1
|
Xie J, Wang H, Ma R, Fan J, Quan Q, Zhang Z, Li M, Li B. The molybdate transport protein ModA regulates nitrate reductase activity to increase the intestinal colonization and extraintestinal dissemination of Klebsiella pneumoniae in the inflamed gut. Virulence 2025; 16:2474185. [PMID: 40033924 PMCID: PMC11901421 DOI: 10.1080/21505594.2025.2474185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
The mammalian intestine is a major site of colonization and a starting point of severe infections by Klebsiella pneumoniae. Inflammatory bowel disease (IBD) is an inflammatory disorder of the gut, and host-derived nitrate in IBD confers a luminal growth advantage upon Escherichia coli and Salmonella typhimurium through nitrate respiration in the inflamed gut. However, the impact of nitrate on the growth and pathogenicity of K. pneumoniae in this microenvironment is poorly understood. In this study, we used oral administration of dextran sodium sulphate to induce IBD in mouse models. We then analysed the colonization levels of K. pneumoniae wild-type (WT), the nitrate reductase gene mutant strains (ΔnarG, ΔnarZ and ΔnarGΔnarZ), and the molybdate uptake gene mutant strain (ΔmodA) in the inflamed intestinal tract. Results showed that the growth, intestinal colonization, and extraintestinal dissemination of K. pneumoniae were increased in the intestines of dextran sulphate sodium (DSS)-treated mice. Nitrate in the inflamed bowel conferred a growth advantage to K. pneumoniae through nitrate respiration. The molybdate transport protein ModA regulated nitrate reductase activity to increase the growth, intestinal colonization, and extraintestinal dissemination of K. pneumoniae. Tungstate will be a promising antibacterial agent to tackle K. pneumoniae infections in IBD patients.
Collapse
Affiliation(s)
- Jichen Xie
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Hui Wang
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Renhui Ma
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Jinming Fan
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Qiuhang Quan
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Zhiqiang Zhang
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Moran Li
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Bei Li
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of obstetricsl, Maternal and Child Health Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Yang RC, Cui YW, Li ZY, Li MT, Jiang LX, Mi YN, Sui Y, Liang HK. Molecular identification of heterotrophic nitrification and aerobic denitrification bacteria: From methods development to application demonstration. WATER RESEARCH 2025; 280:123542. [PMID: 40156975 DOI: 10.1016/j.watres.2025.123542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Although heterotrophic nitrification and aerobic denitrification (HN-AD) bacteria, a novel functional group involved in nitrogen conversion, have been isolated and characterized, the lack of specific molecular markers for identification severely limits the study of their role in geochemical cycling and the contribution in ecosystems. Here, a set of molecular markers was developed for the rapid identification of HN-AD bacteria, via delving into the genomics and transcriptomics of a HN-AD isolate (Pseudomonas aeruginosa SNDPR-01). Among the nine candidate genes that were significantly expressed during heterotrophic nitrification, three were involved in the conversion of hydroxylamine to nitrite, a characteristic process of HN-AD. The universality and stability of the identification methods based on the gene primer set were validated using pure HN-AD strains, mixed cultures of pure HN-AD strains, and activated sludge from laboratory-scale and real wastewater treatment plants. In all cases, the amplification outcome was positively correlated with the function and population of HN-AD bacteria, demonstrating its validity as a molecular marker. This study supports the paradigm of heterotrophic nitrification from hydroxylamine to nitrite. As an effective tool for the identification of classic HN-AD bacteria, this study lays the groundwork for research on environmental ecology and biotechnological application of HN-AD bacteria.
Collapse
Affiliation(s)
- Rui-Chun Yang
- National EngHineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - You-Wei Cui
- National EngHineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Zhen-Ying Li
- National EngHineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Ming-Teng Li
- National EngHineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Liu-Xu Jiang
- National EngHineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Ya-Nan Mi
- National EngHineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Yuan Sui
- National EngHineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Hui-Kai Liang
- National EngHineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
3
|
Li J, Zuo X, Chen Q, Lin Y, Meng F. Genome-resolved metagenomic analysis reveals a novel denitrifier with truncated nitrite reduction pathway from the genus SC-I-84. WATER RESEARCH 2025; 282:123598. [PMID: 40245806 DOI: 10.1016/j.watres.2025.123598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Understanding the genomic and ecological traits of partial denitrification (PD) bacteria is of high importance for developing wastewater treatment technologies. In this study, a PD-based bioreactor was operated, resulting in a mixed culture dominated by a potentially novel PD functional bacterium (SC-I-84). Progressively increased activity in both nitrate reduction and nitrite production were observed in the SC-I-84 enrichment system, whereas the nitrite reduction activity was always negligible. The phylogenetic analysis indicated that SC-I-84 was closely related to an uncultured beta-proteobacterium (99 %), whereas its denitrification functional genes (napA, napB, narV, and narY) exhibited evidence of co-evolution with chromosomal genes from the genus Cupriavidus, order Burkholderiales. In the genetic sketch of SC-I-84, only nitrate-reduction genes (nar and nap) were identified, whereas nitrite-reduction genes (nir) were absent. Notably, nitrate reduction genes were adjacent to carbon metabolism genes (sucB/C, mdh, idh) and a high abundance of tricarboxylic acid (TCA) cycling genes were found. This can promote the utilization efficiency of electron donors by nitrate reduction genes in SC-I-84, thus enhancing the denitrification activity. Furthermore, SC-I-84 positively cooperated with some bacteria that participate in nitrogen and carbon metabolism and other PD bacteria, but negatively interacted with full-denitrification bacteria. These results indicate that the enrichment of SC-I-84 restricted the growth of full-denitrification bacteria, aiding in the maintenance of a stable PD process. Taken together, the meta-genomic analysis of the novel PD functional bacterium is expected to enhance our understanding of PD processes and aid in the development of PD-based wastewater treatment processes.
Collapse
Affiliation(s)
- Jiapeng Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaotian Zuo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qianqian Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yanting Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
4
|
Mupindu P, Zhao YG, Pan C, Zhang Y, Liu J. Enhancement of aerobic denitrification process on antibiotics removal: Mechanism and efficiency: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70050. [PMID: 40065507 DOI: 10.1002/wer.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Traditionally, the removal of nitrogenous pollutants from wastewater relied on conventional anaerobic denitrification as well as aerobic nitrification and anoxic denitrification. However, anaerobic denitrification is complicated since it requires stringent environmental conditions as well as a large land, therefore, denitrification and nitrification were performed in two separate reactors. Although high pollutant removal efficiency has been achieved via aerobic nitrification and anoxic denitrification, the demerits of this approach include high operational costs. Other traditional nitrogen removal methods include air stripping, reverse osmosis, adsorption, ion exchange, chemical precipitation, advanced oxidation process, and breakpoint chlorination. Traditional nitrogen removal methods are not only complicated but they are also uneconomical due to the high operational costs. Researchers have discovered that denitrification can be carried out by heterotrophic nitrification-aerobic denitrification (HNAD) microorganisms which remove nitrogen in a single aerobic reactor that does not require stringent operating conditions. Despite the significant effort that researchers have put in, there is still little information known about the mechanisms of antibiotic removal during HNAD. This review begins with an update on the current state of knowledge on the removal of nitrogenous pollutants and antibiotics from wastewater by HNAD. The mechanisms of antibiotic removal via HNAD were examined in detail. Followed by, the enhancement of antibiotics removal via co-metabolism and oxidation of sulfamethoxazole (SMX) as well as the response of microbial communities to antibiotic toxicity. Lastly, the conditions favorable for antibiotic biodegradation and mechanisms for nitrogen removal via HNAD were examined. The findings in this review show that co-metabolism and oxidation of SMX were the main antibiotic biodegradation mechanisms, pathways for antibiotic removal by co-metabolism and oxidation of SMX were also proposed in the discussion. This research indicated the potential of aerobic denitrification in the removal of antibiotics from wastewater. Understanding the mechanisms and pathways of antibiotic removal by HNAD helps wastewater engineers and researchers apply the technology more efficiently. PRACTITIONER POINTS: The mechanisms of antibiotic removal via HNAD were examined in detail. Co-metabolism and oxidation of SMX were the main antibiotic biodegradation mechanisms. Pathways for antibiotic removal by co-metabolism and oxidation of SMX were also proposed. Conditions favorable for antibiotic biodegradation were examined. This research indicated the potential of aerobic denitrification in the removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, China
| | - Chao Pan
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanan Zhang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiannan Liu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Gu J, Cao Y, Sun Q, Zhang J, Xu Y, Jin H, Huang H. The bacterial community drive the humification and greenhouse gas emissions during plant residues composting under different aeration rates. ENVIRONMENTAL TECHNOLOGY 2025; 46:848-862. [PMID: 38920117 DOI: 10.1080/09593330.2024.2369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the effects of different aeration intensities on organic matter (OM) degradation, greenhouse gas emissions (GHG) as well as humification during plant residue composting. Three intermittent aeration intensities of 0.084 (Tlow), 0.19 (Tmedium) and 0.34 (Thigh) L min-1kg-1 DM with 30 min on/30 min off were conducted on a lab-scale composting experiment. Results showed that OM mineralization in Thigh was more evident than Tlow and Tmedium, resulting in the highest humic acid content. Humic acid content in Tmedium and Thigh was 15.7% and 18.5% higher than that in Tlow. The average O2 concentration was 4.9%, 9.5% and 13.6% for Tlow, Tmedium and Thigh. Compared with Tmedium and Thigh, Tlow reduced CO2 and N2O emissions by 18.3%-39.6% and 72.4%-63.9%, but the CH4 emission was highest in Tlow. But the total GHG emission was the lowest in Thigh. Linear Discriminant Analysis Effect Size analysis showed that the core bacteria within Tlow mainly belonged to Anaerolineaceae, which was significantly negatively correlated to the emission of CH4. Thermostaphylospora, Unclassified_Vicinamibacteraceae and Sulfurifustis were identified as core bacteria in Tmedium and Thigh, and these genus were significantly postively correlated to CO2 and N2O emissions. Redundancy analysis showed that total orgnic carbon, O2 and electrical conductivity were the key factors affecting the evolution of bacterial community.
