1
|
Stawarska A, Bamburowicz-Klimkowska M, Bystrzejewski M, Kasprzak A, Grudzinski IP. Carbon-Encapsulated Iron Nanoparticles Seeking Integrins in Murine Glioma. Int J Nanomedicine 2025; 20:5475-5488. [PMID: 40321805 PMCID: PMC12048782 DOI: 10.2147/ijn.s511286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose Targeting integrin receptors for MRI represents a novel method in diagnosing glioblastoma. In the present study carbon-encapsulated iron nanoparticles to explore murine glioma tracking based upon specific direct targeting with monoclonal antibodies against the beta-3 subunit (CD61) of the integrin αVβ3 receptor are described. Methods The carbon arc discharge method was used to synthesize nanoparticles and amidation-type reaction were applied to attach monoclonal antibody (anti-CD61) with acidic group functionalized nanoparticles to lead two types of bioconjugates (Fe@C-CONH-anti-CD61 and Fe@C-(CH2)2-CONH-anti-CD61). The as-synthesized bioconjugates were tested on murine glioma cells (GL261) using MTT, LDH and calcein AM/propidium iodide assays. Relaxometry measurements were performed with a 1.5 T (63 MHz) MRI scanner using both GL261 cells and C57BL/6 mice bearing GL261 tumors. Results The results showed that Fe@C-CONH-anti-CD61 and Fe@C-(CH2)2-CONH-anti-CD61 nanoparticles have higher binding affinity towards GL261 cells compared to pristine nanoparticles without antibodies. Studies evidenced that the antibody-decorated nanoparticles did not produce any severe cytotoxic effects on murine glioma cells. Preclinical MRI studies demonstrated that the Fe@C-(CH2)2-CONH-anti-CD61 nanoparticle-based construct specifically targeted murine glioma in animals. Conclusion The carbon-encapsulated iron nanoparticles functionalized with monoclonal antibodies recognizing the beta-3 subunit of the integrin αVβ3 receptor can be considered as a potential contrast agent for MRI-based tracking glioblastoma.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | - Michał Bystrzejewski
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University, Warsaw, Poland
| | - Artur Kasprzak
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Zhou C, Kou Y, Zhou W, Zhao W, Fan Z, Jiao Y, Zhai Y, Liu J, Guo S, Ji P, Wang L. Diagnostic Value of PET Tracers in Differentiating Glioma Tumor Recurrence from Treatment-Related Changes: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2025; 46:758-765. [PMID: 40174979 PMCID: PMC11979861 DOI: 10.3174/ajnr.a8565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/30/2024] [Indexed: 04/04/2025]
Abstract
BACKGROUND It is often difficult to identify treatment-related changes (TRC) from tumor progression (TP) in patients with glioma, and the current application of PET scanning is expected to improve the diagnosis. PURPOSE We used a systematic review and meta-analysis to reveal diagnostically more promising tracers by comparing the diagnostic accuracy of different PET tracers in identifying TRC and TP in patients with glioma. DATA SOURCES We searched PubMed, Web of Science, and EMBASE databases, and we selected studies that used PET scans to identify TP and TRC in patients with glioma. STUDY SELECTION Twenty-eight studies were identified based on the set criteria. The studies involved a total of 10 different tracers and 1405 patients. TP occurred in 67.4% (947) of patients, while TRC occurred in 32.6% (458) of patients. DATA ANALYSIS The sensitivity, specificity, diagnostic odds ratio, positive likelihood ratio, and negative likelihood ratio of various PET tracers were calculated and summarized. Moreover, the diagnostic value of various tracers was compared. DATA SYNTHESIS This systematic review included 28 studies comparing 10 different PET tracers, including 18F-fluoro-deoxy-glucose FDG (18F-FDG), 11C methionine (11C -MET), 18F-fuoroethyl-L-tyrosine (18F-FET), 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (18F-FDOPA), 18F-fluorothymidine (18F-FLT), 18F-PSMA-1007, 68Ga-PSMA-11, 18F-choline (18F-CHO), 18F-fluciclovine, and [11]C-Alpha-Methyl-Tryptophan(11C-AMT). The results revealed that 11C-MET exhibited the highest diagnostic value, with an overall sensitivity and specificity of 0.89 [0.85, 0.93] and 0.91 [0.84, 0.99], respectively. Although the number of 18F-FDOPA studies is limited, it exhibited high diagnostic value, with an overall sensitivity and specificity of 1.00 [0.91, 1.00] and 0.92 [0.75, 0.99], respectively. LIMITATIONS Most studies consisted of small sample sizes; however, the included studies differed to some extent regarding the reference standard for the final diagnosis and the standard of care. Additionally, most selected studies were retrospective. CONCLUSIONS Amino acid-based tracers exhibited the highest diagnostic value in identifying TRC and TP in gliomas, with 11C-MET and 18F-FDOPA having the most notable advantages. Research on other new tracers is limited, therefore, further studies are needed to prove their diagnostic value.
Collapse
Affiliation(s)
- Chenchen Zhou
- From the Department of Neurosurgery (C.Z.), Xi'an Medical University, Xi'an, China
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yunpeng Kou
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
- Department of Neurosurgery (Y.K.), Xiangyang Traditional Chinese and Western Medicine Hospital, Xiangyang, China
| | - Wenqian Zhou
- The Fourth Student Brigade of Basic Medical College (W.Zhou), Air Force Medical University, Xi'an, China
| | - Wenjian Zhao
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Zhicheng Fan
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yang Jiao
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yulong Zhai
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Jinghui Liu
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Shaochun Guo
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Peigang Ji
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery (C.Z., Y.K., W.Zhao, Z.F., Y.J., Y.Z., J.L., S.G., P.J., L.W.), Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Roncali L, Hindré F, Samarut E, Lacoeuille F, Rousseau A, Lemée JM, Garcion E, Chérel M. Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment. Theranostics 2025; 15:4861-4889. [PMID: 40303349 PMCID: PMC12036880 DOI: 10.7150/thno.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/02/2025] [Indexed: 05/02/2025] Open
Abstract
Glioblastoma (GB) is the most aggressive malignancy of the central nervous system. Despite two decades of intensive research since the establishment of the standard of care, emerging strategies have yet to produce consistent satisfactory outcomes. Because of its specific localisation and intricate characteristics, GB is a uniquely regulated solid tumour with a strong resistance to therapy. Advances in targeted radionuclide therapy (TRT), particularly with the introduction of a-emitting radionuclides, have unveiled potential avenues for the management of GB. Recent preclinical and clinical studies underscored promising advancements for targeted-α-therapy (TAT), but these therapeutic approaches exhibit a vast design heterogeneity, encompassing diverse radionuclides, vectors, target molecules, and administration modalities. This review seeks to critically assess the therapeutic landscape of GB through the perspective of TAT. Here, the focus is made on the advancements and limitations of in vivo explorations, pilot studies, and clinical trials, to determine the best directions for future investigations. In doing so, we hope to identify existing challenges and draw insights that might pave the way towards a more effective therapeutic approach.
