1
|
Mittal AM, Nowicki KW, Mantena R, Cao C, Rochlin EK, Dembinski R, Lang MJ, Gross BA, Friedlander RM. Advances in biomarkers for vasospasm - Towards a future blood-based diagnostic test. World Neurosurg X 2024; 22:100343. [PMID: 38487683 PMCID: PMC10937316 DOI: 10.1016/j.wnsx.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Objective Cerebral vasospasm and the resultant delayed cerebral infarction is a significant source of mortality following aneurysmal SAH. Vasospasm is currently detected using invasive or expensive imaging at regular intervals in patients following SAH, thus posing a risk of complications following the procedure and financial burden on these patients. Currently, there is no blood-based test to detect vasospasm. Methods PubMed, Web of Science, and Embase databases were systematically searched to retrieve studies related to cerebral vasospasm, aneurysm rupture, and biomarkers. The study search dated from 1997 to 2022. Data from eligible studies was extracted and then summarized. Results Out of the 632 citations screened, only 217 abstracts were selected for further review. Out of those, only 59 full text articles met eligibility and another 13 were excluded. Conclusions We summarize the current literature on the mechanism of cerebral vasospasm and delayed cerebral ischemia, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future bloodbased test to detect vasospasm. Efforts should be focused on clinical-translational approaches to create such a test to improve treatment timing and prediction of vasospasm to reduce the incidence of delayed cerebral infarction.
Collapse
Affiliation(s)
- Aditya M. Mittal
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | | | - Rohit Mantena
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Catherine Cao
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Emma K. Rochlin
- Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Robert Dembinski
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Michael J. Lang
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Bradley A. Gross
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Robert M. Friedlander
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Batista S, Bocanegra-Becerra JE, Claassen B, Rubião F, Rabelo NN, Figueiredo EG, Oberman DZ. Biomarkers in aneurysmal subarachnoid hemorrhage: A short review. World Neurosurg X 2023; 19:100205. [PMID: 37206060 PMCID: PMC10189293 DOI: 10.1016/j.wnsx.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Poor outcomes of aneurysmal subarachnoid hemorrhage (aSAH) can be the result of the initial catastrophic event or the many acute or delayed neurological complications. Recent evidence suggests that some molecules play a critical role in both events, through some unknown pathways involved. Understanding the role of these molecules in these events could allow to improve diagnostic accuracy, guide management, and prevent long-term disability in aSAH. Here we present the studies on aSAH biomarkers present in current medical literature, highlighting their roles and main results.
Collapse
Affiliation(s)
- Sávio Batista
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bernardo Claassen
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Rubião
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Dan Zimelewicz Oberman
- Department of Neurosurgery, Hospital de Força Aérea do Galeão, Rio de Janeiro, Brazil
- Corresponding author. Neurosurgery Department Hospital Força Aérea do Galeão, Estrada do Galeão, 4101 - Galeão, Rio de Janeiro - RJ, 21941-353, Brazil.