Collapse
Affiliation(s)
- Junyu Gu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
| | - Yun Cao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Qian Sun
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Jing Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Yueding Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Hongying Huang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Xu M, Chen L, Xin Y, Wang X, Wang Z, Meng X, Zhang W, Sun H, Li Y, Zhang W, Wan P, Geng B, Li L. Characteristics and Mechanism of Ammonia Nitrogen Removal by Heterotrophic Nitrification Bacterium Klebsiella pneumoniae LCU1 and Its Application in Wastewater Treatment. Microorganisms 2025; 13:297. [PMID: 40005663 PMCID: PMC11857964 DOI: 10.3390/microorganisms13020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, a novel strain exhibiting heterotrophic nitrification was screened; subsequently, the strain was identified as Klebsiella pneumoniae LCU1 using 16S rRNA gene sequencing. The aim of the study was to investigate the effects of external factors on the NH4+-N removal efficiency of strain LCU1 in order to elucidate the optimal conditions for NH4+-N removal by the strain and improve the removal efficiency. The findings indicated that the NH4+-N removal efficiency of the strain exceeded 80% under optimal conditions (sodium succinate carbon source, C/N ratio of 10, initial pH of 8.0, temperature of 30 °C, and speed of 180 rpm). The genome analysis of strain LCU1 showed that key genes involved in nitrogen metabolism, including narGHI, nirB, nxrAB, and nasAB, were successfully annotated; hao and amo were absent, but the nitrogen properties analysis determined that the strain had a heterotrophic nitrification ability. After 120 h, the NH4+-N removal efficiency of strain LCU1 was 34.5% at a high NH4+-N concentration of 2000 mg/L. More importantly, the NH4+-N removal efficiency of this strain was above 34.13% at higher Cu2+, Mn2+, and Zn2+ ion concentrations. Furthermore, strain LCU1 had the highest NH4+-N removal efficiency of 34.51% for unsterilised (LCU1-OC) aquaculture wastewater. This suggests that with intensive colonisation treatment, the strain has promising application potential in real wastewater treatment.
Collapse
Affiliation(s)
- Meng Xu
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
- Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China
| | - Lifei Chen
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
- Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China
| | - Yizhen Xin
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
- Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China
| | - Xiangyu Wang
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Zhuoya Wang
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Xueqiang Meng
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Wenyu Zhang
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Haoyang Sun
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Yifan Li
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Wenzhe Zhang
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Peng Wan
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Bingshuai Geng
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
| | - Lusheng Li
- School of Agricultural Science and Biology, Liaocheng University, Liaocheng 252000, China; (M.X.); (Y.X.); (X.W.); (Z.W.); (X.M.); (W.Z.); (H.S.); (Y.L.); (W.Z.); (P.W.); (B.G.)
- Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
7
|
Sun W, Hu C, Wu J, Wei M, Lin JG, Hong Y. Efficient nitrogen removal via simultaneous ammonium assimilation and heterotrophic denitrification of Paracoccus denitrificans R-1. iScience 2024; 27:110599. [PMID: 39220262 PMCID: PMC11365388 DOI: 10.1016/j.isci.2024.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Although diverse microorganisms can remove ammonium and nitrate simultaneously, their metabolic mechanisms are not well understood. Paracoccus denitrificans R-1 showed the maximal NH4 + removal rate 9.94 mg L-1·h-1 and 2.91 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. Analysis of the nitrogen balance calculation and isotope tracing experiment indicated that NH4 + was consumed through assimilation. The maximal NO3 - removal rate of strain R-1 was 18.05 and 19.76 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. The stoichiometric consumption ratio of acetate to nitrate was 0.902 and NO3 - was reduced to N2 for strain R-1 through 15NO3 - isotopic tracing experiment, which indicated a respiratory process coupled with the oxidation of electron donors. Genomic analysis showed that strain R-1 contained genes for ammonium assimilation and denitrification, which effectively promoted each other. These findings provide insights into microbial nitrogen transformation and facilitate the simultaneous removal of NH4 + and NO3 - in a single reactor.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Chunchen Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Mingken Wei
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
8
|
Mao J, Zhao R, Li Y, Qin W, Wu S, Xu W, Jin P, Zheng Z. Nitrogen removal capability and mechanism of a novel low-temperature-tolerant simultaneous nitrification-denitrification bacterium Acinetobacter kyonggiensis AKD4. Front Microbiol 2024; 15:1349152. [PMID: 39318430 PMCID: PMC11419981 DOI: 10.3389/fmicb.2024.1349152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
A low-temperature-tolerant simultaneous nitrification-denitrification bacterial strain of Acinetobacter kyonggiensis (AKD4) was identified. It showed high efficiency in total nitrogen (TN) removal (92.45% at 10°C and 87.51% at 30°C), indicating its excellent low-temperature tolerance. Transcriptomic analysis revealed possible metabolic mechanisms under low-temperature stress. Genes involved in cell growth, including ATP synthase (atpADGH), amino acid (glyA, dctA, and ilvE), and TCA cycle metabolism (gltA, fumC, and mdh) were remarkably upregulated from 1.05-3.44-fold at 10°C, suggesting that their actions enhance survivability at low temperatures. The expression levels of genes associated with nitrogen assimilation (glnAE, gltBD, and gdhA), nitrogen metabolism regulation (ntrC, glnB, and glnD), and denitrification processes (napA) were increased from 1.01-4.38-fold at 10°C, which might have contributed to the bacterium's highly efficient nitrogen removal performance at low temperatures. Overall, this study offers valuable insights into transcriptome, and enhances the comprehension of the low-temperature-tolerant mechanism of simultaneous nitrification and denitrification processes.
Collapse
Affiliation(s)
- Jiwei Mao
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
| | - Ruojin Zhao
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Yiyi Li
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Wenpan Qin
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Shengchun Wu
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Weiping Xu
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang A & F University, Hangzhou, China
| | - Zhanwang Zheng
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| |
Collapse
|
9
|
Chavan AR, Khardenavis AA. Annotating Multiple Prebiotic Synthesizing Capabilities Through Whole Genome Sequencing of Fusarium Strain HFK-74. Appl Biochem Biotechnol 2024; 196:4993-5012. [PMID: 37994978 DOI: 10.1007/s12010-023-04788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
In the present study, seven fungal isolates from effluent treatment plants were screened for the production of prebiotic fructooligosaccharide synthesizing enzymes with the highest activity of fructofuranosidase (17.52 U/mL) and fructosyl transferase (18.92 U/mL) in strain HKF-74. Mining of genome sequence of strain revealed the annotation of genes providing multiple carbohydrate metabolizing capacities, such as amylases (AMY1), beta-galactosidase (BGAL), beta-xylosidase (Xyl), β-fructofuranosidase (ScrB), fructosyltransferase (FTF), and maltose hydrolases (malH). The annotated genes were further supported by β-galactosidase (15.90 U/mL), xylanase (17.91 U/mL), and α-amylase (14.05 U/mL) activities for synthesis of galactooligosaccharides, xylooligosaccarides, and maltooligosaccharides, respectively. In addition to genes encoding prebiotic synthesizing enzymes, four biosynthetic gene clusters (BGCs) including Type I polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), NRPS-like, and terpene were also predicted in strain HKF-74. This was significant considering their potential role in pharmaceutical and therapeutic applications as well as in virulence. Accurate taxonomic assignment of strain HKF-74 by in silico genomic comparison indicated its closest identity to type strains Fusarium verticillioides NRRL 20984, and 7600. The average nucleotide identity (ANI) of strain HKF-74 with these strains was 92.5% which was close to the species threshold cut-off value (95-96%) while the DNA-DNA hybridization (DDH) value was 83-84% which was greater than both, species delineating (79-80%), and also sub-species delineating (70%) boundaries. Our findings provide a foundation for further research into the use of Fusarium strains and their prebiotic synthesizing enzymes for the development of novel prebiotic supplements.
Collapse
Affiliation(s)
- Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Yang Y, Gui X, Chen L, Li H, Li Z, Liu T. Acid-tolerant Pseudomonas citronellolis YN-21 exhibits a high heterotrophic nitrification capacity independent of the amo and hao genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116385. [PMID: 38772137 DOI: 10.1016/j.ecoenv.2024.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024]
Abstract
Heterotrophic nitrifying bacteria are found to be promising candidates for implementation in wastewater treatment systems due to their tolerance to extreme environments. A novel acid-resistant bacterium, Pseudomonas citronellolis YN-21, was isolated and reported to have exceptional heterotrophic nitrification capabilities in acidic condition. At pH 5, the highest NH4+ removal rate of 7.84 mg/L/h was displayed by YN-21, which was significantly higher than the NH4+ removal rates of other strains in neutral and alkaline environments. Remarkably, a distinct accumulation of NH2OH and NO3- was observed during NH4+ removal by strain YN-21, while traditional amo and hao genes were not detected in the genome, suggesting the possible presence of alternative nitrifying genes. Moreover, excellent nitrogen removal performance was displayed by YN-21 even under high concentrations of metal ion stress. Consequently, a broad application prospect in the treatment of leather wastewater and mine tailwater is offered by YN-21.
Collapse
Affiliation(s)
- Yuran Yang
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xuwei Gui
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Liuyi Chen
- Hanhong college, southwest university, Chongqing 400716, China
| | - Huimiao Li
- Chongqing Key Laboratory of Plant Disease Biology, college of Plant Protection, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Tuohong Liu
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
11
|
Graham EB, Garayburu-Caruso VA, Wu R, Zheng J, McClure R, Jones GD. Genomic fingerprints of the world's soil ecosystems. mSystems 2024; 9:e0111223. [PMID: 38722174 PMCID: PMC11237643 DOI: 10.1128/msystems.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.