Collapse
Affiliation(s)
- Loris Roncali
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela; E-15782 Santiago de Compostela, Spain
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
| | - François Hindré
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PRIMEX (Experimental Imagery and Radiobiology Platform), University of Angers, SFR 4208; F-49000 Angers, France
| | - Edouard Samarut
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Department of Neurosurgery & Neurotraumatology, University Hospital of Nantes; F-44093 Nantes, France
| | - Franck Lacoeuille
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Nuclear Medicine, University Hospital of Angers; F-49000 Angers, France
| | - Audrey Rousseau
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Pathology, University Hospital of Angers; F-49000 Angers, France
| | - Jean-Michel Lemée
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- Department of Neurosurgery, University Hospital of Angers; F-49000 Angers, France
| | - Emmanuel Garcion
- University of Angers, INSERM, CNRS, CRCI 2 NA; F-49000 Angers, France
- PACEM (Platform of Cellular and Molecular Analysis), University of Angers, SFR 4208; F-49000 Angers, France
| | - Michel Chérel
- Nantes University, INSERM, CNRS, CRCI 2 NA; F-44000 Nantes, France
- Institut de Cancérologie de l'Ouest, Department of Nuclear Medicine; F-44160 Saint-Herblain, France
| |
Collapse
|
4
|
Li J, Cui Y, Jiang X, Chi X, Li H, Ma X, Tang Y, Huang D, Liu Z. Surface-engineered bio-manufactured gas vesicles for multimodal imaging of glioma. J Nanobiotechnology 2025; 23:116. [PMID: 39966815 PMCID: PMC11834395 DOI: 10.1186/s12951-025-03203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Integrated imaging techniques offer enhanced medical insights into the central nervous system by combining different modalities. In glioma diagnosis, the challenge often lies in delivering contrast agents effectively across the blood-brain barrier. We present an integrated multimodal imaging biohybrid, GV@pCY5, which enables blood-brain barrier penetrating as well as fluorescence and ultrasound (FL/US) imaging capabilities. This biohybrid is created by decorating a far-red-fluorescent cyanine dye (CY5) onto polyethyleneimine (PEI)-coated gas vesicles (GV). The layer-by-layer assembly improves the stability and performance of GV@pCY5 under ultrasound, thanks to the hydration shell variation induced by PEI. Given to the blood-brain barrier penetrating ability, GV@pCY5 demonstrates increase both in fluorescence and ultrasound imaging performance compared to single-component systems, proving effective for glioma diagnosis in vivo. This study underscores the potential of the FL/US platform for dual ratiometric imaging of various cerebral conditions.
Collapse
Affiliation(s)
- Juanjuan Li
- Faculty of Animal Science and Technology, Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Yutong Cui
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
- Hainan Forestry Science Research Institute, Haikou, 571199, China
| | - Xiaoli Jiang
- Faculty of Animal Science and Technology, Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Xue Chi
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Hong Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Denggao Huang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China
| | - Zhu Liu
- Faculty of Animal Science and Technology, Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Mytych W, Bartusik-Aebisher D, Aebisher D. The Medical Basis for the Photoluminescence of Indocyanine Green. Molecules 2025; 30:888. [PMID: 40005197 PMCID: PMC11858079 DOI: 10.3390/molecules30040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye with unique photoluminescent properties, is a helpful tool in many medical applications. ICG produces fluorescence when excited by NIR light, enabling accurate tissue visualization and real-time imaging. This study investigates the fundamental processes behind ICG's photoluminescence as well as its present and possible applications in treatments and medical diagnostics. Fluorescence-guided surgery (FGS) has been transformed by ICG's capacity to visualize tumors, highlight blood flow, and facilitate lymphatic mapping, all of which have improved surgical accuracy and patient outcomes. Furthermore, the fluorescence of the dye is being studied for new therapeutic approaches, like photothermal therapy, in which NIR light can activate ICG to target and destroy cancer cells. We go over the benefits and drawbacks of ICG's photoluminescent qualities in therapeutic contexts, as well as current studies that focus on improving its effectiveness, security, and adaptability. More precise disease detection, real-time monitoring, and tailored therapy options across a variety of medical specialties are made possible by the ongoing advancement of ICG-based imaging methods and therapies. In the main part of our work, we strive to take into account the latest reports; therefore, we used clinical articles going back to 2020. However, for the sake of the theoretical part, the oldest article used by us is from 1995.
Collapse
Affiliation(s)
- Wiktoria Mytych
- English Division Science Club, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland
| |
Collapse
|
6
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
7
|
Cui C, Yao X, Xu L, Chao Y, Hu Y, Zhao S, Hu Y, Zhang J. Improving the Classification of PCNSL and Brain Metastases by Developing a Machine Learning Model Based on 18F-FDG PET. J Pers Med 2023; 13:jpm13030539. [PMID: 36983721 PMCID: PMC10056979 DOI: 10.3390/jpm13030539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Background: The characteristic magnetic resonance imaging (MRI) and the positron emission tomography (PET) findings of PCNSL often overlap with other intracranial tumors, making definitive diagnosis challenging. PCNSL typically shows iso-hypointense to grey matter on T2-weighted imaging. However, a particular part of PCNSL can demonstrate T2-weighted hyperintensity as other intracranial tumors. Moreover, normal high uptake of FDG in the basal ganglia, thalamus, and grey matter can mask underlying PCNSL in 18F-FDG PET. In order to promote the efficiency of diagnosis, the MRI-based or PET/CT-based radiomics models combining histograms with texture features in diagnosing glioma and brain metastases have been widely established. However, the diagnosing model for PCNSL has not been widely reported. The study was designed to investigate a machine-learning (ML) model based on multiple parameters of 2-deoxy-2-[18F]-floor-D-glucose (18F-FDG) PET for differential diagnosis of PCNSL and metastases in the brain. Methods: Patients who underwent an 18F-FDG PET scan with untreated PCNSL or metastases in the brain were included between May 2016 and May 2022. A total of 126 lesions from 51 patients (43 patients with untreated brain metastases and eight patients with untreated PCNSL), including 14 lesions of PCNSL, and 112 metastatic lesions in the brain, met the inclusion criteria. PCNSL or brain metastasis was confirmed after pathology or clinical history. Principal component analysis (PCA) was used to decompose the datasets. Logistic regression (LR), support vector machine (SVM), and random forest classification (RFC) models were trained by two different groups of datasets, the group of multi-class features and the group of density features, respectively. The model with the highest mean precision score was selected. The testing sets and original data were used to examine the efficacy of models separately by using the weighted average F1 score and area under the curve (AUC) of the receiver operating characteristic curve (ROC). Results: The multi-class features-based RFC and SVM models reached identical weighted-average F1 scores in the testing set, and the score was 0.98. The AUCs of RFC and SVM models calculated from the testing set were 1.00 equally. Evaluated by the original dataset, the RFC model based on multi-class features performs better than the SVM model, whose weighted-average F1 scores of the RFC model calculated from the original data were 0.85 with an AUC of 0.93. Conclusions: The ML based on multi-class features of 18F-FDG PET exhibited the potential to distinguish PCNSL from brain metastases. The RFC models based on multi-class features provided comparatively high efficiency in our study.
Collapse
Affiliation(s)
- Can Cui
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xiaochen Yao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lei Xu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shuang Zhao
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yuxiao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-2583284736
| | - Jia Zhang
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
8
|
A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon's Perspective. Cancers (Basel) 2022; 15:cancers15010090. [PMID: 36612085 PMCID: PMC9817716 DOI: 10.3390/cancers15010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Amino acid PET imaging has been used for a few years in the clinical and surgical management of gliomas with satisfactory results in diagnosis and grading for surgical and radiotherapy planning and to differentiate recurrences. Biological tumor volume (BTV) provides more meaningful information than standard MR imaging alone and often exceeds the boundary of the contrast-enhanced nodule seen in MRI. Since a gross total resection reflects the resection of the contrast-enhanced nodule and the majority of recurrences are at a tumor's margins, an integration of PET imaging during resection could increase PFS and OS. A systematic review of the literature searching for "PET" [All fields] AND "glioma" [All fields] AND "resection" [All fields] was performed in order to investigate the diffusion of integration of PET imaging in surgical practice. Integration in a neuronavigation system and intraoperative use of PET imaging in the primary diagnosis of adult high-grade gliomas were among the criteria for article selection. Only one study has satisfied the inclusion criteria, and a few more (13) have declared to use multimodal imaging techniques with the integration of PET imaging to intentionally perform a biopsy of the PET uptake area. Despite few pieces of evidence, targeting a biologically active area in addition to other tools, which can help intraoperatively the neurosurgeon to increase the amount of resected tumor, has the potential to provide incremental and complementary information in the management of brain gliomas. Since supramaximal resection based on the extent of MRI FLAIR hyperintensity resulted in an advantage in terms of PFS and OS, PET-based biological tumor volume, avoiding new neurological deficits, deserves further investigation.