| |
Collapse
|
3
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
4
|
Witsch J, Spalart V, Martinod K, Schneider H, Oertel J, Geisel J, Hendrix P, Hemmer S. Neutrophil Extracellular Traps and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. Crit Care Explor 2022; 4:e0692. [PMID: 35620772 PMCID: PMC9116951 DOI: 10.1097/cce.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
IMPORTANCE Myeloperoxidase (MPO)-DNA complexes, biomarkers of neutrophil extracellular traps (NETs), have been associated with arterial and venous thrombosis. Their role in aneurysmal subarachnoid hemorrhage (aSAH) is unknown. OBJECTIVES To assess whether serum MPO-DNA complexes are present in patients with aSAH and whether they are associated with delayed cerebral ischemia (DCI). DESIGN SETTING AND PARTICIPANTS Post-hoc analysis of a prospective, observational single-center study, with de novo serum biomarker measurements in consecutive patients with aSAH between July 2018 and September 2020, admitted to a tertiary care neuroscience ICU. MAIN OUTCOMES AND MEASURES We analyzed serum obtained at admission and hospital day 4 for concentrations of MPO-DNA complexes. The primary outcome was DCI, defined as new infarction on brain CT. The secondary outcome was clinical vasospasm, a composite of clinical and transcranial Doppler parameters. We used Wilcoxon signed-rank-test to assess for differences between paired measures. RESULTS Among 100 patients with spontaneous subarachnoid hemorrhage, mean age 59 years (sd ± 13 yr), 55% women, 78 had confirmed aSAH. Among these, 29 (37%) developed DCI. MPO-DNA complexes were detected in all samples. The median MPO-DNA level was 33 ng/mL (interquartile range [IQR], 18-43 ng/mL) at admission, and 22 ng/mL (IQR, 11-31 ng/mL) on day 4 (unpaired test; p = 0.015). We found a significant reduction in MPO-DNA levels from admission to day 4 in patients with DCI (paired test; p = 0.036) but not in those without DCI (p = 0.17). There was a similar reduction in MPO-DNA levels between admission and day 4 in patients with (p = 0.006) but not in those without clinical vasospasm (p = 0.47). CONCLUSIONS AND RELEVANCE This is the first study to detect the NET biomarkers MPO-DNA complexes in peripheral serum of patients with aSAH and to associate them with DCI. A pronounced reduction in MPO-DNA levels might serve as an early marker of DCI. This diagnostic potential of MPO-DNA complexes and their role as potential therapeutic targets in aSAH should be explored further.
Collapse
Affiliation(s)
- Jens Witsch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Valérie Spalart
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hauke Schneider
- Department of Neurology, University Hospital Augsburg, Augsburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jürgen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Medical Center, Homburg/Saar, Germany
| | - Philipp Hendrix
- Department of Neurosurgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Sina Hemmer
- Department of Neurosurgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
5
|
Wu F, Liu Z, Li G, Zhou L, Huang K, Wu Z, Zhan R, Shen J. Inflammation and Oxidative Stress: Potential Targets for Improving Prognosis After Subarachnoid Hemorrhage. Front Cell Neurosci 2021; 15:739506. [PMID: 34630043 PMCID: PMC8497759 DOI: 10.3389/fncel.2021.739506] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) has a high mortality rate and causes long-term disability in many patients, often associated with cognitive impairment. However, the pathogenesis of delayed brain dysfunction after SAH is not fully understood. A growing body of evidence suggests that neuroinflammation and oxidative stress play a negative role in neurofunctional deficits. Red blood cells and hemoglobin, immune cells, proinflammatory cytokines, and peroxidases are directly or indirectly involved in the regulation of neuroinflammation and oxidative stress in the central nervous system after SAH. This review explores the role of various cellular and acellular components in secondary inflammation and oxidative stress after SAH, and aims to provide new ideas for clinical treatment to improve the prognosis of SAH.
Collapse
Affiliation(s)
- Fan Wu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhanxiong Wu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Renya Zhan
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Dodd WS, Laurent D, Dumont AS, Hasan DM, Jabbour PM, Starke RM, Hosaka K, Polifka AJ, Hoh BL, Chalouhi N. Pathophysiology of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Review. J Am Heart Assoc 2021; 10:e021845. [PMID: 34325514 PMCID: PMC8475656 DOI: 10.1161/jaha.121.021845] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023]
Abstract
Delayed cerebral ischemia is a major predictor of poor outcomes in patients who suffer subarachnoid hemorrhage. Treatment options are limited and often ineffective despite many years of investigation and clinical trials. Modern advances in basic science have produced a much more complex, multifactorial framework in which delayed cerebral ischemia is better understood and novel treatments can be developed. Leveraging this knowledge to improve outcomes, however, depends on a holistic understanding of the disease process. We conducted a review of the literature to analyze the current state of investigation into delayed cerebral ischemia with emphasis on the major themes that have emerged over the past decades. Specifically, we discuss microcirculatory dysfunction, glymphatic impairment, inflammation, and neuroelectric disruption as pathological factors in addition to the canonical focus on cerebral vasospasm. This review intends to give clinicians and researchers a summary of the foundations of delayed cerebral ischemia pathophysiology while also underscoring the interactions and interdependencies between pathological factors. Through this overview, we also highlight the advances in translational studies and potential future therapeutic opportunities.