Collapse
Affiliation(s)
- Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
12
|
Yang J, Xie X, Miao Y, Dong Z, Zhu B. Isolation and characterization of a cold-tolerant heterotrophic nitrification-aerobic denitrification bacterium and evaluation of its nitrogen-removal efficiency. ENVIRONMENTAL RESEARCH 2024; 242:117674. [PMID: 38029814 DOI: 10.1016/j.envres.2023.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
With a view toward addressing the poor efficiency with which nitrogen is removed from wastewater below 10 °C, in this study, we isolated a novel cold-tolerant heterotrophic nitrification-aerobic denitrification (HN-AD) bacterium from a wetland and characterized its nitrogen removal performance and nitrogen metabolic pathway. On the basis of 16S rRNA gene sequencing, this strain was identified as a species of Janthinobacterium, designated J1-1. At 8 °C, strain J1-1 showed excellent removal efficiencies of 89.18% and 68.18% for single-source NH4+-N and NO3--N, respectively, and removal efficiencies of 96.23% and 79.64% for NH4+-N and NO3--N, respectively, when supplied with mixed-source nitrogen. Whole-genome sequence analysis and successful amplification of the amoA, napA, and nirK functional genes related to nitrogen metabolism provided further evidence in support of the HN-AD capacity of strain J1-1. The deduced HN-AD metabolic pathway of the strain was NH4+-N→NH2OH→NO2--N→NO3--N→NO2--N→NO→N2O. In addition, assessments of NH4+-N removal under different conditions revealed the following conditions to be optimal for efficient removal: a temperature of 20 °C, pH of 7, shaking speed of 150 rpm, sodium succinate as a carbon source, and a C/N mass ratio of 16. Given its efficient nitrogen removal capacity at 8 °C, the J1-1 strain characterized in this study has considerable application potential in the treatment of low-temperature wastewater.
Collapse
Affiliation(s)
- Jingyu Yang
- Sichuan Academy of Forestry Sciences, Chengdu, 610081, China
| | - Xiuhong Xie
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Yuanying Miao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Zhixin Dong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| |
Collapse
|
13
|
Cheng W, Yin Y, Li Y, Li B, Liu D, Ye L, Fu C. Nitrogen removal by a strengthened comprehensive floating bed with embedded pellets made by a newly isolated Pseudomonas sp. Y1. ENVIRONMENTAL TECHNOLOGY 2024; 45:208-220. [PMID: 35876098 DOI: 10.1080/09593330.2022.2102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
A newly heterotrophic nitrification aerobic denitrification(HN-AD) bacterium Pseudomonas sp. Y1 with highly nitrogen removal ability was isolated from the activated sludge, TN removal rate of which was 99.73%. In this study, two types of different ecology floating bed systems were designed to achieve efficient nitrogen removal in the urban eutrophic landscape water body, one is the comprehensive ecological floating bed(CEFB) system with only Lythrum salicari and the other is the strengthened comprehensive ecological floating bed (SCEFB) system with both Lythrum and embedded pellets made by Y1. The TN removal rates of the CEFB system were 33.82%, 83.84% and 88.91% at 8±1℃, 15±1℃ and 25±1℃, respectively, while the TN removal rates of the SCEFB system increased by nearly 40%, 16% and 11% at the same environment, respectively. The result shows that the SCEFB system can purify the simulated water from surface water body class V to class IV. Thus it has a broad application prospect in the urban eutrophic landscape water body.
Collapse
Affiliation(s)
- Wanyun Cheng
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Yixin Yin
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
- Shanghai Honess Environmental Technology Co.,Ltd., Shanghai, People's Republic of China
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Bolin Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Dongxue Liu
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Lingfeng Ye
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Chengbin Fu
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Wu G, Yang G, Sun X, Li B, Tian Z, Niu X, Cheng J, Feng L. Simultaneous denitrification and organics removal by denitrifying bacteria inoculum in a multistage biofilm process for treating desulfuration and denitration wastewater. BIORESOURCE TECHNOLOGY 2023; 388:129757. [PMID: 37714492 DOI: 10.1016/j.biortech.2023.129757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
This study aimed to treat real wastewater from the desulfuration and denitration process in a petrochemical plant with high-strength nitrogen (TN≈200 mg/L, > 90% nitrate), sulfate (2.7%) and extremely low-strength organics (CODCr < 30 mg/L). Heterotrophic denitrification of multistage anoxic and oxic biofilm (MAOB) process in three tanks using facultative denitrifying bacteria inoculum was developed to simultaneously achieve desirable effluent nitrogen and organics at different hydraulic retention time (HRT) and carbon to nitrogen (C/N) mass ratios. The optimum condition was recommended as a C/N ratio of 1.5 and a HRT of A (24 h)/O (12-24 h) to achieve > 90% of nitrogen and organics removal as well as no significant variation of sulfate. The denitrifying biofilm in various tanks was dominant by Hyphomicrobium (8.9%-25.7%), Methylophaga (18.6%-25.8%) and Azoarcus (3.3%-19.6%), etc., containing > 20% aerobic denitrifiers. This explained that oxic zone in MAOB process also exhibited simultaneous nitrogen and organics removal.
Collapse
Affiliation(s)
- Guiyang Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China; National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, China
| | - Xiaoran Sun
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bu Li
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Zhijuan Tian
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Xinzheng Niu
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Junmei Cheng
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China; National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, China.
| |
Collapse
|
15
|
Xie Y, Tian X, He Y, Dong S, Zhao K. Nitrogen removal capability and mechanism of a novel heterotrophic nitrification-aerobic denitrification bacterium Halomonas sp. DN3. BIORESOURCE TECHNOLOGY 2023; 387:129569. [PMID: 37517711 DOI: 10.1016/j.biortech.2023.129569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Recently, the functional microorganisms capable of eliminating nitrogenous waste have been applied in mariculture systems. As a potential candidate for treating mariculture wastewater, strain DN3 eliminated 100% of ammonia and nitrate and 96.61%-100% of nitrite within 72 h, when single nitrogen sources at concentrations of 0-50 mg/L. Strain DN3 also exhibited the efficient removal performance of mixed-form nitrogen (ammonia, nitrate, and nitrite) at salinity 30 ‰, C/N ratio 20, and 180 rpm. The nitrogen assimilation pathway dominated inorganic nitrogen metabolism, with less nitrogen (14.23%-25.02% of TN) lost into the air via nitrification and denitrification, based on nitrogen balance analysis. Moreover, the bacterial nitrification pathway was explored by enzymatic assays and inhibition assays. These complex nitrogen assimilation and dissimilation processes were further revealed by bacterial genome analysis. These results provide important insight into nitrogen metabolism of Halomonas sp. and theoretical support for treating mariculture wastewater with strain DN3.
Collapse
Affiliation(s)
- Yumeng Xie
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China.
| | - Yu He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Kun Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| |
Collapse
|
16
|
Gao Y, Zhu J, Wang K, Ma Y, Fang J, Liu G. Discovery of a heterotrophic aerobic denitrification Pseudomonas sp. G16 and its unconventional nitrogen metabolic pathway. BIORESOURCE TECHNOLOGY 2023; 387:129670. [PMID: 37591467 DOI: 10.1016/j.biortech.2023.129670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
From the aerobic pond of the farm, the Pseudomonas sp. G16 was screened and isolated, which was confirmed to exhibit heterotrophic nitrification and aerobic denitrification. The removal rates of Ammonia (100 mg/L), nitrate (120 mg/L), and nitrite (100 mg/L) by the strain were 94.13%, 92.62%, and 85.67%, and the nitrogen metabolism pathway of strain G16 was analyzed by whole genome sequencing combined with its nitrification-denitrification intermediate products, it was found that the strain had independent nitrification-denitrification ability and no nitrite accumulation. Under the conditions of carbon source of sodium succinate hexahydrate, C/N ratio of 15, pH of 7.5, temperature of 15 °C, and DO of 210 rpm, strain G16 showed excellent denitrification performance. Strain G16 was prepared into biochar-based immobilized bacterial particles, which successfully improved its nitrogen removal efficiency and stability. Therefore, the application of strain G16 in the field of real wastewater treatment has very necessary research value.
Collapse
Affiliation(s)
- Yu Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Junwen Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| |
Collapse
|
17
|
Gupta RK, Tikariha H, Purohit HJ, Khardenavis AA. Pangenome-driven insights into nitrogen metabolic characteristics of Citrobacter portucalensis strain AAK_AS5 associated with wastewater nitrogen removal. Arch Microbiol 2023; 205:270. [PMID: 37356030 DOI: 10.1007/s00203-023-03597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/27/2023]
Abstract
Nitrogen metabolism in the genus Citrobacter is very poorly studied despite its several implications in wastewater treatment. In the current study, Citrobacter portucalensis strain AAK_AS5 was assessed for remediation of simulated wastewater supplemented with different inorganic nitrogen sources. Combination of (NH4)2SO4 with KNO3 was the most preferred for achieving high growth density followed by (NH4)2SO4 and KNO3 alone. This was in agreement with highest ammonical nitrogen removal of 92.9% in the presence of combined nitrogen sources and the corresponding nitrate nitrogen removal of 93% in the presence of KNO3. Furthermore, these removal capacities were validated by investigating the uniqueness and the spread of metabolic features through pan-genomic approach that revealed the largest number of unique genes (2097) and accessory genes (705) in strain AAK_AS5. Of the total 44 different types of nitrogen metabolism-related genes, 39 genes were associated with the core genome, while 5 genes such as gltI, nasA, nasR, nrtA, and ntrC uniquely belonged to the accessory genome. Strain AAK_AS5 possessed three major nitrate removal pathways viz., assimilatory and dissimilatory nitrate reduction to ammonia (ANRA & DNRA), and denitrification; however, the absence of nitrification was compensated by ammonia assimilation catalyzed by gene products of the GDH and GS-GOGAT pathways. narGHIJ encoding the respiratory nitrate reductase was commonly identified in all the studied genomes, while genes such as nirK, norB, and nosZ were uniquely present in the strain AAK_AS5 only. A markedly different genetic content and metabolic diversity between the strains reflected their adaptive evolution in the environment thus highlighting the significance of C. portucalensis AAK_AS5 for potential application in nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hitesh Tikariha
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Zhou X, Wang Y, Tan X, Sheng Y, Li Y, Zhang Q, Xu J, Shi Z. Genomics and nitrogen metabolic characteristics of a novel heterotrophic nitrifying-aerobic denitrifying bacterium Acinetobacter oleivorans AHP123. BIORESOURCE TECHNOLOGY 2023; 375:128822. [PMID: 36871698 DOI: 10.1016/j.biortech.2023.128822] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
A novel aerobic strain of Acinetobacter oleivorans AHP123 was isolated from activated sludge, which could conduct heterotrophic nitrification and denitrification simultaneously. This strain has excellent NH4+-N removal ability, with 97.93% removal rate at 24-hour. To identify the metabolic pathways of this novel strain, genes of gam, glnA, gdhA, gltB, nirB, nasA, nar, nor, glnK and amt were detected by genome analysis. Through RT-qPCR, it was found that the expression of key genes confirmed two possible ways of nitrogen removal in strain AHP123: nitrogen assimilation and heterotrophic nitrification aerobic denitrification (HNAD). However, the absence of some common HNAD genes (amo, nap and nos) suggested that strain AHP123 might have a different HNAD pathway from other HNAD bacteria. Nitrogen balance analysis revealed that strain AHP123 assimilated most of the external nitrogen sources into intracellular nitrogen.