Collapse
|
9
|
Yang YF, Li CH, Cai HY, Lin BS, Kim CH, Chang YC. Application of Metabolic Reprogramming to Cancer Imaging and Diagnosis. Int J Mol Sci 2022; 23:15831. [PMID: 36555470 PMCID: PMC9782057 DOI: 10.3390/ijms232415831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular metabolism governs the signaling that supports physiological mechanisms and homeostasis in an individual, including neuronal transmission, wound healing, and circadian clock manipulation. Various factors have been linked to abnormal metabolic reprogramming, including gene mutations, epigenetic modifications, altered protein epitopes, and their involvement in the development of disease, including cancer. The presence of multiple distinct hallmarks and the resulting cellular reprogramming process have gradually revealed that these metabolism-related molecules may be able to be used to track or prevent the progression of cancer. Consequently, translational medicines have been developed using metabolic substrates, precursors, and other products depending on their biochemical mechanism of action. It is important to note that these metabolic analogs can also be used for imaging and therapeutic purposes in addition to competing for metabolic functions. In particular, due to their isotopic labeling, these compounds may also be used to localize and visualize tumor cells after uptake. In this review, the current development status, applicability, and limitations of compounds targeting metabolic reprogramming are described, as well as the imaging platforms that are most suitable for each compound and the types of cancer to which they are most appropriate.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Huei-Yu Cai
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 11121, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 11121, Taiwan
| | - Cheorl-Ho Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Republic of Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 11121, Taiwan
| |
Collapse
|
10
|
Upregulated Immunogenic Cell-Death-Associated Gene Signature Predicts Reduced Responsiveness to Immune-Checkpoint-Blockade Therapy and Poor Prognosis in High-Grade Gliomas. Cells 2022; 11:cells11223655. [PMID: 36429083 PMCID: PMC9688114 DOI: 10.3390/cells11223655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Immunogenic cell death (ICD) has emerged as a potential mechanism mediating adaptive immune response and tumor immunity in anti-cancer treatment. However, the signature of ICD in high-grade gliomas (HGGs) remains largely unknown, and its relevance to immunotherapies is still undetermined. The purpose of this study is to identify ICD-associated genotypes in order to explore their relevance to tumor immunity, patient prognosis and therapeutic efficacy of immune checkpoint blockade (ICB) therapy in HGGs. Methods: Bulk RNA-seq data and clinical information on 169 and 297 patients were obtained from the Cancer Genome Atlas (TCGA) and China Glioma Genome Atlas (CGGA), respectively. The functional enrichment and characterization of ICD genotyping were detected, and the ICD prognostic signature prediction model was constructed using least absolute shrinkage and selection operator (LASSO) regression. The responsiveness to immunotherapy was predicted according to the scoring of the ICD prognostic signature. Results: The HGG patients with high ICD gene signature (C1) showed poor outcomes, increased activity of immune modulation and immune escape, high levels of immune-checkpoint markers, and HLA-related genes, which may explain their reduced response to ICB immunotherapy. A gene set of the ICD signature, composing FOXP3, IL6 LY96, MYD88 and PDIA3, showed an independent prognostic value in both the TCGA and the CGGA HGG cohort. Conclusions: Our in silico analyses identified the ICD gene signature in HGGs with potential implications for predicting the responsiveness to ICB immune therapy and patient outcomes.
Collapse
|
11
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
12
|
A Head-to-Head Comparison of 18F-Fluorocholine PET/CT and Conventional MRI as Predictors of Outcome in IDH Wild-Type High-Grade Gliomas. J Clin Med 2022; 11:jcm11206065. [PMID: 36294385 PMCID: PMC9605635 DOI: 10.3390/jcm11206065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
(1) Aim: To study the associations between imaging parameters derived from contrast-enhanced MRI (CE-MRI) and 18F-fluorocholine PET/CT and their performance as prognostic predictors in isocitrate dehydrogenase wild-type (IDH-wt) high-grade gliomas. (2) Methods: A prospective, multicenter study (FuMeGA: Functional and Metabolic Glioma Analysis) including patients with baseline CE-MRI and 18F-fluorocholine PET/CT and IDH wild-type high-grade gliomas. Clinical variables such as performance status, extent of surgery and adjuvant treatments (Stupp protocol vs others) were obtained and used to discriminate overall survival (OS) and progression-free survival (PFS) as end points. Multilesionality was assessed on the visual analysis of PET/CT and CE-MRI images. After tumor segmentation, standardized uptake value (SUV)-based variables for PET/CT and volume-based and geometrical variables for PET/CT and CE-MRI were calculated. The relationships among imaging techniques variables and their association with prognosis were evaluated using Pearson’s chi-square test and the t-test. Receiver operator characteristic, Kaplan−Meier and Cox regression were used for the survival analysis. (3) Results: 54 patients were assessed. The median PFS and OS were 5 and 11 months, respectively. Significant strong relationships between volume-dependent variables obtained from PET/CT and CE-MRI were found (r > 0.750, p < 0.05). For OS, significant associations were found with SUVmax, SUVpeak, SUVmean and sphericity (HR: 1.17, p = 0.035; HR: 1.24, p = 0.042; HR: 1.62, p = 0.040 and HR: 0.8, p = 0.022, respectively). Among clinical variables, only Stupp protocol and age showed significant associations with OS and PFS. No CE-MRI derived variables showed significant association with prognosis. In multivariate analysis, age (HR: 1.04, p = 0.002), Stupp protocol (HR: 2.81, p = 0.001), multilesionality (HR: 2.20, p = 0.013) and sphericity (HR: 0.79, p = 0.027) derived from PET/CT showed independent associations with OS. For PFS, only age (HR: 1.03, p = 0.021) and treatment protocol (HR: 2.20, p = 0.008) were significant predictors. (4) Conclusions: 18F-fluorocholine PET/CT metabolic and radiomic variables were robust prognostic predictors in patients with IDH-wt high-grade gliomas, outperforming CE-MRI derived variables.