Collapse
Affiliation(s)
- William S. Dodd
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Dimitri Laurent
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Aaron S. Dumont
- Department of Neurological SurgerySchool of MedicineTulane UniversityNew OrleansLA
| | - David M. Hasan
- Department of NeurosurgeryCarver College of MedicineUniversity of IowaIowa CityIA
| | - Pascal M. Jabbour
- Department of Neurological SurgerySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPA
| | - Robert M. Starke
- Department of Neurological SurgeryMiller School of MedicineUniversity of MiamiFL
| | - Koji Hosaka
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Adam J. Polifka
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Brian L. Hoh
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| | - Nohra Chalouhi
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFL
| |
Collapse
|
7
|
Monocyte-based inflammatory indices predict outcomes following aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2021; 44:3499-3507. [PMID: 33839947 DOI: 10.1007/s10143-021-01525-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
The contribution of specific immune cell populations to the post-hemorrhagic inflammatory response in aneurysmal subarachnoid hemorrhage (aSAH) and correlations with clinical outcomes, such as vasospasm and functional status, remains unclear. We aimed to compare the predictive value of leukocyte ratios that include monocytes as compared to the neutrophil-to-lymphocyte ratio (NLR) in aSAH. A prospectively accrued database of consecutive patients presenting to our institution with aSAH between January 2013 and December 2018 was used. Patients with signs and symptoms of infection (day 1-3) were excluded. Admission values of the NLR, monocyte-neutrophil-to-lymphocyte ratio (M-NLR), and lymphocyte-to-monocyte ratio (LMR) were calculated. Associations with functional status, the primary outcome, and vasospasm were evaluated using univariable and multivariable logistic regression analyses. In the cohort of 234 patients with aSAH, the M-NLR and LMR, but not the NLR, were significantly associated with poor functional status (modified Rankin scale > 2) at 12-18 months following discharge (p = 0.001, p = 0.023, p = 0.161, respectively). The area under the curve for predicting poor functional status was significantly lower for the NLR (0.543) compared with the M-NLR (0.603, p = 0.024) and LMR (0.608, p = 0.040). The M-NLR (OR = 1.01 [1.01-1.02]) and LMR (OR = 0.88 [0.78-0.99]) were independently associated with poor functional status while controlling for age, hypertension, Fisher grade, and baseline clinical status. The LMR was significantly associated with vasospasm (OR = 0.84 [0.70-0.99]) while adjusting for age, hypertension, Fisher grade, aneurysm size, and current smoking. Inflammatory indices that incorporate monocytes (e.g., M-NLR and LMR), but not those that include only neutrophils, predict outcomes after aSAH.
Collapse
|
8
|
Acik V, Kulahcı O, Arslan A, İstemen İ, Olguner SK, Arslan B, Gezercan Y, Ökten Aİ. The Impact of Myeloperoxidase in the Rupturing of Cerebral Aneurysms. World Neurosurg 2020; 147:e105-e110. [PMID: 33285335 DOI: 10.1016/j.wneu.2020.11.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In this study, we aimed to examine the effect of myeloperoxidase on aneurysm rupture in patients with cerebral aneurysms with and without rupture. METHODS The study included 53 patients with subarachnoid hemorrhage operated on due to cerebral aneurysm in our clinic, and 49 patients without subarachnoid hemorrhage. After the operation, the domes taken from the aneurysms were embedded in paraffin blocks and scored after hematoxylin and eosin and immunohistochemical staining was carried out. RESULTS The myeloperoxidase score was 1 in 29.4% of the patients, 2 in 40.2%, 3 in 12.7%, and 4 in 17.6%. Multiple aneurysms were detected in 24.5% of the patients. The median myeloperoxidase score was higher in patients with bleeding aneurysms than those that did not bleed (3 vs. 1; P < 0.001). In addition, the ratio of patients with a myeloperoxidase score of 2 or above was higher among patients with bleeding aneurysms. CONCLUSIONS In our study, finding myeloperoxidase scores higher in cases of ruptured aneurysms compared with unruptured aneurysms reveals the relationship of myeloperoxidase with ruptured cerebral aneurysms.