Collapse
Affiliation(s)
- Xiangqun Zhou
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yuanli Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xin Tan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yanbin Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Qin Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jialu Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhengsheng Shi
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
19
|
Huang MQ, Cui YW, Yang HJ, Xu MJ, Cui Y, Chen Z. A halophilic aerobic-heterotrophic strain Halomonas venusta SND-01: Nitrogen removal by ammonium assimilation and heterotrophic nitrification-aerobic denitrification. BIORESOURCE TECHNOLOGY 2023; 374:128758. [PMID: 36801440 DOI: 10.1016/j.biortech.2023.128758] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) removal from high-salinity wastewater is a major challenge. The aerobic-heterotrophic nitrogen removal (AHNR) process has been demonstrated to be feasible for treating hypersaline wastewater. In this study, Halomonas venusta SND-01, a halophilic strain capable of performing AHNR, was isolated from saltern sediment. The strain achieved ammonium, nitrite, and nitrate removal efficiencies of 98%, 81%, and 100%, respectively. The N balance experiment suggests that this isolate removes N mainly via assimilation. Various functional genes related to N metabolism were found in the genome of the strain, establishing a complex AHNR pathway that includes ammonium assimilation, heterotrophic nitrification-aerobic denitrification, and assimilatory nitrate reduction. Four key enzymes in the N removal process were successfully expressed. The strain exhibited high-adaptability under C/N ratios of 5-15, salinities of 2%-10% (m/v), and pH of 6.5-9.5. Therefore, the strain shows high potential for treating saline wastewater with different inorganic N compositions.
Collapse
Affiliation(s)
- Mei-Qi Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Hou-Jian Yang
- Beijing Municipal Pollution Source Management Center, Beijing 100089, China
| | - Meng-Jiao Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
20
|
Cheng J, Gao X, Yan Z, Li G, Luo W, Xu Z. Intermittent aeration to reduce gaseous emission and advance humification in food waste digestate composting: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 371:128644. [PMID: 36681346 DOI: 10.1016/j.biortech.2023.128644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the performance and mechanisms of intermittent aeration to regulate gaseous emission and humification during food waste digestate composting. In addition to continuous aeration, three intermittent aeration regimes were conducted with the on-off interval ratio at 3:1, 2:1, and 1:1 within each 30 min, respectively. Results showed that intermittent aeration regimes reduced gaseous emission and enhanced humification during composting. In particular, intermittent aeration with the on/off ratio of 1:1 was more effective to reduce organic mineralization than other regimes, which alleviated the emission of nitrous oxide and ammonia by 63.1% and 75.7% in comparison with continuous aeration, respectively. In addition, this aeration regime also enhanced the content of humic acid by 24.1%. Further analysis demonstrated that prolonging aeration-off intervals could enrich facultative bacteria (e.g. Atopobium and Clostridium) from digestate and inhibit the proliferation of several aerobic bacteria (e.g. Caldicoprobacter and Marinimicrobium) to retard organic mineralization for humification.
Collapse
Affiliation(s)
- Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaowei Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
21
|
Gupta RK, Singh AK, Bajaj A, Khardenavis AA, Purohit HJ. Phylogenomic analysis of Citrobacter sp. strain AAK_AS5 and its metabolic capabilities to support nitrogen removal behavior. J Basic Microbiol 2023; 63:359-376. [PMID: 36453555 DOI: 10.1002/jobm.202200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/02/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022]
Abstract
Despite the ubiquity of the genus Citrobacter in clinical, industrial, and environmental scenarios, a large number of Citrobacter strains have not been explored at the genome-scale level. In this study, accurate taxonomic assignment of strain AAK_AS5 isolated from activated sludge was achieved by in-silico genomic comparison using Overall Genome-based Relatedness Indices (ANI(OAT): 97.55%, ANIb:97.28%, and ANIm: 97.83%) that indicated its closest identity to the related strain Citrobacter portucalensis A60T . Results were consistent with a digital DNA-DNA hybridization value of 80% with C. portucalensis A60T which was greater than the species boundary value >70% for delineating closely related bacterial species. Gene mining through Kyoto Encyclopedia of Genes and Genomes (KEGG), and annotation using rapid annotation subsystem technology (RAST) revealed the notable gene contents for nitrogen metabolism and other pathways associated with nitrate/nitrite ammonification (28 genes), ammonia assimilation (22 genes), and denitrification pathways (14 genes). Furthermore, the strain AAK_AS5 also exhibited a high soluble chemical oxygen demand (sCOD), NH4 + -N, and NO3 - -N removal efficiency of 91.4%, 90%, and 93.6%, respectively thus validating its genetic capability for utilizing both (NH4 )2 SO4 and KNO3 as the nitrogen source. The study provided deeper insights into the phylogenomics and the genetic potential of Citrobacter, sp. strain AAK AS5 associated with nitrogen metabolism thus signifying the potential application of the isolate for treating nitrogen-rich wastewaters.
Collapse
Affiliation(s)
- Rakesh K Gupta
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish K Singh
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
22
|
Niu S, Gong W, Li Z, Zhang K, Wang G, Yu E, Xia Y, Tian J, Li H, Ni J, Xie J. Complete genome analysis of Pseudomonas furukawaii ZS1 isolated from grass carp ( Ctenopharyngodon idellus) culture water. Genome 2023; 66:11-20. [PMID: 36395476 DOI: 10.1139/gen-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas furukawaii ZS1, isolated from grass carp (Ctenopharyngodon idellus) culture water, exhibits efficient aerobic nitrate reduction without nitrite accumulation; however, the molecular pathway underlying this aerobic nitrate reduction remains unclear. In this study, we constructed a complete genome map of P. furukawaii ZS1 and performed a comparative genomic analysis with a reference strain. The results showed that P. furukawaii ZS1 genome was 6 026 050 bp in size and contained 5427 predicted protein-coding sequences. The genome contained all the necessary genes for the dissimilatory nitrate reduction to ammonia pathway but lacked those for the assimilatory nitrate reduction pathway; additionally, genes that convert ammonia to organic nitrogen were also identified. The presence of putative genes associated with the nitrogen and oxidative phosphorylation pathways implied that ZS1 can perform respiration and nitrate reduction simultaneously under aerobic conditions, so that nitrite is rapidly consumed for detoxication by denitrification. The aim of this study is to indicate the great potential of strain ZS1 for future full-scale applications in aquaculture. This work provided insights at the molecular level on the nitrogen metabolic pathways in Pseudomonas species. The understanding of nitrogen metabolic pathways also provides significant molecular information for further Pseudomonas species modification and development.
Collapse
Affiliation(s)
- Shuhui Niu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Hongyan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| |
Collapse
|
23
|
Lan M, Kang Y, Wang J, Li M, Zhang P, Zhang P, Li B. In-situ enrichment and application of heterotrophic nitrification-aerobic denitrification bacteria in membrane aerated biofilm reactor. CHEMOSPHERE 2022; 309:136643. [PMID: 36181858 DOI: 10.1016/j.chemosphere.2022.136643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In order to reduce the resource and energy consumption of traditional biological nitrogen removal (BNR) process, heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria was in situ enriched in membrane aerated biofilm reactor (MABR) by inoculating conventional activated sludge. Contaminants removal performance, EPS composition and microbial community were explored. The results indicated that the average removal efficiency of COD and TN under optimal condition reached 84.13% and 91.54%, respectively, which demonstrated that the reactor possessed excellent contaminants removal capacity. EPS analysis suggested that abundant protein especially tryptophan protein-like substance played a vital role in maintaining the microbial stability of biofilms. Multiple HN-AD genera, mainly Paracoccus, were detected with the highest relative abundance of 54.70%, which confirmed the successful enrichment of the HN-AD bacteria. Conventional nitrifiers and denitrifiers also thrived in biofilm, which demonstrated the synergistic nitrogen removal of multiple microorganisms. This study provided important insights into application of HN-AD bacteria and synergistic nitrogen removal in BNR system.