Collapse
|
13
|
Heo JU, Zhou F, Jones R, Zheng J, Song X, Qian P, Baydoun A, Traughber MS, Kuo JW, Helo RA, Thompson C, Avril N, DeVincent D, Hunt H, Gupta A, Faraji N, Kharouta MZ, Kardan A, Bitonte D, Langmack CB, Nelson A, Kruzer A, Yao M, Dorth J, Nakayama J, Waggoner SE, Biswas T, Harris E, Sandstrom S, Traughber BJ, Muzic RF. Abdominopelvic MR to CT registration using a synthetic CT intermediate. J Appl Clin Med Phys 2022; 23:e13731. [PMID: 35920116 PMCID: PMC9512351 DOI: 10.1002/acm2.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Accurate coregistration of computed tomography (CT) and magnetic resonance (MR) imaging can provide clinically relevant and complementary information and can serve to facilitate multiple clinical tasks including surgical and radiation treatment planning, and generating a virtual Positron Emission Tomography (PET)/MR for the sites that do not have a PET/MR system available. Despite the long‐standing interest in multimodality co‐registration, a robust, routine clinical solution remains an unmet need. Part of the challenge may be the use of mutual information (MI) maximization and local phase difference (LPD) as similarity metrics, which have limited robustness, efficiency, and are difficult to optimize. Accordingly, we propose registering MR to CT by mapping the MR to a synthetic CT intermediate (sCT) and further using it in a sCT‐CT deformable image registration (DIR) that minimizes the sum of squared differences. The resultant deformation field of a sCT‐CT DIR is applied to the MRI to register it with the CT. Twenty‐five sets of abdominopelvic imaging data are used for evaluation. The proposed method is compared to standard MI‐ and LPD‐based methods, and the multimodality DIR provided by a state of the art, commercially available FDA‐cleared clinical software package. The results are compared using global similarity metrics, Modified Hausdorff Distance, and Dice Similarity Index on six structures. Further, four physicians visually assessed and scored registered images for their registration accuracy. As evident from both quantitative and qualitative evaluation, the proposed method achieved registration accuracy superior to LPD‐ and MI‐based methods and can refine the results of the commercial package DIR when using its results as a starting point. Supported by these, this manuscript concludes the proposed registration method is more robust, accurate, and efficient than the MI‐ and LPD‐based methods.
Collapse
Affiliation(s)
- Jin Uk Heo
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Feifei Zhou
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert Jones
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jiamin Zheng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Song
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Pengjiang Qian
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Atallah Baydoun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Internal Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Melanie S Traughber
- Department of Radiation Oncology, Penn State University, Hershey, Pennsylvania, USA
| | - Jung-Wen Kuo
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rose Al Helo
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Cheryl Thompson
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Norbert Avril
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Daniel DeVincent
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Harold Hunt
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Amit Gupta
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Navid Faraji
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Michael Z Kharouta
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Arash Kardan
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - David Bitonte
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Christian B Langmack
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | | | - Min Yao
- Department of Radiation Oncology, Penn State University, Hershey, Pennsylvania, USA
| | - Jennifer Dorth
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Nakayama
- Department of Obstetrics and Gynecology, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Steven E Waggoner
- Department of Obstetrics and Gynecology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eleanor Harris
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Susan Sandstrom
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Bryan J Traughber
- Department of Radiation Oncology, Penn State University, Hershey, Pennsylvania, USA
| | - Raymond F Muzic
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Morales DE, Mousa SA. Intranasal Delivery in Glioblastoma treatment: Prospective Molecular Treatment Modalities. Heliyon 2022; 8:e09517. [PMID: 35647354 PMCID: PMC9136349 DOI: 10.1016/j.heliyon.2022.e09517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is rare and fatal glioma with limited treatment options. Treatments provide minimal improvement in prognosis and only 6.8% of GBM patients have a life expectancy greater than five years. Surgical resection of this malignant glioma is difficult due to its highly invasive nature and follow-up radiotherapy with concomitant temozolomide, the currently approved standard of care, and will only extend the life of patients by a few months. It has been nearly two decades since the approval of temozolomide and there have been no clinically relevant major breakthroughs since, painting a dismal picture for patients with GBM. Although the future of GBM management seems bleak, there are many new treatment options on the horizon that propose methods of delivery to circumvent current limitations in the standard of care, i.e., the blood brain barrier and treatment resistance mechanisms. The nose is a highly accessible non-invasive route of delivery that has been incorporated into many investigational studies within the past five years and potentially paves the path to a brighter future for the management of GBM. Intranasal administration has its limitations however, as drugs can be degraded and/or fail to reach the site of action. This has prompted many studies for implementation of nanoparticle systems to overcome these limitations and to accurately deliver drugs to the site of action. This review highlights the advances in intranasal therapy delivery and impact of nanotechnology in the management of GBM and discusses potential treatment modalities that show promise for further investigation.
Collapse
|
15
|
Feasibility of freehand CT and 3-T MR guided brain aspiration biopsies with 18/20-gauge coaxial needles. Jpn J Radiol 2022; 40:740-748. [PMID: 35233651 DOI: 10.1007/s11604-022-01257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE An accurate histopathological examination with minimal neuronal damage is essential for optimizing treatment strategies of central nervous system lesions. We investigated the feasibility and safety of CT and 3-tesla (3 T) MR-guided freehand brain aspiration biopsies with 18/20-gauge coaxial needles in performing a single imaging unit. MATERIALS AND METHODS We reviewed CT and 3 T-MR guided freehand aspiration biopsies with 18/20-gauge coaxial needles of 33 patients (11-female and 22-male, mean and median ages: 53 years, min-max 21-79 years) in our tertiary hospital within an 8-year-period were included in this retrospective study. Lesion sizes, diagnostic yield, morbidity, and mortality rates of these biopsies without a scalp incision, surgical burr-hole, or stereotactic-instrumentation/neuro-navigation guidance were assessed. All biopsies were performed with local anesthesia and sedation within a single imaging unit of our radiology department. All free-hand biopsies were done as in-patient procedures and the patients were closely observed after the biopsies. RESULTS The mean diameter of the lesions was 27 mm (median 25; range 15-46 mm). The diagnostic yield of all free-hand brain biopsies was 88% [one inconclusive result (90%) for 3 T-MR; three inconclusive results (87%) for CT]. There was no major hemorrhage or hematoma, no clinical deterioration, or no infection in our patients on early- and late-phase examinations. Postprocedural minor hemorrhage with a ≤ 2 cm diameter was observed in two patients. The morbidity rate of the study population is 6%. There was no procedure-related infection or mortality in the post-procedural 3 weeks. CONCLUSIONS Freehand CT or 3 T-MR guided aspiration biopsy was a safe and feasible method for pathological diagnosis of intracranial lesions. Biopsy workflow was simplified with this technique. It could be considered a valuable alternative for stereotaxic biopsies, especially for centers that do not have stereotaxic equipment or experience.
Collapse
|
16
|
Immunogenic cell death and its therapeutic or prognostic potential in high-grade glioma. Genes Immun 2022; 23:1-11. [PMID: 35046546 PMCID: PMC8866117 DOI: 10.1038/s41435-021-00161-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022]
Abstract
Immunogenic cell death (ICD) has emerged as a key component of therapy-induced anti-tumor immunity. Over the past few years, ICD was found to play a pivotal role in a wide variety of novel and existing treatment modalities. The clinical application of these techniques in cancer treatment is still in its infancy. Glioblastoma (GBM) is the most lethal primary brain tumor with a dismal prognosis despite maximal therapy. The development of new therapies in this aggressive type of tumors remains highly challenging partially due to the cold tumor immune environment. GBM could therefore benefit from ICD-based therapies stimulating the anti-tumor immune response. In what follows, we will describe the mechanisms behind ICD and the ICD-based (pre)clinical advances in anticancer therapies focusing on GBM.
Collapse
|
17
|
Jia H, Xie T. Tracers progress for positron emission tomography imaging of glial-related disease. J Biomed Res 2022; 36:321-335. [PMID: 36131689 PMCID: PMC9548440 DOI: 10.7555/jbr.36.20220017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glial cells play an essential part in the neuron system. They can not only serve as structural blocks in the human brain but also participate in many biological processes. Extensive studies have shown that astrocytes and microglia play an important role in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as glioma, epilepsy, ischemic stroke, and infections. Positron emission tomography is a functional imaging technique providing molecular-level information before anatomic changes are visible and has been widely used in many above-mentioned diseases. In this review, we focus on the positron emission tomography tracers used in pathologies related to glial cells, such as glioma, Alzheimer's disease, and neuroinflammation.
