-2875-9-357] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/09/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Malaria chemoprophylaxis prevents the occurrence of the symptoms of malaria. Travellers to high-risk Plasmodium falciparum endemic areas need an effective chemoprophylaxis. METHODS A literature search to update the status of mefloquine as a malaria chemoprophylaxis. RESULTS Except for clearly defined regions with multi-drug resistance, mefloquine is effective against the blood stages of all human malaria species, including the recently recognized fifth species, Plasmodium knowlesi. New data were found in the literature on the tolerability of mefloquine and the use of this medication by groups at high risk of malaria. DISCUSSION Use of mefloquine for pregnant women in the second and third trimester is sanctioned by the WHO and some authorities (CDC) allow the use of mefloquine even in the first trimester. Inadvertent pregnancy while using mefloquine is not considered grounds for pregnancy termination. Mefloquine chemoprophylaxis is allowed during breast-feeding. Studies show that mefloquine is a good option for other high-risk groups, such as long-term travellers, VFR travellers and families with small children. Despite a negative media perception, large pharmaco-epidemiological studies have shown that serious adverse events are rare. A recent US evaluation of serious events (hospitalization data) found no association between mefloquine prescriptions and serious adverse events across a wide range of outcomes including mental disorders and diseases of the nervous system. As part of an in-depth analysis of mefloquine tolerability, a potential trend for increased propensity for neuropsychiatric adverse events in women was identified in a number of published clinical studies. This trend is corroborated by several cohort studies that identified female sex and low body weight as risk factors. CONCLUSION The choice of anti-malarial drug should be an evidence-based decision that considers the profile of the individual traveller and the risk of malaria. Mefloquine is an important, first-line anti-malarial drug but it is crucial for prescribers to screen medical histories and inform mefloquine users of potential adverse events. Careful prescribing and observance of contraindications are essential. For some indications, there is currently no replacement for mefloquine available or in the pipeline.
Collapse
Affiliation(s)
- Patricia Schlagenhauf
- University of Zürich Centre for Travel Medicine, Hirschengraben 84, University of Zürich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Heart rhythm genomic fabric in hypoxia. Biochem Biophys Res Commun 2009; 391:1769-74. [PMID: 20044980 DOI: 10.1016/j.bbrc.2009.12.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 11/23/2022]
Abstract
The molecular mechanisms by which chronic hypoxia, whether constant (CCH) or intermittent (CIH), alters the heart rhythm are still under debate. Expression level, control, maturational profile and intercoordination of 54 genes encoding heart rhythm determinants (HRDs) were analyzed in 36 mice subjected for 1, 2 or 4 weeks of their early life to normal atmospheric conditions or to CCH or CIH. Our analysis revealed a complex network of genes encoding various heart rate, inotropy and development controllers, receptors, ion channels and transporters, ankyrins, epigenetic modulators and intercalated disc components (adherens, cadherins, catenins, desmosomal, gap and tight junction proteins). The network is remodeled during maturation and substantially and differently altered by CIH and CCH. Gene Prominence Analysis that ranks the genes according to their expression stability and networking within functional gene webs, confirmed the HRD status of certain epigenetic modulators and components of the intercalated discs not yet associated with arrhythmia.
Collapse
|