1
|
Kwon JY, Maeng YS. Human Cord Blood Endothelial Progenitor Cells and Pregnancy Complications (Preeclampsia, Gestational Diabetes Mellitus, and Fetal Growth Restriction). Int J Mol Sci 2024; 25:4444. [PMID: 38674031 PMCID: PMC11050478 DOI: 10.3390/ijms25084444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.
Collapse
Affiliation(s)
- Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University Health System, Seoul 03722, Republic of Korea;
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Kwon H, Jung YJ, Lee Y, Son GH, Kim HO, Maeng YS, Kwon JY. Impaired Angiogenic Function of Fetal Endothelial Progenitor Cells via PCDH10 in Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:16082. [PMID: 38003275 PMCID: PMC10671254 DOI: 10.3390/ijms242216082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Maternal hyperglycemia, induced by gestational diabetes mellitus (GDM), has detrimental effects on fetal vascular development, ultimately increasing the risk of cardiovascular diseases in offspring. The potential underlying mechanisms through which these complications occur are due to functional impairment and epigenetic changes in fetal endothelial progenitor cells (EPCs), which remain less defined. We confirm that intrauterine hyperglycemia leads to the impaired angiogenic function of fetal EPCs, as observed through functional assays of outgrowth endothelial cells (OECs) derived from fetal EPCs of GDM pregnancies (GDM-EPCs). Notably, PCDH10 expression is increased in OECs derived from GDM-EPCs, which is associated with the inhibition of angiogenic function in fetal EPCs. Additionally, increased PCDH10 expression is correlated with the hypomethylation of the PCDH10 promoter. Our findings demonstrate that in utero exposure to GDM can induce angiogenic dysfunction in fetal EPCs through altered gene expression and epigenetic changes, consequently increasing the susceptibility to cardiovascular diseases in the offspring of GDM mothers.
Collapse
Affiliation(s)
- Hayan Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Yeji Lee
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Ga-Hyun Son
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Hyun Ok Kim
- Korea Cell-Based Artificial Blood Project, Regenerative Medicine Acceleration Foundation, Seoul 04512, Republic of Korea;
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| |
Collapse
|
3
|
Wang KC, Yang LY, Lee JE, Wu V, Chen TF, Hsieh ST, Kuo MF. Combination of indirect revascularization and endothelial progenitor cell transplantation improved cerebral perfusion and ameliorated tauopathy in a rat model of bilateral ICA ligation. Stem Cell Res Ther 2022; 13:516. [PMID: 36371197 PMCID: PMC9652785 DOI: 10.1186/s13287-022-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective
Endothelial progenitor cells (EPCs) contribute to the recovery of neurological function after ischemic stroke. Indirect revascularization has exhibited promising effects in the treatment of cerebral ischemia related to moyamoya disease and intracranial atherosclerotic disease. The role of EPCs in augmenting the revascularization effect is not clear. In this study, we investigated the therapeutic effects of indirect revascularization combined with EPC transplantation in rats with chronic cerebral ischemia.
Methods
Chronic cerebral ischemia was induced by bilateral internal carotid artery ligation (BICAL) in rats, and indirect revascularization by encephalo-myo-synangiosis (EMS) was performed 1 week later. During the EMS procedure, intramuscular injection of EPCs and the addition of stromal cell-derived factor 1 (SDF-1), and AMD3100, an SDF-1 inhibitor, were undertaken, respectively, to investigate their effects on indirect revascularization. Two weeks later, the cortical microcirculation, neuronal damage, and functional outcome were evaluated according to the microvasculature density and partial pressure of brain tissue oxygen (PbtO2), regional blood flow, expression of phosphorylated Tau (pTau), TUNEL staining and the rotarod performance test, respectively.
Results
The cortical microcirculation, according to PbtO2 and regional blood flow, was impaired 3 weeks after BICAL. These impairments were improved by the EMS procedure. The regional blood flow was further increased by the addition of SDF-1 and decreased by the addition of AMD3100. Intramuscular injection of EPCs further increased the regional blood flow as compared with the EMS group. The rotarod test results showed that the functional outcome was best in the EMS combined with EPC injection group. Western blot analysis showed that the EMS combined with EPC treatment group had significantly decreased expressions of phosphorylated Tau and phosphorylated glycogen synthase kinase 3 beta (Y216 of GSK-3β). pTau and TUNEL-positive cells were markedly increased at 3 weeks after BICAL induction. Furthermore, the groups treated with EMS combined with SDF-1 or EPCs exhibited marked decreases in the pTau expression and TUNEL-positive cells, whereas AMD3100 treatment increased TUNEL-positive cells.
Conclusion
The results of this study suggested that indirect revascularization ameliorated the cerebral ischemic changes. EPCs played a key role in augmenting the effect of indirect revascularization in the treatment of chronic cerebral ischemia.
Collapse
|
4
|
Ionescu C, Oprea B, Ciobanu G, Georgescu M, Bică R, Mateescu GO, Huseynova F, Barragan-Montero V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina (B Aires) 2022; 58:medicina58070903. [PMID: 35888622 PMCID: PMC9316440 DOI: 10.3390/medicina58070903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the process of developing new blood vessels from pre-existing ones. This review summarizes the main features of physiological and pathological angiogenesis and those of angiogenesis activation and inhibition. In healthy adults, angiogenesis is absent apart from its involvement in female reproductive functions and tissue regeneration. Angiogenesis is a complex process regulated by the action of specific activators and inhibitors. In certain diseases, modulating the angiogenic balance can be a therapeutic route, either by inhibiting angiogenesis (for example in the case of tumor angiogenesis), or by trying to activate the process of new blood vessels formation, which is the goal in case of cardiac or peripheral ischemia.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Bogdan Oprea
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Georgeta Ciobanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
| | - Milena Georgescu
- Clinic for Plastic Surgery and Burns, County Emergency Hospital Craiova, 200642 Craiova, Romania;
| | - Ramona Bică
- General Hospital—“Victor Babes”, 281 Mihai Bravu St., Sector III, 030303 Bucharest, Romania;
| | - Garofiţa-Olivia Mateescu
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
| | - Fidan Huseynova
- LBN, University of Montpellier, 34193 Montpellier, France; (F.H.); (V.B.-M.)
- Institute of Molecular Biology and Biotechnologies, Azerbaïjan National Academy of Sciences (ANAS), AZ1073 Baku, Azerbaijan
- Department of Histology, Cytology and Embryology, Azerbaijan Medical University, AZ1078 Baku, Azerbaijan
| | | |
Collapse
|
5
|
Naito T, Shun M, Nishimura H, Gibo T, Tosaka M, Kawashima M, Ando A, Ogawa T, Sanaka T, Nitta K. Pleiotropic effect of erythropoiesis-stimulating agents on circulating endothelial progenitor cells in dialysis patients. Clin Exp Nephrol 2021; 25:1111-1120. [PMID: 34106373 DOI: 10.1007/s10157-021-02071-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/26/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Recent studies have suggested that erythropoiesis-stimulating agents (ESAs) may accelerate not only angiogenesis but also vasculogenesis, beyond erythropoiesis. METHODS We conducted a 12-week prospective study in 51 dialysis patients; 13 were treated with recombinant human erythropoietin (EPO, 5290.4 ± 586.9 IU/week), 16 with darbepoetin (DA, 42.9 ± 4.3 µg/week), 12 with epoetin β pegol (CERA, 40.5 ± 4.1 µg/week) and 10 with no ESAs. Vascular mediators comprising endothelial progenitor cells (EPCs), vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), and high-sensitivity C-reactive protein (hs-CRP) were measured at 0 and 12 weeks. EPCs were measured by flow cytometry as CD45lowCD34+CD133+ cells. RESULTS The EPC count increased significantly to a greater extent in the EPO group than in the other three group, and increased significantly from 0 to 12 weeks in a EPO dose-dependent manner. In both the DA and CERA groups, the EPC count did not change at 12 weeks. Serum levels of VEGF, MMP-2 and hs-CRP were not affected by ESA treatment in all groups. In the CERA group, serum ferritin decreased significantly compared to the no-ESA group and correlated with CERA dose, although use of iron was permitted if required during the prospective study period of 12 weeks. CONCLUSIONS When patients on dialysis were treated with clinical doses of various ESAs, only EPO induced a significant increase of circulating EPCs from bone marrow, whereas, DA and CERA had no effect.
Collapse
Affiliation(s)
- Takashi Naito
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan.
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan.
- Hiyoshi Sezai Clinic, 2-5-2-4F, Hiyoshi, Kohokuku, Yokohama, Kanagawa, 223-0061, Japan.
| | - Manabe Shun
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideki Nishimura
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoki Gibo
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Mai Tosaka
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Moe Kawashima
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Akitoshi Ando
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
| | - Tetsuya Ogawa
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan
| | - Tsutomu Sanaka
- Life Style Disease Center, Edogawa Hospital, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Systemic Administration of G-CSF Accelerates Bone Regeneration and Modulates Mobilization of Progenitor Cells in a Rat Model of Distraction Osteogenesis. Int J Mol Sci 2021; 22:ijms22073505. [PMID: 33800710 PMCID: PMC8037338 DOI: 10.3390/ijms22073505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.