Collapse
Affiliation(s)
- Haoran Jia
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Tianwu Xie
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
- Tianwu Xie, Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China. Tel: +86-21-64048363, E-mail:
| |
Collapse
|
18
|
Chiaravalloti A, Cimini A, Ricci M, Quartuccio N, Arnone G, Filippi L, Calabria F, Leporace M, Bagnato A, Schillaci O. Positron emission tomography imaging in primary brain tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Kaynak A, Davis HW, Vallabhapurapu SD, Pak KY, Gray BD, Qi X. SapC-DOPS as a Novel Therapeutic and Diagnostic Agent for Glioblastoma Therapy and Detection: Alternative to Old Drugs and Agents. Pharmaceuticals (Basel) 2021; 14:1193. [PMID: 34832975 PMCID: PMC8619974 DOI: 10.3390/ph14111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common type of brain cancer, is extremely aggressive and has a dreadful prognosis. GBM comprises 60% of adult brain tumors and the 5 year survival rate of GBM patients is only 4.3%. Standard-of-care treatment includes maximal surgical removal of the tumor in combination with radiation and temozolomide (TMZ) chemotherapy. TMZ is the "gold-standard" chemotherapy for patients suffering from GBM. However, the median survival is only about 12 to 18 months with this protocol. Consequently, there is a critical need to develop new therapeutic options for treatment of GBM. Nanomaterials have unique properties as multifunctional platforms for brain tumor therapy and diagnosis. As one of the nanomaterials, lipid-based nanocarriers are capable of delivering chemotherapeutics and imaging agents to tumor sites by enhancing the permeability of the compound through the blood-brain barrier, which makes them ideal for GBM therapy and imaging. Nanocarriers also can be used for delivery of radiosensitizers to the tumor to enhance the efficacy of the radiation therapy. Previously, high-atomic-number element-containing particles such as gold nanoparticles and liposomes have been used as radiosensitizers. SapC-DOPS, a protein-based liposomal drug comprising the lipid, dioleoylphosphatidylserine (DOPS), and the protein, saposin C (SapC), has been shown to be effective for treatment of a variety of cancers in small animals, including GBM. SapC-DOPS also has the unique ability to be used as a carrier for delivery of radiotheranostic agents for nuclear imaging and radiotherapeutic purposes. These unique properties make tumor-targeting proteo-liposome nanocarriers novel therapeutic and diagnostic alternatives to traditional chemotherapeutics and imaging agents. This article reviews various treatment modalities including nanolipid-based delivery and therapeutic systems used in preclinical and clinical trial settings for GBM treatment and detection.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Harold W. Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
| | - Subrahmanya D. Vallabhapurapu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
| | - Koon Y. Pak
- Molecular Targeting Technologies, Inc., West Chester, PA 19380, USA; (K.Y.P.); (B.D.G.)
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc., West Chester, PA 19380, USA; (K.Y.P.); (B.D.G.)
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
20
|
Vachha BA, Huang RY. BOLD Asynchrony: An imaging biomarker of tumor burden in IDH-mutated gliomas. Neuro Oncol 2021; 24:88-89. [PMID: 34695182 DOI: 10.1093/neuonc/noab248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Behroze Adi Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts
| |
Collapse
|
21
|
Ort J, Hamou HA, Kernbach JM, Hakvoort K, Blume C, Lohmann P, Galldiks N, Heiland DH, Mottaghy FM, Clusmann H, Neuloh G, Langen KJ, Delev D. 18F-FET-PET-guided gross total resection improves overall survival in patients with WHO grade III/IV glioma: moving towards a multimodal imaging-guided resection. J Neurooncol 2021; 155:71-80. [PMID: 34599479 PMCID: PMC8545732 DOI: 10.1007/s11060-021-03844-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 11/15/2022]
Abstract
Purpose PET using radiolabeled amino acid [18F]-fluoro-ethyl-L-tyrosine (FET-PET) is a well-established imaging modality for glioma diagnostics. The biological tumor volume (BTV) as depicted by FET-PET often differs in volume and location from tumor volume of contrast enhancement (CE) in MRI. Our aim was to investigate whether a gross total resection of BTVs defined as < 1 cm3 of residual BTV (PET GTR) correlates with better oncological outcome. Methods We retrospectively analyzed imaging and survival data from patients with primary and recurrent WHO grade III or IV gliomas who underwent FET-PET before surgical resection. Tumor overlap between FET-PET and CE was evaluated. Completeness of FET-PET resection (PET GTR) was calculated after superimposition and semi-automated segmentation of pre-operative FET-PET and postoperative MRI imaging. Survival analysis was performed using the Kaplan–Meier method and the log-rank test. Results From 30 included patients, PET GTR was achieved in 20 patients. Patients with PET GTR showed improved median OS with 19.3 compared to 13.7 months for patients with residual FET uptake (p = 0.007; HR 0.3; 95% CI 0.12–0.76). This finding remained as independent prognostic factor after performing multivariate analysis (HR 0.19, 95% CI 0.06–0.62, p = 0.006). Other survival influencing factors such as age, IDH-mutation, MGMT promotor status, and adjuvant treatment modalities were equally distributed between both groups. Conclusion Our results suggest that PET GTR improves the OS in patients with WHO grade III or IV gliomas. A multimodal imaging approach including FET-PET for surgical planning in newly diagnosed and recurrent tumors may improve the oncological outcome in glioma patients. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03844-1.
Collapse
Affiliation(s)
- Jonas Ort
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany. .,NAILA-Neurosurgical Artificial Intelligence Laboratory Aachen, Aachen, Germany. .,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| | - Hussam Aldin Hamou
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Julius M Kernbach
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,NAILA-Neurosurgical Artificial Intelligence Laboratory Aachen, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Karlijn Hakvoort
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,NAILA-Neurosurgical Artificial Intelligence Laboratory Aachen, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Christian Blume
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,JARA-Juelich Aachen Research Alliance, Juelich, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Georg Neuloh
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,JARA-Juelich Aachen Research Alliance, Juelich, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,NAILA-Neurosurgical Artificial Intelligence Laboratory Aachen, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
22
|
Wang D, Liu S, Wang G. Establishment of an Endocytosis-Related Prognostic Signature for Patients With Low-Grade Glioma. Front Genet 2021; 12:709666. [PMID: 34552618 PMCID: PMC8450508 DOI: 10.3389/fgene.2021.709666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background Low-grade glioma (LGG) is a heterogeneous tumor that might develop into high-grade malignant glioma, which markedly reduces patient survival time. Endocytosis is a cellular process responsible for the internalization of cell surface proteins or external materials into the cytosol. Dysregulated endocytic pathways have been linked to all steps of oncogenesis, from initial transformation to late invasion and metastasis. However, endocytosis-related gene (ERG) signatures have not been used to study the correlations between endocytosis and prognosis in cancer. Therefore, it is essential to develop a prognostic model for LGG based on the expression profiles of ERGs. Methods The Cancer Genome Atlas and the Genotype-Tissue Expression database were used to identify differentially expressed ERGs in LGG patients. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene set enrichment analysis methodologies were adopted for functional analysis. A protein-protein interaction (PPI) network was constructed and hub genes were identified based on the Search Tool for the Retrieval of Interacting Proteins database. Univariate and multivariate Cox regression analyses were used to develop an ERG signature to predict the overall survival (OS) of LGG patients. Finally, the association between the ERG signature and gene mutation status was further analyzed. Results Sixty-two ERGs showed distinct mRNA expression patterns between normal brain tissues and LGG tissues. Functional analysis indicated that these ERGs were strikingly enriched in endosomal trafficking pathways. The PPI network indicated that EGFR was the most central protein. We then built a 29-gene signature, dividing patients into high-risk and low-risk groups with significantly different OS times. The prognostic performance of the 29-gene signature was validated in another LGG cohort. Additionally, we found that the mutation scores calculated based on the TTN, PIK3CA, NF1, and IDH1 mutation status were significantly correlated with the endocytosis-related prognostic signature. Finally, a clinical nomogram with a concordance index of 0.881 predicted the survival probability of LGG patients by integrating clinicopathologic features and ERG signatures. Conclusion Our ERG-based prediction models could serve as an independent prognostic tool to accurately predict the outcomes of LGG.