Collapse
Affiliation(s)
- Vedat Acik
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey.
| | - Ozgur Kulahcı
- Department of Pathology, Adana City Training and Research Hospital, Adana, Turkey
| | - Ali Arslan
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - İsmail İstemen
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - Semih Kivanc Olguner
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - Baris Arslan
- Department of Anesthesia, Adana City Training and Research Hospital, Adana, Turkey
| | - Yurdal Gezercan
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - Ali İhsan Ökten
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| |
Collapse
|
9
|
Ripoll JG, Blackshear JL, Díaz-Gómez JL. Acute Cardiac Complications in Critical Brain Disease. Neurosurg Clin N Am 2018; 29:281-297. [PMID: 29502718 DOI: 10.1016/j.nec.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute cardiac complications in critical brain disease should be understood as a clinical condition representing an intense brain-heart crosstalk and might mimic ischemic heart disease. Two main entities (neurogenic stunned myocardium [NSM] and stress cardiomyopathy) have been better characterized in the neurocritically ill patients and they portend worse clinical outcomes in these cases. The pathophysiology of NSM remains elusive. However, significant progress has been made on the early identification of neurocardiac compromise following acute critical brain disease. Effective prevention and treatment interventions are yet to be determined.
Collapse
Affiliation(s)
- Juan G Ripoll
- Department of Critical Care Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Joseph L Blackshear
- Department of Cardiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - José L Díaz-Gómez
- Departments of Critical Care Medicine, Anesthesiology and Neurologic Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
10
|
Ripoll JG, Blackshear JL, Díaz-Gómez JL. Acute Cardiac Complications in Critical Brain Disease. Neurol Clin 2018; 35:761-783. [PMID: 28962813 DOI: 10.1016/j.ncl.2017.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acute cardiac complications in critical brain disease should be understood as a clinical condition representing an intense brain-heart crosstalk and might mimic ischemic heart disease. Two main entities (neurogenic stunned myocardium [NSM] and stress cardiomyopathy) have been better characterized in the neurocritically ill patients and they portend worse clinical outcomes in these cases. The pathophysiology of NSM remains elusive. However, significant progress has been made on the early identification of neurocardiac compromise following acute critical brain disease. Effective prevention and treatment interventions are yet to be determined.
Collapse
Affiliation(s)
- Juan G Ripoll
- Department of Critical Care Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Joseph L Blackshear
- Department of Cardiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - José L Díaz-Gómez
- Departments of Critical Care Medicine, Anesthesiology and Neurologic Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW With recent research trying to explore the pathophysiologic mechanisms behind vasospasm, newer pharmacological and nonpharmacological treatments are being targeted at various pathways involved. This review is aimed at understanding the mechanisms and current and future therapies available to treat vasospasm. RECENT FINDINGS Computed tomography perfusion is a useful alternative tool to digital subtraction angiography to diagnose vasospasm. Various biomarkers have been tried to predict the onset of vasospasm but none seems to be helpful. Transcranial Doppler still remains a useful tool at the bedside to screen and follow up patients with vasospasm. Hypertension rather than hypervolemia and hemodilution in 'Triple-H' therapy has been found to be helpful in reversing the vasospasm. Hyperdynamic therapy in addition to hypertension has shown promising effects. Endovascular approaches with balloon angioplasty and intra-arterial nimodipine, nicardipine, and milrinone have shown consistent benefits. Endothelin receptor antagonists though relieved vasospasm, did not show any benefit on functional outcome. SUMMARY Endovascular therapy has shown consistent benefit in relieving vasospasm. An aggressive combination therapy through various routes seems to be the most useful approach to reduce the complications of vasospasm.
Collapse
|
12
|
Al-Mufti F, Amuluru K, Smith B, Damodara N, El-Ghanem M, Singh IP, Dangayach N, Gandhi CD. Emerging Markers of Early Brain Injury and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2017; 107:148-159. [PMID: 28755916 DOI: 10.1016/j.wneu.2017.07.114] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage is characterized by a highly complex pathophysiology and results in neurologic deterioration after the inciting bleed. Despite its significant consequences, prompt diagnosis can be elusive and treatment is often administered too late. Early brain injury, which occurs within the first 72 hours after ictus, may be an important factor for delayed cerebral ischemia and poor overall outcome. Here, we explore the purported clinical and pathologic manifestations of early brain injury to identify biomarkers that could have prognostic value. METHODS We review the literature and discuss potential emerging markers of delayed cerebral ischemia in the context of early brain injury. RESULTS The following clinical features and biomarkers were examined: global cerebral edema, ictal loss of consciousness, ultra early angiographic vasospasm, continuous electroencephalogram monitoring, systemic inflammatory response syndrome, cellular mediators of the inflammatory response, and hematologic derangements. CONCLUSIONS Some of these markers possess independent value for determining the risk of complications after aneurysmal subarachnoid hemorrhage. However, their use is limited because of a variety of factors, but they do provide an avenue of further study to aid in diagnosis and management.