Collapse
Affiliation(s)
- Meichao Lan
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, PR China
| | - Yongqiang Kang
- China Construction Sixth Engineering Bureau Hydropower Construction Co. Ltd., Tianjin, 300202, PR China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, PR China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Peng Zhang
- Gansu Membrane Science and Technology Research Institute Co. Ltd., Lanzhou, Gansu, 730020, PR China
| | - Pengyun Zhang
- Gansu Membrane Science and Technology Research Institute Co. Ltd., Lanzhou, Gansu, 730020, PR China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
24
|
Wang F, Liu W, Liu W, Xiao L, Ai S, Sun X, Bian D. Simultaneous removal of organic matter and nitrogen by heterotrophic nitrification-aerobic denitrification bacteria in an air-lift multi-stage circulating integrated bioreactor. BIORESOURCE TECHNOLOGY 2022; 363:127888. [PMID: 36070812 DOI: 10.1016/j.biortech.2022.127888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to propose a novel air-lift multi-stage circulating integrated bioreactor (AMCIB) to treat urban sewage. The AMCIB combined the reaction zone and sedimentation zone, the alternating circulation of activated sludge in separate aerobic and anaerobic environments facilitates the enrichment of HN-AD bacteria. The preliminary study showed that AMCIB had high removal efficiencies for COD, NH4+-N, TN and TP under high dissolved oxygen (DO) concentration conditions, with average removal rates of 93.21 %, 96.04 %, 75.06 % and 94.30 %, respectively. IlluminaMiSeq sequencing results showed that the system successfully cultured heterotrophic nitrification-aerobic denitrification (HN-AD) functional bacteria (Pseudomonas, Acinetobacter, Aeromonas) that played a crucial role in sewage treatment, and Tetrasphaera was the central phosphorus removing bacteria in the system. Functional gene predictions showed that the HN-AD played a dominant role in the system.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Wanqi Liu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Wenai Liu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Letian Xiao
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China
| | - Xuejian Sun
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Dejun Bian
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
25
|
Wang J, Chen P, Li S, Zheng X, Zhang C, Zhao W. Mutagenesis of high-efficiency heterotrophic nitrifying-aerobic denitrifying bacterium Rhodococcus sp. strain CPZ 24. BIORESOURCE TECHNOLOGY 2022; 361:127692. [PMID: 35905881 DOI: 10.1016/j.biortech.2022.127692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Breeding high-efficiency heterotrophic nitrifying-aerobic denitrifying (SND) bacteria is important for the removal of biological nitrogen in wastewater treatment. In this study, a high-efficiency SND mutant strain, ΔRhodococcus sp. CPZ 24, was obtained by ultraviolet-diethyl sulfate compound mutagenesis. The maximum nitrification and denitrification rates were 3.77 and 1.37 mg·L-1·h-1, respectively 30.30 % and 17.10 % higher than those of wild bacteria. Biolog technology and network model analysis revealed that ΔCPZ 24 significantly improved the utilisation ability and metabolic activity of organic carbon sources. Furthermore, the expression levels of the nitrogen removal function genes nxrA, nosZ, amoA, and norB in strain ΔCPZ 24 increased significantly. In actual sewage, mutant bacteria ΔCPZ 24 have a 95.05 % ammonia-nitrogen degradation rate and a 96.67 % nitrate-nitrogen degradation rate. These results suggested that UV-DES compound mutation was a successful strategy to improve the nitrogen removal performance of SND bacteria in wastewater treatment.
Collapse
Affiliation(s)
- Jingli Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Huazhong Agricultural University, Wuhan 430070, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Shaopeng Li
- Tianjin Agricultural University, Tianjin 300392, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wenjie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
26
|
Singh AK, Gupta RK, Purohit HJ, Khardenavis AA. Genomic characterization of denitrifying methylotrophic Pseudomonas aeruginosa strain AAK/M5 isolated from municipal solid waste landfill soil. World J Microbiol Biotechnol 2022; 38:140. [PMID: 35705700 DOI: 10.1007/s11274-022-03311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/15/2022] [Indexed: 11/26/2022]
Abstract
Municipal landfills are known for methane production and a source of nitrate pollution leading to various environmental issues. Therefore, this niche was selected for the isolation of one-carbon (C1) utilizing bacteria with denitrifying capacities using anaerobic enrichment on nitrate mineral salt medium supplemented with methanol as carbon source. Eight axenic cultures were isolated of which, isolate AAK/M5 demonstrated the highest methanol removal (73.28%) in terms of soluble chemical oxygen demand and methane removal (41.27%) at the expense of total nitrate removal of 100% and 33% respectively. The whole genome characterization with phylogenomic approach suggested that the strain AAK/M5 could be assigned to Pseudomonas aeruginosa with close neighbours as type strains DVT779, AES1M, W60856, and LES400. The circular genome annotation showed the presence of complete set of genes essential for methanol utilization and complete denitrification process. The study demonstrates the potential of P. aeruginosa strain AAK/M5 in catalysing methane oxidation thus serving as a methane sink vis-à-vis utilization of nitrate. Considering the existence of such bacteria at landfill site, the study highlights the need to develop strategies for their enrichment and designing of efficient catabolic activity for such environments.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
27
|
Wu L, Ding X, Lin Y, Lu X, Lv H, Zhao M, Yu R. Nitrogen removal by a novel heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter calcoaceticus TY1 under low temperatures. BIORESOURCE TECHNOLOGY 2022; 353:127148. [PMID: 35421563 DOI: 10.1016/j.biortech.2022.127148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
A new bacterial strain, Acinetobacter calcoaceticus TY1, was identified in activated sludge. This strain efficiently metabolized nitrogen from ammonium at low temperatures, utilizing NH4+-N, NO3--N, and NO2--N as nitrogen sources. Of these, NH4+-N was superior in terms of both assimilation and heterotrophic nitrification at 8 °C. The nitrogen metabolism-associated genes amoA, nirK, and nosZ were identified in TY1. Optimal requirements for growth and nitrogen removal were pH 7, shaking speed of 90 rpm, a C/N ratio of 10, and sodium citrate for the carbon supply. The ability to denitrify at low temperature suggests TY1's potential for wastewater management.
Collapse
Affiliation(s)
- Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Xiaoyu Ding
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yan Lin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xingshun Lu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hang Lv
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Manping Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruihong Yu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
28
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
29
|
Zhao W, Gu J, Wang X, Song Z, Hu T, Dai X, Wang J. Insights into the associations of copper and zinc with nitrogen metabolism during manure composting with shrimp shell powder. BIORESOURCE TECHNOLOGY 2022; 349:126431. [PMID: 34861387 DOI: 10.1016/j.biortech.2021.126431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The application of shrimp shell powder (SSP) in manure composting can promote the maturation of compost and reduce the associated environmental risk. This study investigated the response of adding SSP at different levels (CK: 0, L: 5%, M: 10%, and H: 15%) on heavy metal resistance genes (MRGs), nitrogen functional genes, enzymes, and microorganisms. SSP inhibited nitrification and denitrification via decreasing the abundances of functional genes and key enzymes related to Cu, Zn, and MRGs. The nitrate reductase and nitrous-oxide reductase in the denitrification pathway were lower under H. Phylogenetic trees indicated that Burkholderiales sp. had strong relationships with OTU396 and OTU333, with important roles in the nitrogen cycle and plant growth. Redundancy analysis and structural equation modeling showed the complex response between heavy metal and nitrogen that bio-Cu and bio-Zn had positive significantly relationships with nirK-type and amoA-type bacteria, and amoA-type bacteria might be hotspot of cueO.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
30
|
Varghese VK, Poddar BJ, Shah MP, Purohit HJ, Khardenavis AA. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152500. [PMID: 34968606 DOI: 10.1016/j.scitotenv.2021.152500] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Volatile fatty acids (VFA), the secondary metabolite of microbial fermentation, are used in a wide range of industries for production of commercially valuable chemicals. In this review, the fermentative production of VFAs by both pure as well mixed microbial cultures is highlighted along with the strategies for enhancing the VFA production through innovations in existing approaches. Role of conventionally applied tools for the optimization of operational parameters such as pH, temperature, retention time, organic loading rate, and headspace pressure has been discussed. Furthermore, a comparative assessment of above strategies on VFA production has been done with alternate developments such as co-fermentation, substrate pre-treatment, and in situ removal from fermented broth. The review also highlights the applications of different bioreactor geometries in the optimum production of VFAs and how metagenomic tools could provide a detailed insight into the microbial communities and their functional attributes that could be subjected to metabolic engineering for the efficient production of VFAs.
Collapse
Affiliation(s)
- Vijay K Varghese
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Bhagyashri J Poddar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Maulin P Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab, Enviro Technology Ltd., Ankleshwar 393002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Xi H, Zhou X, Arslan M, Luo Z, Wei J, Wu Z, Gamal El-Din M. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150212. [PMID: 34536867 DOI: 10.1016/j.scitotenv.2021.150212] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 05/27/2023]
Abstract
The traditional biological nitrogen removal (BNR) follows the conventional scheme of sequential nitrification and denitrification. In recent years, novel processes such as anaerobic ammonia oxidation (anammox), complete oxidation of ammonia to nitrate in one organism (comammox), heterotrophic nitrification and aerobic denitrification (HN-AD), and dissimilatory nitrate reduction to ammonium (DNRA) are gaining tremendous attention after the discovery of metabolically versatile bacteria. Among them, HN-AD offers several advantages because individual bacteria could achieve one-stage nitrogen removal under aerobic conditions in the presence of organic carbon. In this review, besides classical BNR processes, we summarized the existing literature on HN-AD bacteria which have been isolated from diverse habitats. A particular focus was given on the diversity and physiology of HN-AD bacteria, influences of physiological and biochemical factors on their growth, nitrogen removal performances, as well as limitations and strategies in unraveling HN-AD metabolic pathways. We also presented case studies of HN-AD application in wastewater treatment facilities, pointed out forthcoming challenges of HN-AD in these systems, and presented modulation strategies for HN-AD application in engineering. This review may help improve the existing design of wastewater treatment plants by harnessing HN-AD bacteria for effective nitrogen removal.
Collapse
Affiliation(s)
- Haipeng Xi
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhijun Luo
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
32
|
Song T, Zhang X, Li J, Wu X, Feng H, Dong W. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149319. [PMID: 34428659 DOI: 10.1016/j.scitotenv.2021.149319] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Traditional nitrogen removal relies on the autotrophic nitrification and anaerobic denitrification process. In the system, autotrophic microorganisms achieve nitrification under aerobic condition and heterotrophic microorganisms complete the denitrification in anaerobic condition. As the two types of microorganisms have different tolerance on oxygen concentration, nitrification and denitrification are normally set in two compartments for high nitrogen removal. Therefore, large land occupying is required. In fact, there is a special type of microorganism called heterotrophic nitrification & aerobic denitrification microorganisms (HNADMs) which can oxidize ammonium nitrogen, and perform denitrification in the presence of oxygen. HNADMs have been reported in many environments. It was found that HNADMs could simultaneously achieve nitrification and denitrification. In addition, some HNADMs not only have the ability to remove nitrogen, but also have the ability to remove phosphorus. It suggests that HNADMs have great potential for pollution removal from wastewater. So far, individual work on single strain was carried out. Comprehensive summary of the HNADMs would provide a better picture for understanding and directing its application. In this paper, the studies related on HNADMs were reviewed. The nitrogen metabolism pathway of HNADMs was summarized. The impact of pH, DO, carbon source, and C/N on HNADMs growth and metabolism were discussed. In addition, the extracellular polymeric substance (EPS) production, quorum sensing (QS) secretion and P removal by HNADMs were displayed.