Collapse
Affiliation(s)
- Dawei Wang
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Academy of Clinical Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shiguang Liu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Wang
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
23
|
Nose-to-brain delivery: exploring newer domains for glioblastoma multiforme management. Drug Deliv Transl Res 2021; 10:1044-1056. [PMID: 32221847 DOI: 10.1007/s13346-020-00747-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of the primary brain tumors in humans. The intricate pathophysiology, the development of resistance by tumor cells, and the inability of the drugs to effectively cross the blood-brain and blood-tumor barriers result in poor prognosis for GBM patients, with a median survival time of only 1 to 2 years. Nose-to-brain delivery offers an attractive, noninvasive strategy to enhance drug penetration or transport novel drug/gene carriers into the brain. Although the exact mechanism of intranasal delivery remains elusive, the olfactory and trigeminal nerve pathways have been found to play a vital role in circumventing the traditional barriers of brain targeting. This review discusses the intranasal pathway as a novel domain for delivering drugs and nanocarriers encapsulating drugs/genes, as well as stem cell carriers specifically to the glioma cells. Considering the fact that most of these studies are still in preclinical stage, translating such intranasal delivery strategies from bench to bedside would be a critical step for better management and prognosis of GBM. Graphical abstract.
Collapse
|
24
|
Cui M, Zorrilla-Veloz RI, Hu J, Guan B, Ma X. Diagnostic Accuracy of PET for Differentiating True Glioma Progression From Post Treatment-Related Changes: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:671867. [PMID: 34093419 PMCID: PMC8173157 DOI: 10.3389/fneur.2021.671867] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: To evaluate the diagnostic accuracy of PET with different radiotracers and parameters in differentiating between true glioma progression (TPR) and post treatment-related change (PTRC). Methods: Studies on using PET to differentiate between TPR and PTRC were screened from the PubMed and Embase databases. By following the PRISMA checklist, the quality assessment of included studies was performed, the true positive and negative values (TP and TN), false positive and negative values (FP and FN), and general characteristics of all the included studies were extracted. Results of PET consistent with reference standard were defined as TP or TN. The pooled sensitivity (Sen), specificity (Spe), and hierarchical summary receiver operating characteristic curves (HSROC) were generated to evaluate the diagnostic accuracy. Results: The 33 included studies had 1,734 patients with 1,811 lesions suspected of glioma recurrence. Fifteen studies tested the accuracy of 18F-FET PET, 12 tested 18F-FDG PET, seven tested 11C-MET PET, and three tested 18F-DOPA PET. 18F-FET PET showed a pooled Sen and Spe of 0.88 (95% CI: 0.80, 0.93) and 0.78 (0.69, 0.85), respectively. In the subgroup analysis of FET-PET, diagnostic accuracy of high-grade gliomas (HGGs) was higher than that of mixed-grade gliomas (P interaction = 0.04). 18F-FDG PET showed a pooled Sen and Spe of 0.78 (95% CI: 0.71, 0.83) and 0.87 (0.80, 0.92), the Spe of the HGGs group was lower than that of the low-grade gliomas group (0.82 vs. 0.90, P = 0.02). 11C-MET PET had a pooled Sen and Spe of 0.92 (95% CI: 0.83, 0.96) and 0.78 (0.69, 0.86). 18F-DOPA PET had a pooled Sen and Spe of 0.85 (95% CI: 0.80, 0.89) and 0.70 (0.60, 0.79). FET-PET combined with MRI had a pooled Sen and Spe of 0.88 (95% CI: 0.78, 0.94) and 0.76 (0.57, 0.88). Multi-parameters analysis of FET-PET had pooled Sen and Spe values of 0.88 (95% CI: 0.81, 0.92) and 0.79 (0.63, 0.89). Conclusion: PET has a moderate diagnostic accuracy in differentiating between TPR and PTRC. The high Sen of amino acid PET and high Spe of FDG-PET suggest that the combination of commonly used FET-PET and FDG-PET may be more accurate and promising, especially for low-grade glioma.
Collapse
Affiliation(s)
- Meng Cui
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, The First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rocío Isabel Zorrilla-Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Centre UT Health Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Centre UT Health Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Bing Guan
- Department of Health Economics, The First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaodong Ma
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, The First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
25
|
Ma H, Zhao J, Liu S, Xie D, Zhang Z, Nie D, Wen F, Yang Z, Tang G. 18F-Trifluoromethylated D-Cysteine as a Promising New PET Tracer for Glioma Imaging: Comparative Analysis With MRI and Histopathology in Orthotopic C6 Models. Front Oncol 2021; 11:645162. [PMID: 33996562 PMCID: PMC8117348 DOI: 10.3389/fonc.2021.645162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Comparing MRI and histopathology, this study aims to comprehensively explore the potential application of 18F-trifluoromethylated D-cysteine (S-[18F]CF3-D-CYS) in evaluating glioma by using orthotopic C6 glioma models. Sprague-Dawley (SD) rats (n = 9) were implanted with C6 glioma cells. Tumor growth was monitored every week by multiparameter MRI [including dynamic contrast-enhanced MRI (DCE-MRI)], [18F]FDG, S-[18F]CF3-D-CYS, and [18F]FDOPA PET imaging. Repeated scans of the same rat with the two or three [18F]-labeled radiotracers were investigated. Initial regions of interest were manually delineated on T2WI and set on the same level of PET images, and tumor-to-normal brain uptake ratios (TNRs) were calculated to semiquantitatively assess the tracer accumulation in the tumor. The tumor volume in PET and histopathology was calculated. HE and Ki67 immunohistochemical staining were further performed. The correlations between the uptake of S-[18F]CF3-D-CYS and Ki67 were analyzed. Dynamic S-[18F]CF3-D-CYS PET imaging showed tumor uptake rapidly reached a peak, maintained plateau during 10-30 min after injection, then decreased slowly. Compared with [18F]FDG and [18F]FDOPA PET imaging, S-[18F]CF3-D-CYS PET demonstrated the highest TNRs (P < 0.05). There were no significant differences in the tumor volume measured on S-[18F]CF3-D-CYS PET or HE specimen. Furthermore, our results showed that the uptake of S-[18F]CF3-D-CYS was significantly positively correlated with tumor Ki67, and the poor accumulated S-[18F]CF3-D-CYS was consistent with tumor hemorrhage. There was no significant correlation between the S-[18F]CF3-D-CYS uptakes and the Ktrans values derived from DCE-MRI. In comparison with MRI and histopathology, S-[18F]CF3-D-CYS PET performs well in the diagnosis and evaluation of glioma. S-[18F]CF3-D-CYS PET may serve as a valuable tool in the clinical management of gliomas.