Collapse
|
7
|
Garciafigueroa Y, Phillips BE, Engman C, Trucco M, Giannoukakis N. Neutrophil-Associated Inflammatory Changes in the Pre-Diabetic Pancreas of Early-Age NOD Mice. Front Endocrinol (Lausanne) 2021; 12:565981. [PMID: 33776903 PMCID: PMC7988208 DOI: 10.3389/fendo.2021.565981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
A growing body of evidence indicates that neutrophils are the first major leukocyte population accumulating inside the pancreas even before the onset of a lymphocytic-driven impairment of functional beta cells in type 1 diabetes mellitus (T1D). In humans, pancreata from T1D deceased donors exhibit significant neutrophil accumulation. We present a time course of previously unknown inflammatory changes that accompany neutrophil and neutrophil elastase accumulation in the pancreas of the non-obese diabetic (NOD) mouse strain as early as 2 weeks of age. We confirm earlier findings in NOD mice that neutrophils accumulate as early as 2 weeks of age. We also observe a concurrent increase in the expression of neutrophil elastase in this time period. We also detect components of neutrophil extracellular traps (NET) mainly in the exocrine tissue of the pancreas during this time as well as markers of vascular pathology as early as 2 weeks of age. Age- and sex-matched C57BL/6 mice do not exhibit these features inside the pancreas. When we treated NOD mice with inhibitors of myeloperoxidase and neutrophil elastase, two key effectors of activated neutrophil activity, alone or in combination, we were unable to prevent the progression to hyperglycemia in any manner different from untreated control mice. Our data confirm and add to the body of evidence demonstrating neutrophil accumulation inside the pancreas of mice genetically susceptible to T1D and also offer novel insights into additional pathologic mechanisms involving the pancreatic vasculature that have, until now, not been discovered inside the pancreata of these mice. However, inhibition of key neutrophil enzymes expressed in activated neutrophils could not prevent diabetes. These findings add to the body of data supporting a role for neutrophils in the establishment of early pathology inside the pancreas, independently of, and earlier from the time at onset of lymphocytic infiltration. However, they also suggest that inhibition of neutrophils alone, acting via myeloperoxidase and neutrophil elastase only, in the absence of other other effector cells, is insufficient to alter the natural course of autoimmune diabetes, at least in the NOD model of the disease.
Collapse
Affiliation(s)
- Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- *Correspondence: Nick Giannoukakis,
| |
Collapse
|
8
|
Golab-Janowska M, Paczkowska E, Machalinski B, Kotlega D, Meller A, Safranow K, Wankowicz P, Nowacki P. Elevated Inflammatory Parameter Levels Negatively Impact Populations of Circulating Stem Cells (CD133+), Early Endothelial Progenitor Cells (CD133+/VEGFR2+), and Fibroblast Growth Factor in Stroke Patients. Curr Neurovasc Res 2020; 16:19-26. [PMID: 30706812 DOI: 10.2174/1567202616666190129164906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endothelial Progenitor Cells (EPCs) are important players in neovascularization, mobilized through signalling by Angiogenic Growth Factors (AGFs) such as Vascular Endothelial Growth Factor (VEGF) and fibroblast growth factor (FGF). In vitro, inflammatory parameters impair the function and influence of EPCs on AGFs. However, this connection is not clear in vivo. To understand the mechanisms of augmented arteriogenesis and angiogenesis in acute ischemic stroke (AIS) patients, we investigated whether circulating stem cells (CD133+), early endothelial progenitor cells (CD133+/VEGFR2+), and endothelial cells (ECs; CD34¯/CD133¯/VEGFR2+) were increasingly mobilized during AIS, and whether there were correlations between EPC levels, growth factor levels and inflammatory parameters. METHODS Data on demographics, classical vascular risk factors, neurological deficit information (assessed using the National Institutes of Health Stroke Scale), and treatment were collected from 43 consecutive AIS patients (group I). Risk factor control patients (group II) included 22 nonstroke subjects matched by age, gender, and traditional vascular risk factors. EPCs were measured by flow cytometry and the populations of circulating stem cells (CD133+), early EPCs (CD133+/VEGFR2+), and ECs (CD34¯/CD133¯/VEGFR2+) were analysed. Correlations between EPC levels and VEGF and FGF vascular growth factor levels as well as the influence of inflammatory parameters on EPCs and AGFs were assessed. RESULTS Patient ages ranged from 54 to 92 years (mean age 75.2 ± 11.3 years). The number of circulating CD34¯/CD133¯/VEGF-R2+ cells was significantly higher in AIS patients than in control patients (p < 0.05). VEGF plasma levels were also significantly higher in AIS patients compared to control patients on day 7 (p < 0.05). FGF plasma levels in patients with AIS were significantly higher than those in the control group on day 3 (p < 0.05). There were no correlations between increased VEGF and FGF levels and the number of CD133+, CD133+/VEGFR2+, or CD34¯/CD133¯/VEGFR2+ cells. Leukocyte levels, FGF plasma levels, and the number of early EPCs were negatively correlated on day 3. High sensitivity C-reactive protein levels and the number of CD133+ and CD133+/VEGFR2+ cells were negatively correlated on day 7. In addition, there was a negative correlation between fibrinogen levels and FGF plasma levels as well as the number of early EPCs (CD133+/VEGFR2+). CONCLUSION AIS patients exhibited increased numbers of early EPCs (CD133+/VEGFR2+) and AGF (VEGF and FGF) levels. A negative correlation between inflammatory parameters and AGFs and EPCs indicated the unfavourable influence of inflammatory factors on EPC differentiation and survival. Moreover, these correlations represented an important mechanism linking inflammation to vascular disease.
Collapse
Affiliation(s)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Boguslaw Machalinski
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Kotlega
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Meller
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Pawel Wankowicz
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| | - Przemyslaw Nowacki
- Department of Neurology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
9
|
Sun Y, Chen S, Zhang X, Pei M. Significance of Cellular Cross-Talk in Stromal Vascular Fraction of Adipose Tissue in Neovascularization. Arterioscler Thromb Vasc Biol 2020; 39:1034-1044. [PMID: 31018663 DOI: 10.1161/atvbaha.119.312425] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult stem cell-based therapy has been regarded as a promising treatment for tissue ischemia because of its ability to promote new blood vessel formation. Bone marrow-derived mesenchymal stem cells are the most used angiogenic cells for therapeutic neovascularization, yet the side effects and low efficacy have limited their clinical application. Adipose stromal vascular fraction is an easily accessible, heterogeneous cell system comprised of endothelial, stromal, and hematopoietic cell lineages, which has been shown to spontaneously form robust, patent, and functional vasculatures in vivo. However, the characteristics of each cell population and their specific roles in neovascularization remain an area of ongoing investigation. In this review, we summarize the functional capabilities of various stromal vascular fraction constituents during the process of neovascularization and attempt to analyze whether the cross-talk between these constituents generates a synergetic effect, thus contributing to the development of new potential therapeutic strategies to promote neovascularization.
Collapse
Affiliation(s)
- Yuan Sun
- From the Department of Vascular Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Jiangsu, China (Y.S., X.Z.); Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics (Y.S., M.P.), Exercise Physiology (M.P.), and WVU Cancer Institute, Robert C. Byrd Health Sciences Center (M.P.), West Virginia University, Morgantown; and Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China (S.C.)
| | - Song Chen
- From the Department of Vascular Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Jiangsu, China (Y.S., X.Z.); Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics (Y.S., M.P.), Exercise Physiology (M.P.), and WVU Cancer Institute, Robert C. Byrd Health Sciences Center (M.P.), West Virginia University, Morgantown; and Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China (S.C.)
| | - Xicheng Zhang
- From the Department of Vascular Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Jiangsu, China (Y.S., X.Z.); Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics (Y.S., M.P.), Exercise Physiology (M.P.), and WVU Cancer Institute, Robert C. Byrd Health Sciences Center (M.P.), West Virginia University, Morgantown; and Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China (S.C.)
| | - Ming Pei
- From the Department of Vascular Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Jiangsu, China (Y.S., X.Z.); Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics (Y.S., M.P.), Exercise Physiology (M.P.), and WVU Cancer Institute, Robert C. Byrd Health Sciences Center (M.P.), West Virginia University, Morgantown; and Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China (S.C.)
| |
Collapse
|
10
|
Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells Int 2019; 2019:6279721. [PMID: 32082383 PMCID: PMC7012224 DOI: 10.1155/2019/6279721] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering techniques are a promising alternative for the use of autologous bone grafts to reconstruct bone defects in the oral and maxillofacial region. However, for successful bone regeneration, adequate vascularization is a prerequisite. This review presents and discusses the application of stem cells and new strategies to improve vascularization, which may lead to feasible clinical applications. Multiple sources of stem cells have been investigated for bone tissue engineering. The stromal vascular fraction (SVF) of human adipose tissue is considered a promising single source for a heterogeneous population of essential cells with, amongst others, osteogenic and angiogenic potential. Enhanced vascularization of tissue-engineered grafts can be achieved by different mechanisms: vascular ingrowth directed from the surrounding host tissue to the implanted graft, vice versa, or concomitantly. Vascular ingrowth into the implanted graft can be enhanced by (i) optimizing the material properties of scaffolds and (ii) their bioactivation by incorporation of growth factors or cell seeding. Vascular ingrowth directed from the implanted graft towards the host tissue can be achieved by incorporating the graft with either (i) preformed microvascular networks or (ii) microvascular fragments (MF). The latter may have stimulating actions on both vascular ingrowth and outgrowth, since they contain angiogenic stem cells like SVF, as well as vascularized matrix fragments. Both adipose tissue-derived SVF and MF are cell sources with clinical feasibility due to their large quantities that can be harvested and applied in a one-step surgical procedure. During the past years, important advancements of stem cell application and vascularization in bone tissue regeneration have been made. The development of engineered in vitro 3D models mimicking the bone defect environment would facilitate new strategies in bone tissue engineering. Successful clinical application requires innovative future investigations enhancing vascularization.