Collapse
Affiliation(s)
- Tao Song
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China.
| | - Xinyu Wu
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China
| | - Haixia Feng
- Shenzhen Municipal Engineering Consulting Center CO., LTD, Shenzhen 518028, Guangdong, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China
| |
Collapse
|
33
|
Qu J, Zhao R, Chen Y, Li Y, Jin P, Zheng Z. Enhanced nitrogen removal from low-temperature wastewater by an iterative screening of cold-tolerant denitrifying bacteria. Bioprocess Biosyst Eng 2021; 45:381-390. [PMID: 34859268 DOI: 10.1007/s00449-021-02668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
The biological process to remove nitrogen in winter effluent is often seriously compromised due to the effect of low temperatures (< 13 °C) on the metabolic activity of microorganisms. In this study, a novel heterotrophic nitrifying-aerobic denitrifying bacterium with cold tolerance was isolated by iterative domestication and named Moraxella sp. LT-01. The LT-01 maintained almost 60% of its maximal growth activity at 10 °C. Under initial concentrations of 100 mg/L, the removal efficiencies of ammonium, nitrate, nitrite by LT-01 were 70.3%, 65.4%, 61.7% respectively for 72 h incubation at 10 °C. Nitrogen balance analysis showed that about 46% of TN was released as gases and 16% of TN was assimilated for cell growth. The biomarker genes involved in nitrification and denitrification pathways were identified by gene-specific PCR and revealed that the LT-01 has nitrite reductase (NirS) but not hydroxylamine reductase (HAO), which implies the involvement of other genes in the process. The study indicates that LT-01 has the potential for use in low-temperature regions for efficient sewage treatment.
Collapse
Affiliation(s)
- Jin Qu
- School of Environmental and Resource, Zhejiang A and F University, Hangzhou, 311300, China
| | - Ruojin Zhao
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Yinyan Chen
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Yiyi Li
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China
| | - Peng Jin
- College of Agricultural and Food Sciences, Zhejiang A and F University, Hangzhou, 311300, China
| | - Zhanwang Zheng
- School of Environmental and Resource, Zhejiang A and F University, Hangzhou, 311300, China. .,Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou, 310000, China.
| |
Collapse
|
34
|
He T, Chen M, Ding C, Wu Q, Zhang M. Hypothermia Pseudomonas taiwanensis J488 exhibited strong tolerance capacity to high dosages of divalent metal ions during nitrogen removal process. BIORESOURCE TECHNOLOGY 2021; 341:125785. [PMID: 34455248 DOI: 10.1016/j.biortech.2021.125785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The nitrogen metabolic pathways of Pseudomonas taiwanensis J488 have not been confirmed from genomic function analysis and its divalent metal ion resistance remains poorly understood. In this study, the key denitrifying gene of Pseudomonas taiwanensis J488, nirB, was determined by draft genome sequencing. The nitrification of ammonium was insensitive to high concentrations of Ca(II), Mn(II), Zn(II), and Cd(II). Similarly, complete nitrite removal was achieved despite Mn(II) and Zn(II) reaching concentrations up to 30 mg/L. Furthermore, the efficiency of nitrate removal was significantly enhanced by 1.33%, 3.33%, 5.99%, and 1.53% with the addition of 0.5 mg/L Ca(II), 20 mg/L Mn(II), 5 mg/L Zn(II), and 2 mg/L Cd(II), respectively, comparison with the control. The bacterial growth in both nitrifying and denitrifying processes was substantially promoted by various dosages of divalent metal ions. These results indicate that divalent metal ions would not severely limit the capacity of strain J488 to purify nitrogen-polluted wastewater.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
35
|
Tan X, Yang YL, Li X, Gao YX, Fan XY. Multi-metabolism regulation insights into nutrients removal performance with adding heterotrophic nitrification-aerobic denitrification bacteria in tidal flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149023. [PMID: 34280639 DOI: 10.1016/j.scitotenv.2021.149023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands (CWs) usually exhibit limits in functional redundancy and diversity of microbial community contributing to lower performances of nutrients removal in decentralized domestic sewage treatment. To address this quandary, heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria was added in tidal flow CWs (TFCWs) developing for nitrogen (N) and phosphorus (P) removal. With addition of HN-AD bacteria, TFCWs could be setup more rapidly and obtained better removal efficiencies of 66.9%-70.1% total nitrogen (TN), and 88.2%-92.4% total phosphorus (TP) comparing with control systems (TN: 53.9%; TP: 83.9%) during stable operation. Typical-cycles variations showed that TFCWs with addition of HN-AD bacteria promoted NO3--N and NH4+-N removal respectively under hydraulic retention time (HRT) of 14 h and 8 h with slight NO2--N accumulation. Activated alumina (AA) coupled with HN-AD bacteria decreased P release and relieved its poor removal performance in CWs. Based on metagenomic taxa and functional annotation, Pseudomonas and Thauera played pivotal roles in N removal in TFCWs. Furthermore, gradient oxic environments by 8 h-HRT promoted co-occurrence of heterotrophic nitrifiers (mostly Pseudomonas stutzeri) and autotrophic nitrifiers (mostly Nitrosomonas europaea. and Nitrospira sp.) which potentially accelerated NH4+-N transformation by elevated nitrification and denitrification related genes (e. g. amoABC, hao, napA and nirS genes). Meanwhile, the addition of HN-AD bacteria stimulated nirA and gltD genes of N assimilation processes probably leading to NH4+-N directly removal. The conceptual model of multi-metabolism regulation by HN-AD process highlighted importance of glk, gap2 and PK genes in glycolysis pathway which were vital drivers to nutrients metabolism. Overall, this study provides insights into how ongoing HN-AD bacteria-addition effected microbial consortia and metabolic pathways, serving theoretical basis for its engineered applications of TFCWs in decentralized domestic sewage treatment.
Collapse
Affiliation(s)
- Xu Tan
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yan-Ling Yang
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xing Li
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yu-Xi Gao
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil And Transportation Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
36
|
Tan X, Yang YL, Liu YW, Li X, Zhu WB. Quantitative ecology associations between heterotrophic nitrification-aerobic denitrification, nitrogen-metabolism genes, and key bacteria in a tidal flow constructed wetland. BIORESOURCE TECHNOLOGY 2021; 337:125449. [PMID: 34320737 DOI: 10.1016/j.biortech.2021.125449] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
This study explored the quantitative mechanisms of heterotrophic nitrification-aerobic denitrification (HN-AD) in a pilot-scale two-stage tidal flow constructed wetland (TFCW). The TFCW packed shale ceramsite (SC) and activated alumina (AA) at each stage, respectively, and aimed to improve decentralized wastewater treatment efficiency. In start-up phases, AA-TFCW accelerated NH4+-N decline, reaching transformation rates of 6.68 mg NH4+-N/(L·h). In stable phases, SC-AA-TFCW resisted low-temperatures (<13 °C), achieving stable NH4+-N and TN removal with effluents ranging 6.36-8.13 mg/L and 9.43-14.7 mg/L, respectively. The dominant genus, Ferribacterium, was the core of HN-AD bacteria, simultaneously removing NH4+-N and NO3--N by nitrate assimilation and complete denitrification (NO3--N → N2), respectively. The quantitative associations highlighted importance of nitrification, nitrate assimilation, and denitrification in nitrogen removal. HN-AD bacteria (e.g., Lactococcus, Thauera, and Aeromonas) carried high-weight genes in quantitative associations, including napAB, nasA and gltBD, implying that HN-AD bacteria have multiple roles in SC-AA-TFCW operation.
Collapse
Affiliation(s)
- Xu Tan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan-Ling Yang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yong-Wang Liu
- China Architecture Design and Research Group, Beijing 100044, China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wen-Bo Zhu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
37
|
Gupta RK, Poddar BJ, Nakhate SP, Chavan AR, Singh AK, Purohit HJ, Khardenavis AA. Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: A non-conventional nitrogen removal pathway in wastewater treatment. Lett Appl Microbiol 2021; 74:159-184. [PMID: 34402087 DOI: 10.1111/lam.13553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022]
Abstract
Bacterial species capable of performing both nitrification and denitrification in a single vessel under similar conditions have gained significance in the wastewater treatment scenario considering their unique character of performing the above reactions under heterotrophic and aerobic conditions respectively. Such a novel strategy often referred to as simultaneous nitrification and denitrification (SND) has a tremendous potential in dealing with various wastewaters having low C:N content, considering that the process needs very little or no external carbon source and oxygen supply thus adding to its cost-effective and environmentally friendly nature. Though like other microorganisms, heterotrophic nitrifiers and aerobic denitrifiers convert inorganic or organic nitrogen-containing substances into harmless dinitrogen gas in the wastewater, their ecophysiological role in the global nitrogen cycle is still not yet fully understood. Attempts to highlight the role played by the heterotrophic nitrifiers and aerobic denitrifiers in dealing with nitrogen pollution under various environmental operating conditions will help in developing a mechanistic understanding of the SND process to address the issues faced by the traditional methods of aerobic autotrophic nitrification-anaerobic heterotrophic denitrification.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
38
|
Cui Y, Cui YW, Huang JL. A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification. BIORESOURCE TECHNOLOGY 2021; 333:125189. [PMID: 33901912 DOI: 10.1016/j.biortech.2021.125189] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The utilization of halophilic bioresources is limited due to a lack of isolation and characterization work. A halophilic bacterium strain SND-01 of Exiguobacterium mexicanum was isolated in this study, which is the first report on its novel function in heterotrophic nitrification-aerobic denitrification (HN-AD). The strain SND-01 is slightly halophilic, surviving at 0 up to 9% (w/v) salinity. When utilizing ammonium, nitrate or nitrite as the sole nitrogen source in aerobic conditions, the isolated strain showed the maximum nitrogen removal rate of 2.24 ± 0.14 mg/(L·h), 3.63 ± 0.21 mg/(L·h) and 2.30 ± 0.23 mg/(L·h), respectively. Functional genes and key enzymes involved in heterotrophic-aerobic nitrogen transformations were characterized, establishing the pathway of HN-AD. The nitrogen removal via HN-AD is dependent on the C/N ratio, salinity and temperature. The halophilic Exiguobacterium mexicanum strain SND-01 shows a significant potential in biotreatment of saline wastewater in an easy and cost-effective way.