Collapse
Affiliation(s)
- Hui Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dingxiang Xie
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhanwen Zhang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dahong Nie
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fuhua Wen
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Miyake K, Suzuki K, Ogawa T, Ogawa D, Hatakeyama T, Shinomiya A, Kudomi N, Yamamoto Y, Nishiyama Y, Tamiya T. Multiple positron emission tomography tracers for use in the classification of gliomas according to the 2016 World Health Organization criteria. Neurooncol Adv 2020; 3:vdaa172. [PMID: 33681765 PMCID: PMC7920529 DOI: 10.1093/noajnl/vdaa172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The molecular diagnosis of gliomas such as isocitrate dehydrogenase (IDH) status (wild-type [wt] or mutation [mut]) is especially important in the 2016 World Health Organization (WHO) classification. Positron emission tomography (PET) has afforded molecular and metabolic diagnostic imaging. The present study aimed to define the interrelationship between the 2016 WHO classification of gliomas and the integrated data from PET images using multiple tracers, including 18F-fluorodeoxyglucose (18F-FDG), 11C-methionine (11C-MET), 18F-fluorothymidine (18F-FLT), and 18F-fluoromisonidazole (18F-FMISO). Methods This retrospective, single-center study comprised 113 patients with newly diagnosed glioma based on the 2016 WHO criteria. Patients were divided into 4 glioma subtypes (Mut, Codel, Wt, and glioblastoma multiforme [GBM]). Tumor standardized uptake value (SUV) divided by mean normal cortical SUV (tumor–normal tissue ratio [TNR]) was calculated for 18F-FDG, 11C-MET, and 18F-FLT. Tumor–blood SUV ratio (TBR) was calculated for 18F-FMISO. To assess the diagnostic accuracy of PET tracers in distinguishing glioma subtypes, a comparative analysis of TNRs and TBR as well as the metabolic tumor volume (MTV) were calculated by Scheffe's multiple comparison procedure for each PET tracer following the Kruskal–Wallis test. Results The differences in mean 18F-FLT TNR and 18F-FMISO TBR were significant between GBM and other glioma subtypes (P < .001). Regarding the comparison between Gd-T1WI volumes and 18F-FLT MTVs or 18F-FMISO MTVs, we identified significant differences between Wt and Mut or Codel (P < .01). Conclusion Combined administration of 4 PET tracers might aid in the preoperative differential diagnosis of gliomas according to the 2016 WHO criteria.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Kenta Suzuki
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Tomoya Ogawa
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Daisuke Ogawa
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Aya Shinomiya
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Nobuyuki Kudomi
- Department of Medical Physics, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Yuka Yamamoto
- Department of Radiology, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
27
|
Soni N, Ora M, Mohindra N, Menda Y, Bathla G. Diagnostic Performance of PET and Perfusion-Weighted Imaging in Differentiating Tumor Recurrence or Progression from Radiation Necrosis in Posttreatment Gliomas: A Review of Literature. AJNR Am J Neuroradiol 2020; 41:1550-1557. [PMID: 32855194 DOI: 10.3174/ajnr.a6685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/29/2020] [Indexed: 01/22/2023]
Abstract
Tumor resection followed by chemoradiation remains the current criterion standard treatment for high-grade gliomas. Regardless of aggressive treatment, tumor recurrence and radiation necrosis are 2 different outcomes. Differentiation of tumor recurrence from radiation necrosis remains a critical problem in these patients because of considerable overlap in clinical and imaging presentations. Contrast-enhanced MR imaging is the universal imaging technique for diagnosis, treatment evaluation, and detection of recurrence of high-grade gliomas. PWI and PET with novel radiotracers have an evolving role for monitoring treatment response in high-grade gliomas. In the literature, there is no clear consensus on the superiority of either technique or their complementary information. This review aims to elucidate the diagnostic performance of individual and combined use of functional (PWI) and metabolic (PET) imaging modalities to distinguish recurrence from posttreatment changes in gliomas.
Collapse
Affiliation(s)
- N Soni
- Department of Radiology (N.S., Y.M., G.B.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - M Ora
- Department of Radiodiagnosis (M.O., N.M.), Sanjay Gandhi Post Graduate Institute of Medical Sciences, Institute of Nuclear Medicine, Lucknow, India
| | - N Mohindra
- Department of Radiodiagnosis (M.O., N.M.), Sanjay Gandhi Post Graduate Institute of Medical Sciences, Institute of Nuclear Medicine, Lucknow, India
| | - Y Menda
- Department of Radiology (N.S., Y.M., G.B.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - G Bathla
- Department of Radiology (N.S., Y.M., G.B.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
28
|
Banati RB, Wilcox P, Xu R, Yin G, Si E, Son ET, Shimizu M, Holsinger RMD, Parmar A, Zahra D, Arthur A, Middleton RJ, Liu GJ, Charil A, Graeber MB. Selective, high-contrast detection of syngeneic glioblastoma in vivo. Sci Rep 2020; 10:9968. [PMID: 32561881 PMCID: PMC7305160 DOI: 10.1038/s41598-020-67036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/19/2020] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma is a highly malignant, largely therapy-resistant brain tumour. Deep infiltration of brain tissue by neoplastic cells represents the key problem of diffuse glioma. Much current research focuses on the molecular makeup of the visible tumour mass rather than the cellular interactions in the surrounding brain tissue infiltrated by the invasive glioma cells that cause the tumour’s ultimately lethal outcome. Diagnostic neuroimaging that enables the direct in vivo observation of the tumour infiltration zone and the local host tissue responses at a preclinical stage are important for the development of more effective glioma treatments. Here, we report an animal model that allows high-contrast imaging of wild-type glioma cells by positron emission tomography (PET) using [18 F]PBR111, a selective radioligand for the mitochondrial 18 kDa Translocator Protein (TSPO), in the Tspo−/− mouse strain (C57BL/6-Tspotm1GuMu(GuwiyangWurra)). The high selectivity of [18 F]PBR111 for the TSPO combined with the exclusive expression of TSPO in glioma cells infiltrating into null-background host tissue free of any TSPO expression, makes it possible, for the first time, to unequivocally and with uniquely high biological contrast identify peri-tumoral glioma cell invasion at preclinical stages in vivo. Comparison of the in vivo imaging signal from wild-type glioma cells in a null background with the signal in a wild-type host tissue, where the tumour induces the expected TSPO expression in the host’s glial cells, illustrates the substantial extent of the peritumoral host response to the growing tumour. The syngeneic tumour (TSPO+/+) in null background (TSPO−/−) model is thus well suited to study the interaction of the tumour front with the peri-tumoral tissue, and the experimental evaluation of new therapeutic approaches targeting the invasive behaviour of glioblastoma.