Collapse
|
11
|
Kamrani A, Alipourfard I, Ahmadi-Khiavi H, Yousefi M, Rostamzadeh D, Izadi M, Ahmadi M. The role of epigenetic changes in preeclampsia. Biofactors 2019; 45:712-724. [PMID: 31343798 DOI: 10.1002/biof.1542] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a disorder affecting 2-10% of pregnancies and has a major role for perinatal and maternal mortality and morbidity. PE can be occurred by initiation of new hypertension combined with proteinuria after 20 weeks gestation, as well as various reasons such as inflammatory cytokines, poor trophoblast invasion can be related with PE disease. Environmental factors can cause epigenetic changes including DNA methylation, microRNAs (miRNAs), and histone modification that may be related to different diseases such as PE. Abnormal DNA methylation during placentation is the most important epigenetic factor correlated with PE. Moreover, changes in histone modification like acetylation and also the effect of overregulation or low regulation of miRNAs or long noncoding RNAs on variety signaling pathways can be resulted in PE. The aim of this review is to describe of studies about epigenetic changes in PE and its therapeutic strategies.
Collapse
Affiliation(s)
- Amin Kamrani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Center of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Reproductive Biology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
CD133+/C-kit+Lin - endothelial progenitor cells in fetal circulation demonstrate impaired differentiation potency in severe preeclampsia. Pregnancy Hypertens 2018; 15:146-153. [PMID: 30825912 DOI: 10.1016/j.preghy.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Individuals delivered from preeclamptic pregnancies exhibit a long-term increased risk of developing cardiovascular and metabolic diseases, likely caused by aberrant fetal cell reprogramming incurred in utero. The present study investigated the functional impairment and epigenetic changes exhibited by endothelial progenitor cells derived from offspring born to preeclamptic pregnancies. STUDY DESIGN The capacity of CD133+/C-kit+/Lin- (CKL-) human umbilical cord blood endothelial progenitor cells (EPCs) derived from gestationally matched normal and preeclamptic (n = 10 each) pregnancies to differentiate to form outgrowth endothelial cells (OECs) was assessed by observing both their morphology, and the number and size of generated OECs colonies. Likewise, OECs angiogenic function was evaluated via migration, adhesion, and tube-formation assays. EPCs from preeclampsia were cultured in normal-, and preeclampsia-derived serum-conditioned media to assess the effects of environmental factors on EPC differentiation potency and OEC angiogenic function, and finally, EPCs H3K4, H3K9, and H3K27 trimethylation levels were assayed. RESULTS The preeclampsia-derived CKL- EPCs exhibited decreased H3K4 and H3K9 trimethylation levels, significantly delayed differentiation times, and a significant reduction in both their number of generated OECs colonies, and exhibited reduced OECs migration, adhesion, and tube formation activities compared to those achieved by the normal-derived EPCs. Interestingly, the reduced differentiation potency of the preeclampsia-derived EPCs was not rescued via exposure to normal serum. CONCLUSIONS Exposure to preeclampsia significantly and irreversibly reduced CKL- EPC differentiation potency and OEC angiogenic function, likely reflecting incurred irreversible epigenetic changes.
Collapse
|
13
|
Kaur I, Rawal P, Rohilla S, Bhat MH, Sharma P, Siddiqui H, Kaur S. Endothelial progenitor cells from aged subjects display decreased expression of sirtuin 1, angiogenic functions, and increased senescence. Cell Biol Int 2018; 42:1212-1220. [DOI: 10.1002/cbin.10999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/25/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Impreet Kaur
- Schoolof Biotechnology; Gautam Buddha University; Greater Noida India
| | - Preety Rawal
- Schoolof Biotechnology; Gautam Buddha University; Greater Noida India
| | - Sumati Rohilla
- Schoolof Biotechnology; Gautam Buddha University; Greater Noida India
| | - Mohsin H. Bhat
- Institute of Liver and Biliary Sciences; New Delhi India
| | - Priyanka Sharma
- Schoolof Biotechnology; Gautam Buddha University; Greater Noida India
| | - Hamda Siddiqui
- Schoolof Biotechnology; Gautam Buddha University; Greater Noida India
| | - Savneet Kaur
- Schoolof Biotechnology; Gautam Buddha University; Greater Noida India
- Institute of Liver and Biliary Sciences; New Delhi India
| |
Collapse
|
14
|
In Situ Organ-Specific Vascularization in Tissue Engineering. Trends Biotechnol 2018; 36:834-849. [PMID: 29555346 DOI: 10.1016/j.tibtech.2018.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Other than a few avascular tissues, almost all human tissues are connected to the systemic circulation via blood vessels that promote metabolism and function. Accordingly, engineered vascularization is a vital goal in tissue engineering for regenerative medicine. Endothelial cells (ECs) play a central role in vascularization with two significant specificities: physical interfaces between vascular stroma and blood, and phenotypic organ-specificity. Biomaterial scaffolding technologies that address these unique properties of ECs have been developed to promote the vascularization of various engineered tissues, and these have advanced from mimicking vascular architectures ex situ towards promoting spontaneous angiogenic remodeling in situ. Simultaneously, endothelial progenitor cells (EPCs) and organ-specific ECs are attracting more and more attention with the increasing awareness of the diversity of ECs in different organs.
Collapse
|
15
|
Su H, Xue G, Ye C, Wang Y, Zhao A, Huang N, Li J. The effect of anti-CD133/fucoidan bio-coatings on hemocompatibility and EPC capture. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2066-2081. [DOI: 10.1080/09205063.2017.1373989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Su
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Guoneng Xue
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Changrong Ye
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yan Wang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ansha Zhao
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jingan Li
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
16
|
Varberg KM, Winfree S, Chu C, Tu W, Blue EK, Gohn CR, Dunn KW, Haneline LS. Kinetic analyses of vasculogenesis inform mechanistic studies. Am J Physiol Cell Physiol 2017; 312:C446-C458. [PMID: 28100488 PMCID: PMC5407022 DOI: 10.1152/ajpcell.00367.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Vasculogenesis is a complex process by which endothelial stem and progenitor cells undergo de novo vessel formation. Quantitative assessment of vasculogenesis is a central readout of endothelial progenitor cell functionality. However, current assays lack kinetic measurements. To address this issue, new approaches were developed to quantitatively assess in vitro endothelial colony-forming cell (ECFC) network formation in real time. Eight parameters of network structure were quantified using novel Kinetic Analysis of Vasculogenesis (KAV) software. KAV assessment of structure complexity identified two phases of network formation. This observation guided the development of additional vasculogenic readouts. A tissue cytometry approach was established to quantify the frequency and localization of dividing ECFCs. Additionally, Fiji TrackMate was used to quantify ECFC displacement and speed at the single-cell level during network formation. These novel approaches were then implemented to identify how intrauterine exposure to maternal diabetes mellitus (DM) impairs fetal ECFC vasculogenesis. Fetal ECFCs exposed to maternal DM form fewer initial network structures, which are not stable over time. Correlation analyses demonstrated that ECFC samples with greater division in branches form fewer closed network structures. Additionally, reductions in average ECFC movement over time decrease structural connectivity. Identification of these novel phenotypes utilizing the newly established methodologies provides evidence for the cellular mechanisms contributing to aberrant ECFC vasculogenesis.
Collapse
Affiliation(s)
- Kaela M Varberg
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Seth Winfree
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chenghao Chu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wanzhu Tu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Emily K Blue
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cassandra R Gohn
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Kenneth W Dunn
- Indiana Center for Biological Microscopy, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laura S Haneline
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana;
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; and
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
17
|
Wang Q, Zhang W, He G, Sha H, Quan Z. Method for in vitro differentiation of bone marrow mesenchymal stem cells into endothelial progenitor cells and vascular endothelial cells. Mol Med Rep 2016; 14:5551-5555. [PMID: 27878275 PMCID: PMC5355713 DOI: 10.3892/mmr.2016.5953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/10/2016] [Indexed: 11/26/2022] Open
Abstract
Vascular development is a regulated process and is dependent on the participation and differentiation of many cell types including the proliferation and migration of vascular endothelial cells and differentiation of endothelial progenitor cells (EPCs) to mesodermal precursor cells. Thus, reconstitution of this process in vitro necessitates providing ambient conditions for generating and culturing EPCs in vitro and differentiating them to vascular endothelial cells. In the present study, we developed methods to differentiate bone marrow mesenchymal stem cells (MSC) into EPCs and to vascular endothelial cells. Bone marrow MSC from canines and human sources were differentiated in vitro in to EPCs. These EPCs were able to express a variety of endothelial markers following 7 days in culture. Further culturing led to the appearance of an increased number and proportion of endothelial cells. These cells were stable even after 30 generations in culture. There was a gradual loss of CD31 and increased expression of factor VIII, VEGFR and CD133. VEGF being highly angiogenic, helps in the vascular development. These results provide the basis for the possible development of vasculature in vitro conditions for biomedical applications and in vivo for organ/tissue reconstruction therapies.