Collapse
Affiliation(s)
- Fawaz Al-Mufti
- Division of Neuroendovascular Surgery and Neurocritical Care, Department of Neurology, Rutgers University - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, New Jersey, USA.
| | - Krishna Amuluru
- Department of Neurointerventional Radiology, University of Pittsburgh, Hamot, Erie, Pennsylvania, USA
| | - Brendan Smith
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, New Jersey, USA
| | - Nitesh Damodara
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, New Jersey, USA
| | - Mohammad El-Ghanem
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, New Jersey, USA
| | - Inder P Singh
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, New Jersey, USA; Department of Neurology, Rutgers University - New Jersey Medical School, Newark, New Jersey, USA
| | - Neha Dangayach
- Department of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, Rutgers University - New Jersey Medical School, Newark, New Jersey, USA; Department of Neurology, Rutgers University - New Jersey Medical School, Newark, New Jersey, USA; Department of Neurosurgery, Westchester Medical Center - New York Medical College, Valhalla, New York, USA
| |
Collapse
|
13
|
Chu Y, Wilson K, Gu H, Wegman-Points L, Dooley SA, Pierce GL, Cheng G, Pena Silva RA, Heistad DD, Hasan D. Myeloperoxidase is increased in human cerebral aneurysms and increases formation and rupture of cerebral aneurysms in mice. Stroke 2015; 46:1651-6. [PMID: 25922506 DOI: 10.1161/strokeaha.114.008589] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral aneurysm (CA) affects 3% of the population and is associated with hemodynamic stress and inflammation. Myeloperoxidase, a major oxidative enzyme associated with inflammation, is increased in patients with CA, but whether myeloperoxidase contributes to CA is not known. We tested the hypotheses that myeloperoxidase is increased within human CA and is critical for formation and rupture of CA in mice. METHODS Blood was drawn from the lumen of CAs and femoral arteries of 25 patients who underwent endovascular coiling of CA, and plasma myeloperoxidase concentrations were measured with ELISA. Effects of endogenous myeloperoxidase on CA formation and rupture were studied in myeloperoxidase knockout mice and wild-type (WT) mice using an angiotensin II-elastase induction model of CA. In addition, effects of myeloperoxidase on inflammatory gene expression in endothelial cells were analyzed. RESULTS Plasma concentrations of myeloperoxidase were 2.7-fold higher within CA than in femoral arterial blood in patients with CA. myeloperoxidase-positive cells were increased in aneurysm tissue compared with superficial temporal artery of patients with CA. Incidence of aneurysms and subarachnoid hemorrhage was significantly lower in myeloperoxidase knockout than in WT mice. In cerebral arteries, proinflammatory molecules, including tumor necrosis factor-α, cyclooxygenase-2 (COX2), chemokine (C-X-C motif) ligand 1 (CXCL1), chemokine (C motif) ligand (XCL1), matrix metalloproteinase (MMP) 8, cluster of differentiation 68 (CD68), and matrix metalloproteinase 13, and leukocytes were increased, and α-smooth muscle actin was decreased, in WT but not in myeloperoxidase knockout mice after induction of CA. Myeloperoxidase per se increased expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in endothelial cells. CONCLUSIONS These findings suggest that myeloperoxidase may contribute importantly to formation and rupture of CA.