Collapse
Affiliation(s)
- Richard B Banati
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia. .,Medical Imaging, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.
| | - Paul Wilcox
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Ran Xu
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Grace Yin
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Emily Si
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Eric Taeyoung Son
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Mauricio Shimizu
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - R M Damian Holsinger
- Molecular Neuroscience, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Arvind Parmar
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - David Zahra
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Andrew Arthur
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia.,Medical Imaging, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Arnaud Charil
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Manuel B Graeber
- Brain Tumour Research, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, 94 Mallett Street, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
29
|
Suárez-García JG, Hernández-López JM, Moreno-Barbosa E, de Celis-Alonso B. A simple model for glioma grading based on texture analysis applied to conventional brain MRI. PLoS One 2020; 15:e0228972. [PMID: 32413034 PMCID: PMC7228074 DOI: 10.1371/journal.pone.0228972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023] Open
Abstract
Accuracy of glioma grading is fundamental for the diagnosis, treatment planning and prognosis of patients. The purpose of this work was to develop a low-cost and easy-to-implement classification model which distinguishes low-grade gliomas (LGGs) from high-grade gliomas (HGGs), through texture analysis applied to conventional brain MRI. Different combinations of MRI contrasts (T1Gd and T2) and one segmented glioma region (necrotic and non-enhancing tumor core, NCR/NET) were studied. Texture features obtained from the gray level size zone matrix (GLSZM) were calculated. An under-sampling method was proposed to divide the data into different training subsets and subsequently extract complementary information for the creation of distinct classification models. The sensitivity, specificity and accuracy of the models were calculated, and the best model explicitly reported. The best model included only three texture features and reached a sensitivity, specificity and accuracy of 94.12%, 88.24% and 91.18%, respectively. According to the features of the model, when the NCR/NET region was studied, HGGs had a more heterogeneous texture than LGGs in the T1Gd images, and LGGs had a more heterogeneous texture than HGGs in the T2 images. These novel results partially contrast with results from the literature. The best model proved to be useful for the classification of gliomas. Complementary results showed that the heterogeneity of gliomas depended on the MRI contrast studied. The chosen model stands out as a simple, low-cost, easy-to-implement, reproducible and highly accurate glioma classifier. Importantly, it should be accessible to populations with reduced economic and scientific resources.
Collapse
Affiliation(s)
- José Gerardo Suárez-García
- Faculty of Physics and Mathematics, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | | | - Eduardo Moreno-Barbosa
- Faculty of Physics and Mathematics, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | - Benito de Celis-Alonso
- Faculty of Physics and Mathematics, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| |
Collapse
|
30
|
Velasco C, Mota-Cobián A, Mateo J, España S. Explicit measurement of multi-tracer arterial input function for PET imaging using blood sampling spectroscopy. EJNMMI Phys 2020; 7:7. [PMID: 32030519 PMCID: PMC7005194 DOI: 10.1186/s40658-020-0277-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
Background Conventional PET imaging has usually been limited to a single tracer per scan. We propose a new technique for multi-tracer PET imaging that uses dynamic imaging and multi-tracer compartment modeling including an explicitly derived arterial input function (AIF) for each tracer using blood sampling spectroscopy. For that purpose, at least one of the co-injected tracers must be based on a non-pure positron emitter. Methods The proposed technique was validated in vivo by performing cardiac PET/CT studies on three healthy pigs injected with 18FDG (viability) and 68Ga-DOTA (myocardial blood flow and extracellular volume fraction) during the same acquisition. Blood samples were collected during the PET scan, and separated AIF for each tracer was obtained by spectroscopic analysis. A multi-tracer compartment model was applied to the myocardium in order to obtain the distribution of each tracer at the end of the PET scan. Relative activities of both tracers and tracer uptake were obtained and compared with the values obtained by ex vivo analysis of excised myocardial tissue segments. Results A high correlation was obtained between multi-tracer PET results, and those obtained from ex vivo analysis (18FDG relative activity: r = 0.95, p < 0.0001; SUV: r = 0.98, p < 0.0001). Conclusions The proposed technique allows performing PET scans with two tracers during the same acquisition obtaining separate information for each tracer.
Collapse
Affiliation(s)
- Carlos Velasco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Ciudad Universitaria, Universidad Complutense de Madrid, IdISSC, 28040, Madrid, Spain
| | - Adriana Mota-Cobián
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Ciudad Universitaria, Universidad Complutense de Madrid, IdISSC, 28040, Madrid, Spain
| | - Jesús Mateo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. .,Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Ciudad Universitaria, Universidad Complutense de Madrid, IdISSC, 28040, Madrid, Spain.
| |
Collapse
|
31
|
Treglia G, Muoio B, Trevisi G, Mattoli MV, Albano D, Bertagna F, Giovanella L. Diagnostic Performance and Prognostic Value of PET/CT with Different Tracers for Brain Tumors: A Systematic Review of Published Meta-Analyses. Int J Mol Sci 2019; 20:ijms20194669. [PMID: 31547109 PMCID: PMC6802483 DOI: 10.3390/ijms20194669] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Several meta-analyses reporting data on the diagnostic performance or prognostic value of positron emission tomography (PET) with different tracers in detecting brain tumors have been published so far. This review article was written to summarize the evidence-based data in these settings. Methods: We have performed a comprehensive literature search of meta-analyses published in the Cochrane library and PubMed/Medline databases (from inception through July 2019) about the diagnostic performance or prognostic value of PET with different tracers in patients with brain tumors. Results: We have summarized the results of 24 retrieved meta-analyses on the use of PET or PET/computed tomography (CT) with different tracers in brain tumors. The tracers included were: fluorine-18 fluorodeoxyglucose (18F-FDG), carbon-11 methionine (11C-methionine), fluorine-18 fluoroethyltyrosine (18F-FET), fluorine-18 dihydroxyphenylalanine (18F-FDOPA), fluorine-18 fluorothymidine (18F-FLT), and carbon-11 choline (11C-choline). Evidence-based data demonstrated good diagnostic performance of PET with different tracers in detecting brain tumors, in particular, radiolabelled amino acid tracers showed the highest diagnostic performance values. All the PET tracers evaluated had significant prognostic value in patients with glioma. Conclusions: Evidence-based data showed a good diagnostic performance for some PET tracers in specific indications and significant prognostic value in brain tumors.
Collapse
Affiliation(s)
- Giorgio Treglia
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland.
- Health Technology Assessment Unit, Academic Education, Research and Innovation Area, General Directorate, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland.
| | - Barbara Muoio
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland.
| | - Gianluca Trevisi
- Neurosurgical Unit, Presidio Ospedaliero Santo Spirito, IT-65124 Pescara, Italy.
| | - Maria Vittoria Mattoli
- Department of Neurosciences, Imaging and Clinical Sciences, "G. D'Annunzio" University, IT-66100 Chieti, Italy.
| | - Domenico Albano
- Department of Nuclear Medicine, Spedali Civili of Brescia and University of Brescia, IT-25123 Brescia, Italy.
| | - Francesco Bertagna
- Department of Nuclear Medicine, Spedali Civili of Brescia and University of Brescia, IT-25123 Brescia, Italy.
| | - Luca Giovanella
- Clinic of Nuclear Medicine and PET/CT Center, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
32
|
Carson RE, Kuo PH. Brain-Dedicated Emission Tomography Systems: A Perspective on Requirements for Clinical Research and Clinical Needs in Brain Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2912129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Thon N, Tonn JC, Kreth FW. The surgical perspective in precision treatment of diffuse gliomas. Onco Targets Ther 2019; 12:1497-1508. [PMID: 30863116 PMCID: PMC6390867 DOI: 10.2147/ott.s174316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the last decade, advances in molecular and imaging-based biomarkers have induced a more versatile diagnostic classification and prognostic evaluation of glioma patients. This, in combination with a growing therapeutic armamentarium, enables increasingly individualized, risk-benefit-optimized treatment strategies. This path to precision medicine in glioma patients requires surgical procedures to be reassessed within multidimensional management considerations. This article attempts to integrate the surgical intervention into a dynamic network of versatile diagnostic characterization, prognostic assessment, and multimodal treatment options in the light of the latest 2016 World Health Organization (WHO) classification of diffuse brain tumors, WHO grade II, III, and IV. Special focus is set on surgical aspects such as resectability, extent of resection, and targeted surgical strategies including minimal invasive stereotactic biopsy procedures, convection enhanced delivery, and photodynamic therapy. Moreover, the influence of recent advances in radiomics/radiogenimics on the process of surgical decision-making will be touched.
Collapse
Affiliation(s)
- Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany,
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany,
| | | |
Collapse
|