Collapse
Affiliation(s)
- Qihong Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Weifeng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Guifen He
- School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Huifang Sha
- Chest Tumor Research Institute of Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Zhe Quan
- Department of Neurosurgery, Fengxian District Central Hospital (Branch Hospital of Shanghai Sixth People's Hospital), Shanghai Jiaotong University, Shanghai 201400, P.R. China
| |
Collapse
|
18
|
Kashiwazaki D, Akioka N, Kuwayama N, Hayashi T, Noguchi K, Tanaka K, Kuroda S. Involvement of circulating endothelial progenitor cells in carotid plaque growth and vulnerability. J Neurosurg 2016; 125:1549-1556. [PMID: 26871204 DOI: 10.3171/2015.10.jns151500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The roles of endothelial progenitor cells (EPCs) in the development of carotid plaque are still obscure. This study aimed to clarify this by assessing the histological findings of specimens obtained from carotid endarterectomy. METHODS This study included 34 patients who underwent carotid endarterectomy. MR imaging was performed to semiquantitatively analyze the components of the carotid plaques in all patients. The surgical specimens were subjected to immunohistochemistry. The distributions of the CD34-, CD133-, VEGF-2R-positive cells in the carotid plaques were precisely analyzed, and their number was quantified. Simultaneously, the CD34-positive microvessels were localized. RESULTS The plaque component was judged as lipid-rich plaque in 19 patients, intraplaque hemorrhage (IPH) in 11 patients, and fibrous plaque in 4 patients. The CD34-positive microvessels were densely distributed in the plaque shoulder and interface-to-media regions. The CD34-, CD133-, and VEGF-2R-positive cells were mainly localized around the CD34-positive microvessels. The number of CD34-positive microvessels significantly correlated with the number of CD34-, CD133-, and VEGF-2R-positive cells (R = 0.308, p = 0.009; R = 0.324, p = 0.006; and R = 0.296, p = 0.013, respectively). Vulnerable plaques (lipid-rich and IPH) had significantly higher numbers of the CD34-positive microvessels (p = 0.007) and CD34-, CD133-, and VEGF-2R-positive cells than fibrous plaques (p = 0.031, p = 0.013, and p = 0.002). CONCLUSIONS These findings strongly suggest that neovascularization in the plaque shoulder and interface-to-media regions may play a key role in delivering EPCs from the peripheral blood to the carotid plaque, promoting the growth of carotid plaque. Furthermore, the invaded EPCs, especially the CD133-positive immature EPCs, may be related to plaque vulnerability.
Collapse
Affiliation(s)
| | | | | | | | - Kyo Noguchi
- Radiology, Graduate School of Medicine and Pharmacological Sciences, University of Toyama; and
| | - Kortaro Tanaka
- Department of Neurology, Toyama University Hospital, Toyama, Japan
| | | |
Collapse
|
19
|
Zan T, Li H, Du Z, Gu B, Liu K, Li Q. Enhanced endothelial progenitor cell mobilization and function through direct manipulation of hypoxia inducible factor-1α. Cell Biochem Funct 2015; 33:143-9. [PMID: 25801228 DOI: 10.1002/cbf.3091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zijing Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
20
|
Porat Y, Abraham E, Karnieli O, Nahum S, Woda J, Zylberberg C. Critical elements in the development of cell therapy potency assays for ischemic conditions. Cytotherapy 2015; 17:817-31. [PMID: 25728414 DOI: 10.1016/j.jcyt.2014.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022]
Abstract
A successful potency assay for a cell therapy product (CTP) used in the treatment of ischemic conditions should quantitatively measure relevant biological properties that predict therapeutic activity. This is especially challenging because of numerous degrees of complexity stemming from factors that include a multifactorial complex mechanism of action, cell source, inherent cell characteristics, culture method, administration mode and the in vivo conditions to which the cells are exposed. The expected biological function of a CTP encompasses complex interactions that range from a biochemical, metabolic or immunological activity to structural replacement of damaged tissue or organ. Therefore, the requirements for full characterization of the active substance with respect to biological function could be taxing. Moreover, the specific mechanism of action is often difficult to pinpoint to a specific molecular entity; rather, it is more dependent on the functionality of the cellular components acting in a in a multifactorial fashion. In the case of ischemic conditions, the cell therapy mechanism of action can vary from angiogenesis, vasculogenesis and arteriogenesis that may activate different pathways and clinical outcomes. The CTP cellular attributes with relation to the suggested mechanism of action can be used for the development of quantitative and reproducible analytical potency assays. CTPs selected and released on the basis of such potency assays should have the highest probability of providing meaningful clinical benefit for patients. This White Paper will discuss and give examples for key elements in the development of a potency assay for treatment of ischemic disorders treated by the use of CTPs.
Collapse
Affiliation(s)
- Yael Porat
- BioGenCell Ltd, Hematology BGC Stem Cell Research, Sanz Medical Center Laniado Hospital, Netanya, Israel
| | | | | | | | | | | |
Collapse
|
21
|
Xing Y, Tu J, Zheng L, Guo L, Xi T. Anti-angiogenic effect of tanshinone IIA involves inhibition of the VEGF/VEGFR2 pathway in vascular endothelial cells. Oncol Rep 2015; 33:163-170. [PMID: 25376085 DOI: 10.3892/or.2014.3592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/02/2014] [Indexed: 11/06/2022] Open
Abstract
Tanshinone IIA (TSA) is one of the major lipophilic components of Salvia miltiorrhiza Bunge reported to exhibit an antitumor effect. The exact intracellular signaling mechanisms involved remain elusive and were therefore the subject of this study. The process of angiogenesis is related to tumor progression, invasion and metastasis and is generally perceived as an indicator of tumor prognosis. Among the most critical factors that induce angiogenesis, the vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway and CD146 (melanoma adhesion molecule) play key roles in this process. This study aimed to demonstrate that TSA has potent anti-angiogenic activity in vitro and ex vivo. Additionally, we evaluated the role of TSA in the VEGF/VEGFR2 pathway. Through a series of in vitro experiments, we found that TSA has a negative effect on cell proliferation, migration and tube formation of human umbilical vascular endothelial cells. We further showed that TSA can inhibit angiogenesis using chorioallantoic membrane (CAM) and rat aortic ring assays. Furthermore, western blotting demonstrated that TSA effectively suppressed the expression of VEGR2 and CD146. These results suggest that TSA inhibits angiogenesis by downregulation of the VEGF/VEGFR2 pathway.
Collapse
Affiliation(s)
- Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiajie Tu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Le Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
22
|
Peplow PV. Growth factor- and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization. Neural Regen Res 2014; 9:1425-9. [PMID: 25317152 PMCID: PMC4192942 DOI: 10.4103/1673-5374.139457] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 12/20/2022] Open
Abstract
Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes specific growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endothelial progenitor cells migrate and home to specific sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue ischemia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovascularization following ischemic stroke.
Collapse
Affiliation(s)
- Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Abstract
Endothelial progenitor cells (EPCs) are primitive endothelial precursors which are known to functionally contribute to the pathogenesis of disease. To date a number of distinct subtypes of these cells have been described, with differing maturation status, cellular phenotype, and function. Although there is much debate on which subtype constitutes the true EPC population, all subtypes have endothelial characteristics and contribute to neovascularisation. Vasculogenesis, the process by which EPCs contribute to blood vessel formation, can be dysregulated in disease with overabundant vasculogenesis in the context of solid tumours, leading to tumour growth and metastasis, and conversely insufficient vasculogenesis can be present in an ischemic environment. Importantly, it is widely known that transcription factors tightly regulate cellular phenotype and function by controlling the expression of particular target genes and in turn regulating specific signalling pathways. This suggests that transcriptional regulators may be potential therapeutic targets to control EPC function. Herein, we discuss the observed EPC subtypes described in the literature and review recent studies describing the role of a number of transcriptional families in the regulation of EPC phenotype and function in normal and pathological conditions.
Collapse
|
24
|
Vainshtein JM, Kabarriti R, Mehta KJ, Roy-Chowdhury J, Guha C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2014; 89:786-803. [PMID: 24969793 DOI: 10.1016/j.ijrobp.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
Abstract
Current treatment options for hepatocellular carcinoma (HCC) are often limited by the presence of underlying liver disease. In patients with liver cirrhosis, surgery, chemotherapy, and radiation therapy all carry a high risk of hepatic complications, ranging from ascites to fulminant liver failure. For patients receiving radiation therapy, cirrhosis dramatically reduces the already limited radiation tolerance of the liver and represents the most important clinical risk factor for the development of radiation-induced liver disease. Although improvements in conformal radiation delivery techniques have improved our ability to safely irradiate confined areas of the liver to increasingly higher doses with excellent local disease control, patients with moderate-to-severe liver cirrhosis continue to face a shortage of treatment options for HCC. In recent years, evidence has emerged supporting the use of bone marrow-derived stromal cells (BMSCs) as a promising treatment for liver cirrhosis, with several clinical studies demonstrating sustained improvement in clinical parameters of liver function after autologous BMSC infusion. Three predominant populations of BMSCs, namely hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells, seem to have therapeutic potential in liver injury and cirrhosis. Preclinical studies of BMSC transplantation have identified a range of mechanisms through which these cells mediate their therapeutic effects, including hepatocyte transdifferentiation and fusion, paracrine stimulation of hepatocyte proliferation, inhibition of activated hepatic stellate cells, enhancement of fibrolytic matrix metalloproteinase activity, and neovascularization of regenerating liver. By bolstering liver function in patients with underlying Child's B or C cirrhosis, autologous BMSC infusion holds great promise as a therapy to improve the safety, efficacy, and utility of surgery, chemotherapy, and hepatic radiation therapy in the treatment of HCC.
