1
|
Jouppila A, Nevola I, Lemponen M, Mattila T, Lassila R. Antiplatelet-anticoagulant, APAC, a mimic of endogenous heparin, is an antithrombotic with von Willebrand factor-mediated characteristics. Thromb Res 2025; 250:109318. [PMID: 40252546 DOI: 10.1016/j.thromres.2025.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND We have conjugated selected number of unfractionated heparin (UFH) chains to human albumin core to mimic mast-cell heparin proteoglycans (HEP-PG). Indeed, APAC, dual antiplatelet and anticoagulant, as HEP-PG, has inhibited collagen- (CIPA) and thrombin-induced platelet aggregation, being simultaneously an anticoagulant. In several animal models of arterial thrombosis, APAC has provided vascular-injury-associated local antithrombotic properties mediated by von Willebrand factor (VWF). AIMS We compared the structure-function effects of APAC with those of UFH in vitro, and when supplemented in blood studied platelet and VWF-dependency and anticoagulation. METHODS We assessed the total thrombosis formation analysis system (T-TAS) and coagulation (rotational thromboelastometry, ROTEM) in blood, and thrombin generation and aggregation in platelet-rich plasma. We studied aggregation responses of APAC to collagen, ristocetin, ADP, and potential synergism with cangrelor, P2Y12 receptor antagonist. Finally, heparin-neutralizing role of platelet factor 4 (PF4) on antiplatelet and anticoagulant functions of APAC was investigated. RESULTS APAC concentration-dependently exceeded the anticoagulant and antithrombotic action of UFH in ROTEM, and platelet thrombus formation under arterial blood flow over collagen/tissue factor. APAC uniquely inhibited CIPA. While ADP- and ristocetin-induced aggregation were unaffected by APAC, we detected synergism with cangrelor for CIPA. Disruption of the tertiary structure of APAC reverted its mode of action to anticoagulation only, alike UFH. PF4 neutralized antithrombotic actions of APAC. CONCLUSION The structure-function of APAC conveys dual and unique antiplatelet and anticoagulant actions in flowing blood over collagen and beyond. Our studies confirmed the inhibitory role of APAC on VWF functions and fibrin formation.
Collapse
Affiliation(s)
- Annukka Jouppila
- Clinical Research institute HUCH, Helsinki, Finland; Research Program Unit in Systems Oncology, Medical Faculty, University of Helsinki, Helsinki, Finland.
| | - Ilja Nevola
- Research Program Unit in Systems Oncology, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Marja Lemponen
- HUS Diagnostic Center, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tomi Mattila
- Research Program Unit in Systems Oncology, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Riitta Lassila
- Research Program Unit in Systems Oncology, Medical Faculty, University of Helsinki, Helsinki, Finland; Coagulation Disorders Unit, Departments of Hematology and Clinical Chemistry (HUSLAB Laboratory Services), Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Aplagon Ltd., Helsinki, Finland
| |
Collapse
|
2
|
Matrai AA, Varga A, Bedocs-Barath B, Vanyolos E, Orban-Kalmandi R, Loczi L, Bagoly Z, Jouppila A, Lassila R, Nemeth N, Deak A. Heparin-like effect of a dual antiplatelet and anticoagulant (APAC) agent on red blood cell deformability and aggregation in an experimental model. J Thromb Thrombolysis 2024; 57:1329-1338. [PMID: 39231863 PMCID: PMC11645326 DOI: 10.1007/s11239-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Treatments with different antithrombotic agents can affect micro-rheological variables, such as red blood cell (RBC) deformability and aggregation. Since the effect of dual antiplatelet and anticoagulant (APAC) treatment on micro-rheology is unknown, we aimed to investigate the effect of different intravenous doses of APAC on hematological and micro-rheological variables in a porcine model. Two groups were formed (APAC group, Control group), and blood was collected from the animals at preset intervals. Hematological variables, RBC deformability, and aggregation were measured. We observed an improvement in the RBC deformability measured at a low shear stress range (< 3 Pa). However, after both doses, a decrease in the maximal elongation index of RBC values occurred in the APAC group. RBC aggregation increased after APAC bolus dose, while it gradually and dose-dependently decreased. Supposedly, the improvement in RBC deformability that was observed at a lower shear rate could facilitate aggregation. Administration of APAC and unfractionated heparin (UFH) caused comparable changes in hematological and hemorheological variables. Signs of thrombosis or bleeding did not occur. APAC and UFH had comparable micro-rheological effects.