Collapse
Affiliation(s)
- Yi Chu
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Katina Wilson
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - He Gu
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Lauren Wegman-Points
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Sarah A Dooley
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Gary L Pierce
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Guangjie Cheng
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Ricardo A Pena Silva
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - Donald D Heistad
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)
| | - David Hasan
- From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.).
| |
Collapse
|
14
|
Baydin A, Amanvermez R, Tuncel ÖK, Ocak M, Meric M, Cokluk C. Ischemia-modified albumin is not better than creatine kinase-MB and cardiac troponin I in predicting a cardiac injury in nontraumatic subarachnoid hemorrhage. Am J Emerg Med 2015; 33:488-92. [DOI: 10.1016/j.ajem.2014.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 01/11/2023] Open
|
15
|
Gounis MJ, Vedantham S, Weaver JP, Puri AS, Brooks CS, Wakhloo AK, Bogdanov AA. Myeloperoxidase in human intracranial aneurysms: preliminary evidence. Stroke 2014; 45:1474-7. [PMID: 24713525 DOI: 10.1161/strokeaha.114.004956] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Noninvasive imaging identifying a predictive biomarker of the bleeding risk of unruptured intracranial aneurysms (UIAs) is needed. We investigated a potential biomarker of UIA instability, myeloperoxidase, in human aneurysm tissue. METHODS Human brain aneurysms were harvested after clipping and were histologically and biochemically evaluated for the presence of myeloperoxidase. Of the tissue collected, 3 were from ruptured aneurysms and 20 were from UIAs. For each UIA, its 5-year aneurysm rupture risk was determined using the Population, Hypertension, Age, Size of Aneurysm, Earlier Subarachnoid Hemorrhage From Another Aneurysm and Site of Aneurysm (PHASES) model. RESULTS All ruptured aneurysms were myeloperoxidase positive. Of the UIAs, half were myeloperoxidase positive. The median 5-year aneurysm rupture risk was higher for myeloperoxidase-positive UIA (2.28%) than myeloperoxidase-negative UIA (0.69%), and the distributions were statistically different (P<0.005, Wilcoxon-Mann-Whitney test). The likelihood for myeloperoxidase-positive UIA was significantly associated (P=0.031) with aneurysm rupture risk (odds ratio, 4.79; 95% confidence limits, 1.15-19.96). CONCLUSIONS Myeloperoxidase is associated with PHASES estimated risk of aneurysm rupture and may potentially be used as an imaging biomarker of aneurysm instability.
Collapse
Affiliation(s)
- Matthew J Gounis
- From the Departments of Radiology (M.J.G., S.V., A.S.P., C.S.B., A.K.W., A.A.B.) and Neurosurgery (J.P.W., A.S.P., A.K.W.), University of Massachusetts, Worcester
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 2014; 115:64-91. [PMID: 24076160 PMCID: PMC3961493 DOI: 10.1016/j.pneurobio.2013.09.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms "early brain injury" and "delayed brain injury" are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
17
|
Brown RJ, Kumar A, Dhar R, Sampson TR, Diringer MN. The relationship between delayed infarcts and angiographic vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 2013; 72:702-7; discussion 707-8. [PMID: 23313984 DOI: 10.1227/neu.0b013e318285c3db] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Delayed cerebral ischemia is common after aneurysmal subarachnoid hemorrhage (aSAH) and is a major contributor to poor outcome. Yet, although generally attributed to arterial vasospasm, neurological deterioration may also occur in the absence of vasospasm. OBJECTIVE To determine the relationship between delayed infarction and angiographic vasospasm and compare the characteristics of infarcts related to vasospasm vs those unrelated. METHODS A retrospective review of patients with aSAH admitted from July 2007 through June 2011. Patients were included if they were admitted within 48 hours of SAH, had a computed tomography scan both 24 to 48 hours following aneurysm treatment and ≥7 days after SAH, and had a catheter angiogram to evaluate for vasospasm. Delayed infarcts seen on late computed tomography but not postprocedurally were attributed to vasospasm if there was moderate or severe vasospasm in the corresponding vascular territory on angiography. Infarct volume was measured by perimeter tracing. RESULTS Of 276 aSAH survivors, 134 had all imaging requisite for inclusion. Fifty-four (34%) had moderate or severe vasospasm, of whom 17 (31%) had delayed infarcts, compared with only 3 (4%) of 80 patients without vasospasm (P < .001). There were a total of 29 delayed infarcts in these 20 patients; 21 were in a territory with angiographic vasospasm, but 8 (28%) were not. Infarct volume did not differ between vasospasm-related (18 ± 25 mL) and vasospasm-unrelated (11 ± 12 mL) infarcts (P = .54), but infarcts in the absence of vasospasm were more likely watershed (50% vs. 10%, P = .03). CONCLUSION Delayed infarcts following aSAH can occur in territories without angiographic vasospasm and are more likely watershed in distribution.