Collapse
Affiliation(s)
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Keyur J Mehta
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
25
|
Zhang X, Yan X, Wang C, Lu S, Tang T, Chai Y. The effect of autologous endothelial progenitor cell transplantation combined with extracorporeal shock-wave therapy on ischemic skin flaps in rats. Cytotherapy 2014; 16:1098-1109. [PMID: 24831842 DOI: 10.1016/j.jcyt.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have been used to revascularize ischemic tissues, but only limited effect can be achieved. Extracorporeal shock-wave therapy (ESWT) is a promising angiogenic strategy. We hypothesized that EPC transplantation combined with ESWT would greatly benefit the survival of ischemic skin flaps. METHODS Sixty-four male Sprague-Dawley rats were divided into 4 groups (n = 16 in each group): group 1 (serving as sham control), group 2 (treated with subcutaneous EPC implantation, 1.0 × 10(6) cells), group 3 (treated with ESWT, 300 impulses at 0.10 mJ/mm(2)) and group 4 (treated with EPCs implantation combined with ESWT). Ischemic skin flaps were made on the backs of rats and treated accordingly. Blood flow of skin flaps was measured periodically after operation, and flap survival rates were compared. Tissue samples were harvested at 2 weeks postoperatively from each group. RESULTS The survival rate of skin flaps in group 4 was 87.5 ± 10.23%, which was statistically significantly higher than other groups. Histologic examination showed that the capillary density was higher in the dual-treatment group than in the two single-treatment groups. Compared with groups 2 and 3, blood perfusion increased significantly in group 4. A drastic increase of vWF+ cells was observed in the ischemic skin flaps on immunofluorescence staining in group 4. The expressions of chemotactic factors and angiogenic factors were higher in group 4. CONCLUSIONS Combined treatment with EPCs and ESWT is superior to either EPCs or ESWT alone in improving the survival of ischemic skin flaps in rats.
Collapse
Affiliation(s)
- Xiongliang Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shengdi Lu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Chai
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
26
|
Poldervaart MT, Gremmels H, van Deventer K, Fledderus JO, Oner FC, Verhaar MC, Dhert WJA, Alblas J. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J Control Release 2014; 184:58-66. [PMID: 24727077 DOI: 10.1016/j.jconrel.2014.04.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 01/16/2023]
Abstract
Timely vascularization is essential for optimal performance of bone regenerative constructs. Vascularization is efficiently stimulated by vascular endothelial growth factor (VEGF), a substance with a short half-life time. This study investigates the controlled release of VEGF from gelatin microparticles (GMPs) as a means to prolong VEGF activity at the preferred location within 3D bioprinted scaffolds, and the effects on subsequent vascularization. The release of VEGF from GMPs was continuous for 3 weeks during in vitro studies, and bioactivity was confirmed using human endothelial progenitor cells (EPCs) in migration assays. Traditional and real-time migration assays showed immediate and efficient EPC migration in the presence of GMP-released VEGF, indistinguishable from VEGF-solution that was added to the medium. Matrigel scaffolds containing EPCs and VEGF, which was released either in a fast or sustained fashion by application of GMPs, were investigated for their in vivo vasculogenic capacity. Implantation in subcutaneous pockets in nude mice for one week demonstrated that vessel formation was significantly higher in the VEGF sustained-release group compared to the fast release group. In addition, regional differences with respect to VEGF release were introduced in 3D bioprinted EPC-laden scaffolds and their influence on vasculogenesis was investigated in vivo. The different regions were retained and vessel formation occurred analogous with the results seen in the Matrigel plugs. We conclude that GMPs are suitable to generate sustained release profiles of bioactive VEGF, and that they can be used to create defined differentiation regions in 3D bioprinted heterogeneous constructs, allowing a new generation of smart scaffold design. The prolonged presence of VEGF led to a significant increase in scaffold vascularization when applied in vivo.
Collapse
Affiliation(s)
- Michelle T Poldervaart
- Department of Orthopaedics, University Medical Center Utrecht, G05.228, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, F03.227, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Kelly van Deventer
- Department of Orthopaedics, University Medical Center Utrecht, G05.228, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Joost O Fledderus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, F03.227, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - F Cumhur Oner
- Department of Orthopaedics, University Medical Center Utrecht, G05.228, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, F03.227, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Wouter J A Dhert
- Department of Orthopaedics, University Medical Center Utrecht, G05.228, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80163, 3508 TD Utrecht, The Netherlands.
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, G05.228, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
27
|
Li YJ, Duan CL, Liu JX. Salvianolic acid A promotes the acceleration of neovascularization in the ischemic rat myocardium and the functions of endothelial progenitor cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:218-227. [PMID: 24189032 DOI: 10.1016/j.jep.2013.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/13/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza (SM, also known as DanShen) is one of the well-known widely used Chinese herbal medicines in clinical, containing phenolic compounds and potent antioxidant properties. Salvianolic acid A (SAA) is the most potent component of SM. A modern experimental strategy for treating myocardial ischemia is to induce neovascularization of the heart by the use of "angiogens", mediators that induce the formation of blood vessels, or angiogenesis. Studies demonstrated that coronary collateral vessels protect ischemic myocardium after coronary obstruction; therefore, we sought to examine whether SAA could stimulate myocardial angiogenesis. MATERIALS AND METHODS Male Sprague-Dawley rats myocardial infarct (MI) induced by ligation of left anterior descending coronary artery (LAD) were randomly divided into five groups: sham-operated group; LAD occlusion + administration of physiological saline (vehicle treated group); LAD occlusion + administration of different concentrations of SAA (10, 5.0 and 2.5mg/kg/d). Infarct size and capillary density in the infarct region were measured with a previous experimental method. Immunohistological analysis was performed to measure vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2) expressions. The secretion of matrix metalloproteinase type X (MMP-9) was evaluated in serum of post-ischemic rats. We also performed the experiments of SAA on rat endothelial progenitor cells (EPCs) numbers and the capacity of migration and vasculargenesis. RESULTS SAA potentiated the ischemia-induced neovascularization after 1week post-operation when compared to vehicle treated group. This effect could be attributed to an increased formation of VEGF, VEGFR-2, and MMP-9 as well as the promotion of numbers and functions of EPCs. CONCLUSION These findings show that SAA has potent proangiogenic properties by promoting the expression of proangiogenic factors, and the functions of EPCs, indicating that SAA might contribute to the protective effect against coronary disease. Chemical compound studied in this paper is salvianolic acid A (PubChem CID: 5281793).
Collapse
Affiliation(s)
- Yu-Juan Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chang-Ling Duan
- Research and Development Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jian-Xun Liu
- Research and Development Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
28
|
Fernandes T, Hashimoto NY, Schettert IT, Nakamuta JS, Krieger JE, Oliveira EMD. O grau de melhora na função das células progenitoras endoteliais derivadas da medula óssea é dependente do volume de treinamento físico aeróbio. REV BRAS MED ESPORTE 2013. [DOI: 10.1590/s1517-86922013000400007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: A angiogênese muscular esquelética induzida pelo treinamento físico aeróbio (TF) é determinante na melhora da capacidade aeróbia. Entre os fatores envolvidos, as células progenitoras endoteliais (CPE) derivadas da medula óssea são descritas por promoverem o reparo vascular e a angiogênese. Embora o papel do TF sobre os parâmetros das CPE tenha sido investigado, pouco se conhece sobre os efeitos de diferentes volumes de TF sobre a função das CPE da medula óssea, alterações metabólicas e capilarização muscular. OBJETIVO: Testar a hipótese de que o TF melhore a função das CPE da medula óssea, acompanhada por maior capilarização e capacidade oxidativa muscular dependentes do aumento de volume de TF. MÉTODOS: Vinte e uma ratas Wistar foram divididas em três grupos: sedentário controle (SC), treinado protocolo 1 (P1), treinado protocolo 2 (P2). P1: o treinamento de natação consistiu de 60 min, 1x/dia, cinco dias/semana/10 semanas, com 5% de sobrecarga corporal. P2: o mesmo de P1 até a oitava semana, na nona semana os animais treinaram 2x/dia e na 10ª semana 3x/dia. RESULTADOS: O TF promoveu bradicardia de repouso, aumento da tolerância ao esforço, do consumo de oxigênio de pico e da atividade da enzima citrato sintase muscular no grupo P1, sendo estas adaptações mais exacerbadas no grupo P2, indicando que a condição aeróbia foi mais proeminente com este TF. O TF melhorou a função das CPE da medula óssea em P1, sendo ainda maior esta resposta no grupo P2. Em paralelo, observa-se também um aumento no número de capilares dependentes do volume de TF. CONCLUSÃO: Estes resultados sugerem que a medula óssea como o principal reservatório de CPE é influenciada por diferentes volumes de TF, sendo possivelmente responsável pelo maior rendimento físico observado mediante uma maior mobilização endógena de CPE, participantes ativas no processo de angiogênese muscular induzido pelo TF.