Collapse
Affiliation(s)
- Yuan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Ji-Lin Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
39
|
Font Nájera A, Serwecińska L, Mankiewicz-Boczek J. Culturable nitrogen-transforming bacteria from sequential sedimentation biofiltration systems and their potential for nutrient removal in urban polluted rivers. Sci Rep 2021; 11:7448. [PMID: 33811217 PMCID: PMC8018948 DOI: 10.1038/s41598-021-86212-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
Novel heterotrophic bacterial strains—Bzr02 and Str21, effective in nitrogen transformation, were isolated from sequential sedimentation-biofiltration systems (SSBSs). Bzr02, identified as Citrobacter freundii, removed up to 99.0% of N–NH4 and 70.2% of N–NO3, while Str21, identified as Pseudomonas mandelii, removed up to 98.9% of N–NH4 and 87.7% of N–NO3. The key functional genes napA/narG and hao were detected for Bzr02, confirming its ability to reduce nitrate to nitrite and remove hydroxylamine. Str21 was detected with the genes narG, nirS, norB and nosZ, confirming its potential for complete denitrification process. Nitrogen total balance experiments determined that Bzr02 and Str21 incorporated nitrogen into cell biomass (up to 94.7% and 74.7%, respectively), suggesting that nitrogen assimilation was also an important process occurring simultaneously with denitrification. Based on these results, both strains are suitable candidates for improving nutrient removal efficiencies in nature-based solutions such as SSBSs.
Collapse
Affiliation(s)
- Arnoldo Font Nájera
- UNESCO Chair On Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland.,European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Łódź, Poland
| | - Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Łódź, Poland.
| | - Joanna Mankiewicz-Boczek
- UNESCO Chair On Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland.,European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Łódź, Poland
| |
Collapse
|
40
|
Insight into the denitrification mechanism of Bacillus subtilis JD-014 and its application potential in bioremediation of nitrogen wastewater. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Liu JL, Yao J, Zhu X, Zhou DL, Duran R, Mihucz VG, Bashir S, Hudson-Edwards KA. Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115667. [PMID: 33497944 DOI: 10.1016/j.envpol.2020.115667] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Mine tailings sites are considered as a continuous source of discharged metal(loid)s and residual organic flotation reagents. They are extremely toxic environments representing unique ecological niches for microbial communities. Mine tailings as a source of multi-resistance genes have been poorly investigated. Metagenomic analysis for four active nonferrous metal(loid) tailings sites with different environmental parameters was conducted. The abundance of Thiobacillus, able to tolerate acidity and showing iron- and sulfur/sulfide oxidation capacities, was significantly different (p < 0.05) between acid and neutral tailings sites. Correlation analyses showed that Zn, Pb, TP, Cd, and Cu were the main drivers influencing the bacterial compositions. Multi-metal resistance genes (MRGs) and antibiotic resistance genes (ARGs), such as baca and copA, were found to be co-selected by high concentrations of metal(loid)s tailings. The main contributors to different distributions of MRGs were Thiobacillus and Nocardioides genus, while genera with low abundance (<0.1%) were the main contributors for ARGs. Functional metabolic pathways related to Fe-S metabolism, polycyclic aromatic hydrocarbons (PAHs) degradation and acid stress were largely from Altererythrobacter, Lysobacter, and Thiobacillus, respectively. Such information provides new insights on active tailings with highly toxic contaminants. Short-term metal(loid) exposure of microorganism in active nonferrous metal(loid) tailings contribute to the co-occurrence of ARGs and MRGs, and aggravation of tailings acidification. Our results recommend that the management of microorganisms involved in acid tolerance and metal/antibiotic resistance is of key importance for in-suit treatment of the continuous discharge of tailings with multiple metal(loid) contaminants into impoundments.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Xiaozhe Zhu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - De-Liang Zhou
- Beijing Zhongdianyida Technology Co., Ltd, Beijing, 100190, China
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de L'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Victor G Mihucz
- Sino-Hungarian Joint Research Laboratory for Environmental Sciences and Health, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter Stny. 1/A, Hungary
| | - Safdar Bashir
- Sub-campus Depalpur, University of Agriculture Faisalabad, Okara 56130, Pakistan
| | - Karen A Hudson-Edwards
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall TR10 9DF, UK
| |
Collapse
|
42
|
Geeraerts Z, Heskin AK, DuBois J, Rodgers KR, Lukat-Rodgers GS. Structure and reactivity of chlorite dismutase nitrosyls. J Inorg Biochem 2020; 211:111203. [PMID: 32768737 PMCID: PMC7749827 DOI: 10.1016/j.jinorgbio.2020.111203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022]
Abstract
Ferric nitrosyl ({FeNO}6) and ferrous nitrosyl ({FeNO}7) complexes of the chlorite dismutases (Cld) from Klebsiella pneumoniae and Dechloromonas aromatica have been characterized using UV-visible absorbance and Soret-excited resonance Raman spectroscopy. Both of these Clds form kinetically stable {FeNO}6 complexes and they occupy a unique region of ν(Fe-NO)/ν(N-O) correlation space for proximal histidine liganded heme proteins, characteristic of weak Fe-NO and N-O bonds. This location is attributed to admixed FeIII-NO character of the {FeNO}6 ground state. Cld {FeNO}6 complexes undergo slow reductive nitrosylation to yield {FeNO}7 complexes. The effects of proximal and distal environment on reductive nitroylsation rates for these dimeric and pentameric Clds are reported. The ν(Fe-NO) and ν(N-O) frequencies for Cld {FeNO}7 complexes reveal both six-coordinate (6c) and five-coordinate (5c) nitrosyl hemes. These 6c and 5c forms are in a pH dependent equilibrium. The 6c and 5c {FeNO}7 Cld frequencies provided positions of both Clds on their respective ν(Fe-NO) vs ν(N-O) correlation lines. The 6c {FeNO}7 complexes fall below (along the ν(Fe-NO) axis) the correlation line that reports hydrogen-bond donation to NNO, which is consistent with a relatively weak Fe-NO bond. Kinetic and spectroscopic evidence is consistent with the 5c {FeNO}7 Clds having NO coordinated on the proximal side of the heme, analogous to 5c {FeNO}7 hemes in proteins known to have NO sensing functions.
Collapse
Affiliation(s)
- Zachary Geeraerts
- North Dakota State University, Fargo, ND 58108, United States of America
| | - Alisa K Heskin
- North Dakota State University, Fargo, ND 58108, United States of America
| | - Jennifer DuBois
- Montana State University, Bozeman, MT 59717, United States of America
| | - Kenton R Rodgers
- North Dakota State University, Fargo, ND 58108, United States of America.
| | | |
Collapse
|
43
|
Zhao B, Chen DY, Zhang P, Ran XC, Guo JS. Evaluating performance of nitrogen and organic carbon removal in a single reactor by using A. faecalis strain NR aerobically. BIORESOURCE TECHNOLOGY 2020; 308:123278. [PMID: 32251858 DOI: 10.1016/j.biortech.2020.123278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The performance of nitrogen and organic carbon removal in a single reactor (R1) operating with A. faecalis strain NR aerobically was assessed. Under 150 mg/L influent NH4+-N, 91.3%, 71.4% and 90.9% of NH4+-N, TN and TOC were removed, presenting much higher efficiency than a control bioreactor inoculating activated sludge (R0). The amoA gene expression from strain NR in R1 was 7.8 times higher than that from activated sludge in R0, demonstrating the role of strain NR in removing NH4+. The analysis of microbial community composition revealed that strain NR was the dominant species and outcompeted ammonium oxidizing bacterium (AOB) under high organic carbon as well as ammonium. Simultaneous ammonium and organic carbon removal still maintained for a long-term operation with NH4+-N loadings of 300 and 450 mg/L in R1. Nitrogen balance showed that stripped NH3 only occupied a few percentages and aerobic denitrification played a significant role in nitrogen removal.
Collapse
Affiliation(s)
- Bin Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Dan Yang Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Peng Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xiao Chuan Ran
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jin Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
44
|
Henriot CP, Martak D, Cuenot Q, Loup C, Masclaux H, Gillet F, Bertrand X, Hocquet D, Bornette G. Occurrence and ecological determinants of the contamination of floodplain wetlands with Klebsiella pneumoniae and pathogenic or antibiotic-resistant Escherichia coli. FEMS Microbiol Ecol 2020; 95:5522603. [PMID: 31234204 PMCID: PMC6668757 DOI: 10.1093/femsec/fiz097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 11/27/2022] Open
Abstract
The survival and multiplication of human pathogenic and antibiotic-resistant bacteria in ecosystems is of increasing concern but has been little explored. Wetlands can be contaminated by water fluxes from rivers and may present environmental conditions leading to bacterial survival and multiplication. To test this hypothesis, we sampled 16 wetlands located along three rivers of the Jura Massif, France. The bacterial contamination of the wetland and river waters was measured monthly over a one-year cycle together with the water physico-chemical characteristics. We assessed the abundance of three pathogenic species: Escherichia coli,Klebsiella pneumoniaeand Pseudomonas aeruginosa. The concentrations of E. coli producing extended-spectrum β-lactamase (ESBL E. coli) or belonging to the phylogenetic group B2 (E. coli B2–more pathogenic) were also measured. We found that rivers carried total E. coli, ESBL E. coli, and K. pneumoniae to wetlands. ESBL E. coli poorly survived in wetlands, whereas total E. coli and K. pneumoniae possibly met favourable physico-chemical conditions for survival and multiplication in these habitats. K. pneumoniae peaked in summer in warm and shallow wetlands. Total E. coli and E. coli B2 potentially reached wetlands through sources other than rivers (hillslope groundwater or leaching from contaminated fields).