Collapse
Affiliation(s)
- Robert J Brown
- Neurocritical Care Section, Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
18
|
Inflammation, cerebral vasospasm, and evolving theories of delayed cerebral ischemia. Neurol Res Int 2013; 2013:506584. [PMID: 24058736 PMCID: PMC3766617 DOI: 10.1155/2013/506584] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 11/23/2022] Open
Abstract
Cerebral vasospasm (CVS) is a potentially lethal complication of aneurysmal subarachnoid hemorrhage (aSAH). Recently, the symptomatic presentation of CVS has been termed delayed cerebral ischemia (DCI), occurring as early as 3-4 days after the sentinel bleed. For the past 5-6 decades, scientific research has promulgated the theory that cerebral vasospasm plays a primary role in the pathology of DCI and subsequently delayed ischemic neurological decline (DIND). Approximately 70% of patients develop CVS after aSAH with 50% long-term morbidity rates. The exact etiology of CVS is unknown; however, a well-described theory involves an antecedent inflammatory cascade with alterations of intracellular calcium dynamics and nitric oxide fluxes, though the intricacies of this inflammatory theory are currently unknown. Consequently, there have been few advances in the clinical treatment of this patient cohort, and morbidity remains high. Identification of intermediaries in the inflammatory cascade can provide insight into newer clinical interventions in the prevention and management of cerebral vasospasm and will hopefully prevent neurological decline. In this review, we discuss current theories implicating the inflammatory cascade in the development of CVS and potential treatment targets.
Collapse
|
19
|
Amiri M, Astrand R, Romner B. Can S100B Predict Cerebral Vasospasms in Patients Suffering from Subarachnoid Hemorrhage? Front Neurol 2013; 4:65. [PMID: 23761779 PMCID: PMC3674401 DOI: 10.3389/fneur.2013.00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/21/2013] [Indexed: 11/13/2022] Open
Abstract
Background: Protein S100B has proven to be a useful biomarker for cerebral damages. Increased levels of serum and cerebrospinal fluid (CSF) S100B have been shown in patients suffering subarachnoid hemorrhage (SAH), severe head injury and stroke. In patients with SAH, the course of S100B levels has been correlated with neurological deficits and outcome. Cerebral vasospasm is a major contributor to morbidity and mortality. The primary aim of this study was to investigate the potential of S100B protein as a predictor of cerebral vasospasm in patients with severe SAH. Materials and Methods: Patients with SAH, Fisher grade 3 and 4, were included in the study. Five samples of CSF and serum S100B were collected from each patient. The first sample (baseline sample) was drawn within the first 3 days following ictus and the following four samples, once a day on days 5–8, with day of ictus defined as day 1. Clinical suspicion of cerebral vasospasm confirmed by computed tomography angiography was used to diagnose cerebral vasospasm. Results: A total of 18 patients were included. Five patients (28%) developed cerebral vasospasm, two (11%) developed ventriculitis. There were no significant differences between S100B for those with and without vasospasm. Serum S100B levels in patients with vasospasm were slightly lower within the first 5 days following ictus, compared to patients without vasospasm. Two out of five patients had elevated and increasing serum S100B prior to vasospasm. Only one showed a peak level of S100B 1 day before vasospasm could be diagnosed. Due to the low number of patients in the study, statistical significance could not be reached. Conclusion: Neither serum nor CSF S100B can be used as predictor of cerebral vasospasm in patients suffering from SAH.
Collapse
Affiliation(s)
- Moshgan Amiri
- Department of Neurosurgery, Rigshospitalet, University Hospital of Copenhagen , Copenhagen , Denmark ; Faculty of Medicine, Copenhagen University , Copenhagen , Denmark
| | | | | |
Collapse
|