Collapse
|
29
|
Ma XL, Sun XL, Wan CY, Ma JX, Tian P. Significance of circulating endothelial progenitor cells in patients with fracture healing process. J Orthop Res 2012; 30:1860-6. [PMID: 22528744 DOI: 10.1002/jor.22134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/29/2012] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex bone formation process, and neovascularization may contribute to new bone regeneration. The circulating endothelial progenitor cell (EPC) mobilization and homing could involve in neovascularization and vasculogenesis. In this study, we investigate the changes of circulating EPC during bone fracture healing, and the possible contribution of EPCs to increased neovascularization and fracture healing. The number of circulating EPCs was monitored in twenty-four patients with long bone traumatic fracture within the first 48 h and at 3, 5, 10, and 14 days post-fracture. The mononuclear cells which isolated from peripheral blood were analyzed by flow cytometry. Peripheral blood counts of leukocytes and platelets were measured by hematology analyzer. The amount of peripheral EPCs significantly increased in patients with fracture compared to age-matched healthy control subjects within the first 48 h after injury, and peaked at 3 days post-fracture. There was no significant difference in the change trend of early EPCs between male and female, but the number of early EPCs was significantly greater in younger patients compared to older patients. A comparison of the EPCs levels between patients with severe injury (ISS > 16) and patients with mild injury (ISS ≤ 16) revealed no statistically significant difference. The level of early EPCs was inverse correlation with the level of plate after fracture, but no correlation with the level of peripheral leucocytes. These findings suggest traumatic fracture may induce the mobilization of EPCs into the peripheral circulation. The increased EPCs may contribute to neovascularization and involve in fracture healing.
Collapse
|
30
|
Szöke K, Brinchmann JE. Concise review: therapeutic potential of adipose tissue-derived angiogenic cells. Stem Cells Transl Med 2012. [PMID: 23197872 DOI: 10.5966/sctm.2012-0069] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inadequate blood supply to tissues is a leading cause of morbidity and mortality today. Ischemic symptoms caused by obstruction of arterioles and capillaries are currently not treatable by vessel replacement or dilatation procedures. Therapeutic angiogenesis, the treatment of tissue ischemia by promoting the proliferation of new blood vessels, has recently emerged as one of the most promising therapies. Neovascularization is most often attempted by introduction of angiogenic cells from different sources. Emerging evidence suggests that adipose tissue (AT) is an excellent reservoir of autologous cells with angiogenic potential. AT yields two cell populations of importance for neovascularization: AT-derived mesenchymal stromal cells, which likely act predominantly as pericytes, and AT-derived endothelial cells (ECs). In this concise review we discuss different physiological aspects of neovascularization, briefly present cells isolated from the blood and bone marrow with EC properties, and then discuss isolation and cell culture strategies, phenotype, functional capabilities, and possible therapeutic applications of angiogenic cells obtained from AT.
Collapse
|
31
|
Liman TG, Endres M. New vessels after stroke: postischemic neovascularization and regeneration. Cerebrovasc Dis 2012; 33:492-9. [PMID: 22517438 DOI: 10.1159/000337155] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 02/08/2012] [Indexed: 12/30/2022] Open
Abstract
The formation of new blood vessels after acute ischemic stroke is one of the most promising approaches to future therapies in the emerging field of stroke medicine. Angiogenesis and postnatal vasculogenesis are the underlying mechanisms of the formation of new blood vessels. Bone marrow-derived endothelial progenitor cells (EPCs) are thought to play an important role in neovascularization and during the regenerative processes after a vascular injury as well as in the maintenance of endothelial integrity. This review summarizes possible mechanisms of angiogenesis, postischemic neovascularization and regeneration with a focus on the potential role of EPCs as a risk marker and as a therapeutic target in stroke medicine.
Collapse
Affiliation(s)
- T G Liman
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
32
|
Zhang H, Albersen M, Jin X, Lin G. Stem cells: novel players in the treatment of erectile dysfunction. Asian J Androl 2012; 14:145-55. [PMID: 22002437 PMCID: PMC3735142 DOI: 10.1038/aja.2011.79] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/30/2011] [Accepted: 07/19/2011] [Indexed: 01/09/2023] Open
Abstract
Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus, they represent great promise for regenerative medicine. Historically, stem cells have been categorized as either embryonic stem cells (ESCs) or adult stem cells (ASCs). It was previously believed that only ESCs hold the ability to differentiate into any cell type, whereas ASCs have the capacity to give rise only to cells of a given germ layer. More recently, however, numerous studies demonstrated the ability of ASCs to differentiate into cell types beyond their tissue origin. The aim of this review was to summarize contemporary evidence regarding stem cell availability, differentiation, and more specifically, the potential of these cells in the diagnosis and treatment of erectile dysfunction (ED) in both animal models and human research. We performed a search on PubMed for articles related to definition, localisation and circulation of stem cells as well as the application of stem cells in both diagnosis and treatment of ED. Strong evidence supports the concept that stem cell therapy is potentially the next therapeutic approach for ED. To date, a large spectrum of stem cells, including bone marrow mesenchymal stem cells, adipose tissue-derived stem cells and muscle-derived stem cells, have been investigated for neural, vascular, endothelial or smooth muscle regeneration in animal models for ED. In addition, several subtypes of ASCs are localized in the penis, and circulating endogenous stem cells can be employed to predict the outcome of ED and ED-related cardiovascular diseases.
Collapse
Affiliation(s)
- Haiyang Zhang
- Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | | | |
Collapse
|
33
|
Kwon SM, Lee YK, Yokoyama A, Jung SY, Masuda H, Kawamoto A, Lee YM, Asahara T. Differential activity of bone marrow hematopoietic stem cell subpopulations for EPC development and ischemic neovascularization. J Mol Cell Cardiol 2011; 51:308-17. [PMID: 21557947 DOI: 10.1016/j.yjmcc.2011.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Although endothelial progenitor cells (EPCs) differentiate from minor populations of stem cells in bone marrow (BM), the differential role of hematopoietic stem cell (HSC) subpopulations in EPC development is largely unclear. Morphological characterization of EPC colonies has revealed that c-kit+/Sca-1+/lineage (Lin)-(KSL) cells mainly develop small EPC-colony forming units (CFUs) not large EPC-CFUs. In contrast, c-kit+/Sca-1-/Lin- (KL) cells develop large EPC-CFUs not small EPC-CFUs. Neither c-kit-/Sca-1+/Lin- (SL) cells nor c-kit-/Sca-1-/Lin- (L) cells develop EPC-CFUs to an appreciable extent. Hindlimb ischemia enhances formation of large EPC-CFUs from all HSC subpopulations, suggesting an important role for ischemia in functional EPC development. Real time RT-PCR analysis shows that KSL, KL and SL cells but not L cells express various factors at high levels, maintaining a BM-EPC pool. In hindlimb ischemia, transplanted KSL, KL and SL cells efficiently differentiate into endothelial lineage cells in situ and augment capillary density. The percentage of Ki-67+ cycling cells among transplanted cells in ischemic tissue was also greater for KSL, KL and SL cells than L cells. Moreover, the frequency of VEGF- or SDF-1-expressing cells was higher transplanted KSL, KL or SL cells than L cells. Thus, KSL, KL and SL cells are not different in their angiogenic competence under ischemic conditions. In conclusion, although KSL cells are clearly the most potent contributors to EPC development, KL and SL cells may also contribute to neovascularization via both autocrine and paracrine mechanisms in response to ischemic signals.
Collapse
Affiliation(s)
- Sang-Mo Kwon
- Laboratory for Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Yangsan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Napoli C, Hayashi T, Cacciatore F, Casamassimi A, Casini C, Al-Omran M, Ignarro LJ. Endothelial progenitor cells as therapeutic agents in the microcirculation: an update. Atherosclerosis 2010; 215:9-22. [PMID: 21126740 DOI: 10.1016/j.atherosclerosis.2010.10.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/28/2010] [Accepted: 10/25/2010] [Indexed: 12/15/2022]
Abstract
This review evaluates novel beneficial effects of circulating endothelial progenitor cells (EPCs) as shown by several preclinical studies and clinical trials carried out to test the safety and feasibility of using EPCs. There are 31 registered clinical trials (and many others still ongoing) and 19 published studies. EPCs originate in the bone marrow and migrate into the bloodstream where they undergo a differentiation program leading to major changes in their antigenic characteristics. EPCs lose typical progenitor markers and acquire endothelial markers, and two important receptors, (VEGFR and CXCR-4), which recruit circulating EPCs to damaged or ischemic microcirculatory (homing to damaged tissues) beds. Overall, therapeutic angiogenesis will likely change the face of regenerative medicine in the next decade with many patients worldwide predicted to benefit from these treatments.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Division of Clinical Pathology and Excellence Research Center on Cardiovascular Diseases, 1st School of Medicine, II University of Naples, 80138 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Dal Pozzo S, Urbani S, Mazzanti B, Luciani P, Deledda C, Lombardini L, Benvenuti S, Peri A, Bosi A, Saccardi R. High recovery of mesenchymal progenitor cells with non-density gradient separation of human bone marrow. Cytotherapy 2010; 12:579-86. [DOI: 10.3109/14653241003709660] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Seebach C, Henrich D, Kähling C, Wilhelm K, Tami AE, Alini M, Marzi I. Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A 2010; 16:1961-70. [PMID: 20088701 DOI: 10.1089/ten.tea.2009.0715] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED QUESTION/AIM: Lack of vessels indicates an insufficient nutritional supply of a bone graft and may limit the recruitment of bone-forming cells. Our aim was to evaluate the influence of endothelial progenitor cells (EPCs) alone or in combination with mesenchymal stem cells (MSCs) on early vascularization and bone healing in critical-sized defect (CSD) in vivo. METHODS MSCs from human bone marrow and EPCs from buffy coat were used. A femoral CSD in adult athymic rats was created and stabilized by an external fixateur. The remaining defects were filled with fibronectin-coated beta-tricalcium phosphate (beta-TCP) granules, EPCs seeded on beta-TCP, MSCs seeded on beta-TCP, coculture of EPCs/MSCs seeded on beta-TCP, or autologous bone. Vascularization and bone formation were determined by immunohistology, microCT analysis, and biomechanical testing after 1, 4, and 8 weeks. RESULTS Early vascularization was significantly improved in EPC/MSC group or EPC group, respectively. At 4 weeks bone formation increased significantly when the CSD was treated with coculture of MSCs/EPCs. Eight weeks after transplantation CSD showed significantly more bony bridgings and significantly increased ultimate load in the EPC/MSC group compared to the other groups. DISCUSSION This cell approach suggests that there is a synergistic effect and that the initial stage of neovascularization by EPCs is considered to be crucial for complete bone regeneration in the late phase.