Collapse
Affiliation(s)
- Charles P Henriot
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France.,École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Suisse
| | - Daniel Martak
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France.,Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Besançon, 3 boulevard A. Fleming, 25030 Besançon, France
| | - Quentin Cuenot
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Christophe Loup
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Hélène Masclaux
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - François Gillet
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France.,École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Suisse
| | - Xavier Bertrand
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France.,Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Besançon, 3 boulevard A. Fleming, 25030 Besançon, France
| | - Didier Hocquet
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France.,Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Besançon, 3 boulevard A. Fleming, 25030 Besançon, France.,Centre de Ressources Biologiques Filière Microbiologie de Besançon, Centre Hospitalier Régional Universitaire, 25000 Besançon, France
| | - Gudrun Bornette
- UMR CNRS 6249 Chrono-environnement, Université Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| |
Collapse
|
45
|
Mapping Microbial Capacities for Bioremediation: Genes to Genomics. Indian J Microbiol 2019; 60:45-53. [PMID: 32089573 DOI: 10.1007/s12088-019-00842-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Bioremediation is a process wherein the decontamination strategies are designed so that a site could achieve the environmental abiotic and biotic parameters close to its baseline. In the process, the driving force is the available microbial genetic degradative capabilities, which are supported by required nutrients so that the desired expression of these capabilities could be exploited in favour of removal of pollutants. With genomics tools not only the available abilities could be estimated but their dynamic performance could also be established. These tools are now playing important role in bioprocess optimization, which not only derive the bio-stimulation plans but also could suggest possible genetic bio-augmentation options.
Collapse
|
46
|
Sustainable Approach to Eradicate the Inhibitory Effect of Free-Cyanide on Simultaneous Nitrification and Aerobic Denitrification during Wastewater Treatment. SUSTAINABILITY 2019. [DOI: 10.3390/su11216180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Simultaneous nitrification and aerobic denitrification (SNaD) is a preferred method for single stage total nitrogen (TN) removal, which was recently proposed to improve wastewater treatment plant design. However, SNaD processes are prone to inhibition by toxicant loading with free cyanide (FCN) possessing the highest inhibitory effect on such processes, rendering these processes ineffective. Despite the best efforts of regulators to limit toxicant disposal into municipal wastewater sewage systems (MWSSs), FCN still enters MWSSs through various pathways; hence, it has been suggested that FCN resistant or tolerant microorganisms be utilized for processes such as SNaD. To mitigate toxicant loading, organisms in SNaD have been observed to adopt a diauxic growth strategy to sequentially degrade FCN during primary growth and subsequently degrade TN during the secondary growth phase. However, FCN degrading microorganisms are not widely used for SNaD in MWSSs due to inadequate application of suitable microorganisms (Chromobacterium violaceum, Pseudomonas aeruginosa, Thiobacillus denitrificans, Rhodospirillum palustris, Klebsiella pneumoniae, and Alcaligenes faecalis) commonly used in single-stage SNaD. This review expatiates the biological remedial strategy to limit the inhibition of SNaD by FCN through the use of FCN degrading or resistant microorganisms. The use of FCN degrading or resistant microorganisms for SNaD is a cost-effective method compared to the use of other methods of FCN removal prior to TN removal, as they involve multi-stage systems (as currently observed in MWSSs). The use of FCN degrading microorganisms, particularly when used as a consortium, presents a promising and sustainable resolution to mitigate inhibitory effects of FCN in SNaD.
Collapse
|
47
|
Yang XC, Han ZZ, Ruan XY, Chai J, Jiang SW, Zheng R. Composting swine carcasses with nitrogen transformation microbial strains: Succession of microbial community and nitrogen functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:555-566. [PMID: 31254821 DOI: 10.1016/j.scitotenv.2019.06.283] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, nitrogen transformation strains, including three ammonium transformation strains, one nitrite strain and one nitrogen fixer, were inoculated at different swine carcass composting stages to regulate the nitrogen transformation and control the nitrogen loss. The final total nitrogen content was significantly increased (p < 0.01). The bacterial communities were assessed by amplicon sequencing and association analysis. Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were the four most dominant phyla.,Brevibacterium, Streptomyces and Ochrobactrum had a significant (p < 0.05) and positive correlation with total nitrogen and ammonium nitrogen content in both groups. The quantitative results of nitrogen transformation genes showed that ammonification, nitrification, denitrification and nitrogen fixation were simultaneously present in the composting process of swine carcasses, with the latter two accounting for a higher proportion. The ammonium transformation strains significantly (p < 0.05) strengthened nitrogen fixation and remarkably (p < 0.01) weakened nitrification and denitrification, which, however, were notably (p < 0.05) enhanced by the nitrite strain and nitrogen fixer. In this research, the inoculated strains changed the bacterial structure by regulating the abundance and activity of the highly connected taxa, which facilitated the growth of nitrogen transformation bacteria and regulated the balance/symbiosis of nitrogen transformation processes to accelerate the accumulation of nitrogen.
Collapse
Affiliation(s)
- Xu-Chen Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen-Zhen Han
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin-Yi Ruan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jin Chai
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Si-Wen Jiang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Rong Zheng
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Jin P, Chen Y, Yao R, Zheng Z, Du Q. New insight into the nitrogen metabolism of simultaneous heterotrophic nitrification-aerobic denitrification bacterium in mRNA expression. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:295-303. [PMID: 30856440 DOI: 10.1016/j.jhazmat.2019.03.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/26/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Here, the draft genome of simultaneous nitrification-denitrification strain (SND) Klebsiella sp. KSND revealed possible existence of genes involved in N-assimilation and -dissimilation pathways. The change levels of genes under defined N-sources were analyzed by Quantitative Real-Time PCR. It suggested that NH4+-assimilation via NADP-glutamate dehydrogenase pathway would occur preferentially. NirBD genes were tightly regulated in a lower level, so that nitrite was rapidly consumed for detoxication by denitrification. Three types of nitrate reductase homologues are surprisingly present in KSND, whereas the dominant nitrate reduction for assimilation and denitrification processes mediates by NapA-type nitrate reductase. Nitric oxide reductase homologues FlRd and FlRd-red provide an adequate capacity for NO detoxification. The recombinant hydroxylamine reductase showed high activity in hydroxylamine to generate ammonium, which might contribute to detoxification mechanism in nitrogen cycling. Overall, this study firstly provides valuable insights into the genes expression and enzyme action, which helps understanding the mechanism of SND processes.
Collapse
Affiliation(s)
- Peng Jin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Yinyan Chen
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, 311300, China
| | - Rui Yao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Zhanwang Zheng
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
49
|
Jin P, Chen Y, Xu T, Cui Z, Zheng Z. Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control. BIORESOURCE TECHNOLOGY 2019; 281:392-400. [PMID: 30831519 DOI: 10.1016/j.biortech.2019.02.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Nitrogen removal performance of a simultaneous heterotrophic nitrifying-aerobic denitrifying (SND) bacterium (KSND) in a purification tank bioreactor (PTBR) amended with two-stage dissolved oxygen (DO) control was investigated. NH4+-N and total nitrogen (TN) removal efficiencies under aerobic conditions for domestic wastewater treatment were 97.12% and 52.64%, respectively. Under serial aerobic (DO > 4.0 mg/L) and anaerobic (DO < 0.5 mg/L) phases, average TN removal efficiency from effluent was 95.45%, without nitrate and nitrite accumulation. DO control assay demonstrated that anaerobic condition adversely affected nitrification (46.13%), but was conducive to denitrification (93.52%). Transcriptional analysis revealed 2.72-fold increase in hydroxylamine reductase expression under aerobic condition as compared to anaerobic condition. Nitrate reductase and nitric oxide reductase homologs had the additional activity of supporting anaerobic or aerobic denitrification in SND bacteria. Under two-stage DO control, KSND maintained high abundance in oligotrophic PTBR, removing 87.88% TN from low-carbon to nitrogen domestic sewage in 180-days.
Collapse
Affiliation(s)
- Peng Jin
- The College of Agricultural and Food Sciences, Zhejiang A & F University, Hangzhou 311300, China.
| | - Yinyan Chen
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou 311300, China
| | - Tao Xu
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhiwen Cui
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhanwang Zheng
- Zhejiang Shuangliang Sunda Environment Co., LTD, Hangzhou 310000, China; School of Environmental & Resource, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
50
|
The Role of Pseudomonas in Heterotrophic Nitrification: A Case Study on Shrimp Ponds ( Litopenaeus vannamei) in Soc Trang Province. Microorganisms 2019; 7:microorganisms7060155. [PMID: 31146455 PMCID: PMC6616971 DOI: 10.3390/microorganisms7060155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Based on a total of 6,295,650 sequences from the V3 and V4 regions (16S ribosomal RNA), the composition of the microorganism communities in the water of three Litopenaeus vannamei (Decapoda, Whiteleg shrimp; Soc Trang, Vietnam) ponds were identified. Pseudomonas (10–20.29%), Methylophilus (13.26–24.28%), and Flavobacterium (2.6–19.29%) were the most abundant genera. The total ammonia (TAN) concentration (p = 0.025) and temperature (p = 0.015) were significantly correlated with the relative abundance of Pseudomonas in two bacterial communities (ST1, ST4), whereas the predictive functions of microorganism communities based on 16S rRNA gene data was estimated using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUST), which showed that nitrogen metabolism was significantly negatively correlated (p = 0.049) with TAN concentration. The abundance of Pseudomonas and nitrogen metabolism increased with a decrease in TAN concentration. The correlation between TAN concentration and the abundance of Pseudomonas was followed by the isolation, and heterotrophic nitrifying performance analysis was used to confirm our findings. Six Pseudomonas strains capable of heterotrophic nitrification were isolated from the three water samples and showed a complete reduction of 100 mg/L NH4Cl during a 96-h cultivation. These results indicate the potential of applying Pseudomonas in shrimp ponds for water treatment.
Collapse
|