Collapse
Affiliation(s)
- Caroline Seebach
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Wan J, Lu LJ, Miao R, Liu J, Xu XX, Yang T, Hu QH, Wang J, Wang C. Alterations of bone marrow-derived endothelial progenitor cells following acute pulmonary embolism in mice. Exp Biol Med (Maywood) 2010; 235:989-98. [DOI: 10.1258/ebm.2010.010057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pulmonary embolism (PE) is a common, lethal, ischemic disease. PE-induced endothelium injury plays a critical role in the pathophysiological consequences of PE. Endothelial progenitor cells (EPCs) can be mobilized from the bone marrow to enter circulation and play important roles in repair of damaged endothelium. However, it is not yet known if EPC mobilization results from PE. The alterations of the quantity and function of bone marrow-derived EPCs were detected in acute pulmonary embolism (APE) events in mice, and the possible role of the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway in those alterations was explored. APE models were established by injection of autologous thrombi into the right jugular vein of C57BL/6 mice. Mice were divided into sham and experimental groups including one hour (1H), one day (1D) and two day (2D) groups after injection. The results showed that in the APE 1D group, the thrombi were easily found in the large or medium pulmonary vessel. And CD133+ or CD34+ cells in bone marrow increased significantly, while CD133+/vascular endothelial growth factor receptor 2+ EPCs decreased. After seven days in culture, the abilities of incorporation into a vascular network, adhesion to fibronectin, migration and proliferation of bone marrow-derived EPCs in the APE 1D group increased significantly. The mRNA and protein expression levels of eNOS in EPCs increased in the APE 1D group. Treatment of EPCs with NG-nitro-L-arginine methyl ester inhibited functional alterations induced by APE. The results suggested that APE events stimulate the mobilization of EPCs from bone marrow, and enhance their functions. The eNOS/NO pathway may be involved in this process.
Collapse
Affiliation(s)
- Jun Wan
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069
| | - Li-Jin Lu
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069
| | - Ran Miao
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069
| | - Jie Liu
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069
| | - Xiao-Xue Xu
- Medical Experiment and Test Center, Capital Medical University, Beijing 100069
| | - Ting Yang
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020
| | - Qing-Hua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health of China, Tongji Medical College, Huazhong Science and Technology University, Wuhan, Hubei 430030, People's Republic of China
| | - Jun Wang
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069
| | - Chen Wang
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020
| |
Collapse
|
38
|
Morris LM, Klanke CA, Lang SA, Pokall S, Maldonado AR, Vuletin JF, Alaee D, Keswani SG, Lim FY, Crombleholme TM. Characterization of endothelial progenitor cells mobilization following cutaneous wounding. Wound Repair Regen 2010; 18:383-90. [PMID: 20546555 PMCID: PMC2906777 DOI: 10.1111/j.1524-475x.2010.00596.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone marrow (BM)-derived endothelial progenitor cells (EPCs) are known to play an important role in neovascularization and wound healing. We investigated the temporal effects of cutaneous wounding on EPC surface markers within the peripheral blood and BM, and to better understand the role of the stromal cell-derived factor-1 alpha (SDF-1alpha/CXCR4) axis on EPC mobilization after wounding. FVB/NJ mice were administered bilateral 8 mm circular full-thickness skin wounds. Peripheral blood and BM were isolated at daily intervals postwounding through day 7 and analyzed for EPC mobilization characteristics and levels of SDF-1alpha. Cutaneous wounding was found to cause a transient increase in EPC mobilization that peaked on day 3. In contrast, SDF-1alpha protein within blood plasma was observed to significantly decrease on days 3, 4, and 7 following cutaneous wounding. BM levels of SDF-1alpha protein decreased to a nadir on day 3, the same day as peak mobilization was observed to occur. The decrease in BM SDF-1alpha protein levels was also associated with a decrease in SDF-1alpha mRNA suggesting transcriptional down-regulation as a contributing factor. This study for the first time characterizes EPC mobilization following cutaneous wounding in mice and supports a major role for the SDF-1alpha/CXCR4 axis in regulating mobilization within the BM, without evidence for systemic increases in SDF-1alpha.
Collapse
Affiliation(s)
- Lee M Morris
- The Fetal Care Center of Cincinnati, Division of Pediatric General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kebir A, Harhouri K, Guillet B, Liu JW, Foucault-Bertaud A, Lamy E, Kaspi E, Elganfoud N, Vely F, Sabatier F, Sampol J, Pisano P, Kruithof EKO, Bardin N, Dignat-George F, Blot-Chabaud M. CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo. Circ Res 2010; 107:66-75. [PMID: 20448216 DOI: 10.1161/circresaha.109.213827] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE CD146, a transmembrane immunoglobulin mainly expressed at the intercellular junction of endothelial cells, is involved in cell-cell cohesion, paracellular permeability, monocyte transmigration and angiogenesis. CD146 exists as 2 isoforms, short (sh) and long (lg), but which isoform is involved remains undefined. OBJECTIVE The recently described role of CD146 in angiogenesis prompted us to investigate which isoform was involved in this process in human late endothelial progenitors (EPCs), with the objective of increasing their proangiogenic potential. METHODS AND RESULTS Immunofluorescence experiments showed that, in subconfluent EPCs, shCD146 was localized in the nucleus and at the migrating edges of the membrane, whereas lgCD146 was intracellular. In confluent cells, shCD146 was redistributed at the apical membrane and lgCD146 was directed toward the junction. In contrast to lgCD146, shCD146 was overexpressed in EPCs as compared to mature endothelial cells and upregulated by vascular endothelial growth factor and SDF-1 (stromal cell-derived factor 1). Study of the properties of both isoforms in vitro provided evidence that shCD146 was involved in EPC adhesion to activated endothelium, migration, and proliferation, with a paracrine secretion of interleukin-8 or angiopoietin 2, whereas lgCD146 was implicated in stabilization of capillary-like structures in Matrigel and transendothelial permeability. In an animal model of hindlimb ischemia, transplantation of shCD146-modified EPCs selectively promoted both EPC engraftment and blood flow. CONCLUSIONS Altogether, these findings establish that CD146 isoforms display distinct functions in vessels regeneration. Selective improvement of therapeutic angiogenesis by shCD146 overexpression suggests a potential interest of shCD146-transduced EPCs for the treatment of peripheral ischemic disease.
Collapse
Affiliation(s)
- Abdeldjalil Kebir
- Institut National de la Santé et de la Recherche Médicale UMR-S 608, Physiopathologie de l'Endothélium, Université de la Méditerranée, UFR Pharmacie, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Transplanted endothelial progenitor cells increase neo-vascularisation of rat pre-fabricated flaps. J Plast Reconstr Aesthet Surg 2010; 63:474-81. [DOI: 10.1016/j.bjps.2008.11.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 10/12/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
|
41
|
Montaño I, Schiestl C, Schneider J, Pontiggia L, Luginbühl J, Biedermann T, Böttcher-Haberzeth S, Braziulis E, Meuli M, Reichmann E. Formation of human capillaries in vitro: the engineering of prevascularized matrices. Tissue Eng Part A 2010; 16:269-82. [PMID: 19702510 DOI: 10.1089/ten.tea.2008.0550] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Initial take, development, and function of transplanted engineered tissue substitutes are crucially dependent on rapid and adequate blood perfusion. Therefore, the development of rapidly and efficiently vascularized tissue grafts is vital for tissue engineering and regenerative medicine. Here we report on the construction of a network of highly organotypic capillaries in engineered tissue substitutes. We employed a three-dimensional culture system consisting of human microvascular endothelial cells. These were reproducibly expanded at high purity and subsequently seeded into biodegradable, fibrin-based hydrogels. The process of capillary formation in vitro followed the principles of both angiogenesis and postnatal vasculogenesis and a distinct sequence of other developmental steps that closely resemble embryonic neovascularization. Capillary lumen formation in vitro was initiated by the deposition of a basement membrane and intensive pinocytosis, followed by the generation of intracellular vacuoles, successive fusion of these vacuoles, and finally the formation of a long, continuous lumen. After transplantation the vascular structures were stabilized by mural cells of the recipient animal. Our findings suggest that the in vitro engineering of prevascularized matrices is within reach.
Collapse
Affiliation(s)
- Irene Montaño
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The effect of Xuefu Zhuyu Decoction on in vitro endothelial progenitor cell tube formation. Chin J Integr Med 2010; 16:50-3. [PMID: 20131036 DOI: 10.1007/s11655-010-0050-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To observe the effect of Xuefu Zhuyu Decoction ()-containing serum (XFZYD-CS) on endothelial progenitor cell (EPC) tube formation in vitro. METHODS Mononuclear cells from rat bone marrow were prepared in a Ficoll density gradient centrifuge. EPCs were separated by the differential attachment method, and observed with inverted microscope for the effect of XFZYD-CS on EPC tube formation. RESULTS After one day, EPCs exposed to the serum containing 5%, 10% and 15% XFZYD-CS formed typical tubes or vessel networks. The tube formation time was two days ahead of the control group and the size of most tubes in the serum groups was smaller than in the control group. CONCLUSION XFZYD-CS could induce EPC angiogenesis and hasten tube formation, especially in capillary vessels. The study provides experimental evidence for the plausibility of Xuefu Zhuyu Decoction in the treatment of ischemic diseases.
Collapse
|
43
|
Paul D, Samuel SM, Maulik N. Mesenchymal stem cell: present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration. Antioxid Redox Signal 2009; 11:1841-55. [PMID: 19260767 PMCID: PMC2848514 DOI: 10.1089/ars.2009.2455] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myocardial ischemia and cardiac dysfunction have been known to follow ischemic heart diseases (IHDs). Despite a plethora of conventional treatment options, their efficacies are associated with skepticism. Cell therapies harbor a promising potential for vascular and cardiac repair, which is corroborated by adequate preclinical evidence. The underlying objectives behind cardiac regenerative therapies subsume enhancing angiomyogenesis in the ischemic myocardium, ameliorating cellular apoptosis, regenerating the damaged myocardium, repopulating the lost resident myocardial cells (smooth muscle, cardiomyocyte, and endothelial cells), and finally, decreasing fibrosis with a consequent reduction in ventricular remodeling. Although-cell based cardiomyoplasty approaches have an immense potential, their clinical utilization is limited owing to the increased need for better candidates for cellular cardiomyoplasty, better routes of delivery, appropriate dose for efficient engraftment, and better preconditioning or genetic-modification strategies for the progenitor and stem cells. Mesenchymal stem cells (MSCs) have emerged as powerful candidates in mediating myocardial repair owing to their unique properties of multipotency, transdifferentiation, intercellular connection with the resident cardiomyocytes via connexin 43 (Cx43)-positive gap junctions in the myocardium, and most important, immunomodulation. In this review, we present an in-depth discussion on the complexities associated with stem and progenitor cell therapies, the potential of preclinical approaches involving MSCs for myocardial repair, and an account of the past milestones and ongoing MSC-based trials in humans.
Collapse
Affiliation(s)
- Debayon Paul
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030-1110, USA
| | | | | |
Collapse
|
44
|
Abstract
INTRODUCTION The endothelial monolayer plays a crucial role in the vasodilation and hemodynamic events involved in erection physiology. Due to its relevant functions, a close link has been established between endothelial integrity and erectile dysfunction (ED). Endothelial dysfunction is induced by the detrimental actions of vascular risk factors (VRFs), identified as common correlates for the development of cardiovascular disease and ED. It is currently recognized that ED is the early harbinger of a more generalized vascular systemic disorder, and, therefore, an evaluation of endothelial health in ED patients should be of prime relevance. Several noninvasive methods for endothelial function assessment have been proposed, including the Penile Nitric Oxide Release Test (PNORT). AIM To highlight the most recent gathered knowledge on basic and clinical mechanisms underlying loss of cavernosal endothelial function promoted by VRFs and to discuss local and systemic methods for endothelial function assessment in ED individuals, focusing on the PNORT. MAIN OUTCOME MEASURES A complete revision on the novel basic and clinical links between endothelial and ED. METHODS A systematic review of the literature regarding the aforementioned issues. RESULTS Risk factor-associated cavernosal endothelial dysfunction is mostly induced by unifying mechanisms, including oxidative stress and impaired endothelial nitric oxide functional activities, which present clinically as ED. Several techniques to evaluate endothelial dysfunction were revised, with advantages and limitations debated, focusing on our detailed expertise using the PNORT method. CONCLUSIONS The established endothelial-erectile dysfunction connection was thoroughly revised, from basic mechanisms to the clinical importance of endothelial dysfunction assessment as diagnosis for generalized vascular disease. Further studies are required to disclose efficient approaches to repair disabled endothelium and both restore and prevent endothelial dysfunction.
Collapse
Affiliation(s)
- Carla Costa
- Faculty of Medicine of the University of Porto, Department of Biochemistry (U38-FCT), Porto, Portugal.
| | | |
Collapse
|
45
|
Bogos K, Renyi-Vamos F, Dobos J, Kenessey I, Tovari J, Timar J, Strausz J, Ostoros G, Klepetko W, Ankersmit HJ, Lang G, Hoda MA, Nierlich P, Dome B. High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer. Clin Cancer Res 2009; 15:1741-6. [PMID: 19240177 DOI: 10.1158/1078-0432.ccr-08-1372] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The newly identified bone marrow-derived cell population, called lymphatic/vascular endothelial progenitor cells (LVEPC), has been shown to contribute to lymph capillary growth in experimental tumor systems. The clinical significance of these cells has not yet been investigated in a human malignancy. Our aim was to study whether peripheral blood circulating LVEPCs participate in the progression of human small cell lung cancer (SCLC). EXPERIMENTAL DESIGN A total of 88 patients with limited-stage SCLC and 32 tumor-free control subjects were included. Peripheral blood circulating LVEPC labeled with CD34 and vascular endothelial growth factor receptor-3 (VEGFR3) antibodies and the serum levels of the key lymphangiogenic molecule VEGF-C were measured by flow cytometry and ELISA, respectively. RESULTS CD34-positive/VEGFR3-positive LVEPC levels were significantly increased in patients (versus controls; P<0.01), and there was also a significant relationship between LVEPC counts and lymph node metastasis (P<0.01). High pretreatment circulating LVEPC numbers correlated with poor overall survival (P<0.01). Although we observed significantly elevated VEGF-C concentrations in patients (versus controls; P<0.01), there was no significant correlation between VEGF-C and LVEPC levels. Moreover, no significant differences in peripheral blood VEGF-C levels were seen between patients subgrouped by clinicopathologic variables including tumor and lymph node stages and survival. CONCLUSIONS Peripheral blood levels of bone marrow-derived LVEPCs are significantly increased in patients with SCLC and correlate with lymphatic involvement and prognosis. This is the first study that shows evidence of increased numbers of circulating LVEPC in patients with a malignant tumor.
Collapse
Affiliation(s)
- Krisztina Bogos
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res 2009; 19:116-27. [PMID: 19114994 DOI: 10.1038/cr.2008.326] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-beta family members are multifunctional cytokines that elicit their effects on cells, including endothelial and mural cells, via specific type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors. Knock-out mouse models for TGF-beta family signaling pathway components have revealed their critical importance in proper yolk sac angiogenesis. Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular syndromes such as hereditary hemorrhagic telangiectasia, primary pulmonary hypertension and Marfan syndrome. In this review, we present recent advances in our understanding of the role of TGF-beta receptor signaling in vascular biology and disease, and discuss how this may be applied for therapy.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
47
|
|
48
|
López-Holgado N, Alberca M, Sánchez-Guijo FM, Villarón EM, Rivas JV, López-Novoa JM, Briñón JG, Arévalo MA, Oterino E, Santamaría C, San Miguel JF, del Cañizo MC. Prospective comparative analysis of the angiogenic capacity of monocytes and CD133+ cells in a murine model of hind limb ischemia. Cytotherapy 2009; 11:1041-51. [DOI: 10.3109/14653240903191719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Schäfer R, Dominici M, Müller I, Horwitz E, Asahara T, Bulte JWM, Bieback K, Le Blanc K, Bühring HJ, Capogrossi MC, Dazzi F, Gorodetsky R, Henschler R, Handgretinger R, Kajstura J, Kluger PJ, Lange C, Luettichau IV, Mertsching H, Schrezenmeier H, Sievert KD, Strunk D, Verfaillie C, Northoff H. Basic research and clinical applications of non-hematopoietic stem cells, 4-5 April 2008, Tubingen, Germany. Cytotherapy 2009; 11:245-55. [PMID: 19152153 DOI: 10.1080/14653240802582117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
From 4 to 5 April 2008, international experts met for the second time in Tubingen, Germany, to present and discuss the latest proceedings in research on non-hematopoietic stem cells (NHSC). This report presents issues of basic research including characterization, isolation, good manufacturing practice (GMP)-like production and imaging as well as clinical applications focusing on the regenerative and immunomodulatory capacities of NHSC.
Collapse
Affiliation(s)
- R Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tubingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kässmeyer S, Plendl J, Custodis P, Bahramsoltani M. New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anat Histol Embryol 2008; 38:1-11. [PMID: 18983622 DOI: 10.1111/j.1439-0264.2008.00894.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the course of new blood vessel formation, two different processes--vasculogenesis and angiogenesis--have to be distinguished. The term vasculogenesis describes the de novo emergence of a vascular network by endothelial progenitors, whereas angiogenesis corresponds to the generation of vessels by sprouting from pre-existing capillaries. Until recently, it was thought that vasculogenesis is restricted to the prenatal period. During the last decade, one of the most fascinating innovations in the field of vascular biology was the discovery of endothelial progenitor cells and vasculogenesis in the adult. This review aims at introducing the concept of adult vasculogenesis and discusses the efforts to identify and characterize adult endothelial progenitors. The different sources of adult endothelial progenitors like haematopoietic stem cells, myeloid cells, multipotent progenitors of the bone marrow, side population cells and tissue-residing pluripotent stem cells are considered. Moreover, a survey of cellular and molecular control mechanisms of vasculogenesis is presented. Recent advances in research on endothelial progenitors exert a strong impact on many different disciplines and provide the knowledge for functional concepts in basic fields like anatomy, histology as well as embryology.
Collapse
Affiliation(s)
- S Kässmeyer
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|