Collapse
Affiliation(s)
- Adam Attila Matrai
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, Debrecen, H-4032, Hungary
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, Debrecen, H-4032, Hungary
| | - Barbara Bedocs-Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, Debrecen, H-4032, Hungary
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, Debrecen, H-4032, Hungary
| | - Rita Orban-Kalmandi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, and Hungarian Research Network (HUN-REN-DE) Cerebrovascular Research Group, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Linda Loczi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, and Hungarian Research Network (HUN-REN-DE) Cerebrovascular Research Group, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Zsuzsa Bagoly
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, and Hungarian Research Network (HUN-REN-DE) Cerebrovascular Research Group, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Annukka Jouppila
- Helsinki University Hospital Clinical Research Institute, Tukholmankatu 8, Helsinki, FI-00290, Finland
| | - Riitta Lassila
- Coagulation Disorders Unit, Departments of Hematology and Comprehensive Cancer Center and Research Program Unit in Systems Oncology, Helsinki University Hospital, University of Helsinki, Haartmaninkatu 4, Helsinki, FI- 00290, Finland
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, Debrecen, H-4032, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, Debrecen, H-4032, Hungary.
| |
Collapse
|
3
|
Bot I, Delfos L, Hemme E, Bernabé Kleijn MNA, van Santbrink PJ, Foks AC, Kovanen PT, Jouppila A, Lassila R. Treatment with APAC, a dual antiplatelet anticoagulant heparin proteoglycan mimetic, limits early collar-induced carotid atherosclerotic plaque development in Apoe -/- mice. Atherosclerosis 2024; 397:118567. [PMID: 39243663 DOI: 10.1016/j.atherosclerosis.2024.118567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND AND AIMS Mast cell-derived heparin proteoglycans (HEP-PG) can be mimicked by bioconjugates carrying antithrombotic and anti-inflammatory properties. The dual antiplatelet and anticoagulant (APAC) construct administered, either locally or intravenously (i.v.), targets activated endothelium, its adhesion molecules, and subendothelial matrix proteins, all relevant to atherogenesis. We hypothesized that APAC influences cellular interactions in atherosclerotic lesion development and studied APAC treatment during the initiation and progression of experimental atherosclerosis. METHODS Male western-type diet-fed Apoe-/- mice were equipped with perivascular carotid artery collars to induce local atherosclerosis. In this model, mRNA expression of adhesion molecules including ICAM-1, VCAM-1, P-Selectin, and Platelet Factor 4 (PF4) are upregulated upon lesion development. From day 1 (prevention) or from 2.5 weeks after lesion initiation (treatment), mice were administered 0.2 mg/kg APAC i.v. or control vehicle three times weekly for 2.5 weeks. At week 5 after collar placement, mice were sacrificed, and lesion morphology was microscopically assessed. RESULTS APAC treatment did not affect body weight or plasma total cholesterol levels during the experiments. In the prevention setting, APAC reduced carotid artery plaque size and volume by over 50 %, aligning with decreased plaque macrophage area and collagen content. During the treatment setting, APAC reduced macrophage accumulation and necrotic core content, and improved markers of plaque stability. CONCLUSIONS APAC effectively reduced early atherosclerotic lesion development and improved markers of plaque inflammation in advanced atherosclerosis. Thus, APAC may have potential to alleviate the progression of atherosclerosis.
Collapse
Affiliation(s)
- Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | - Lucie Delfos
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Esmeralda Hemme
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Mireia N A Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Peter J van Santbrink
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Annukka Jouppila
- Clinical Research Institute HUCH, Helsinki, Finland; Research Program Unit in Systems Oncology, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Riitta Lassila
- Research Program Unit in Systems Oncology, Medical Faculty, University of Helsinki, Helsinki, Finland; Aplagon Ltd, Helsinki, Finland; Coagulation Disorders Unit, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Denorme F, Frösen J, Jouppila A, Lindgren A, Resendiz-Nieves JC, Manninen H, De Meyer SF, Lassila R. Pretreatment with a dual antiplatelet and anticoagulant (APAC) reduces ischemia-reperfusion injury in a mouse model of temporary middle cerebral artery occlusion-implications for neurovascular procedures. Acta Neurochir (Wien) 2024; 166:137. [PMID: 38485848 PMCID: PMC10940479 DOI: 10.1007/s00701-024-06017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Several neurovascular procedures require temporary occlusion of cerebral arteries, leading to ischemia of unpredictable length, occasionally causing brain infarction. Experimental models of cerebral ischemia-reperfusion injury have established that platelet adhesion and coagulation play detrimental roles in reperfusion injury following transient cerebral ischemia. Therefore, in a model of cerebral ischemia-reperfusion injury (IRI), we investigated the therapeutic potential of a dual antiplatelet and anticoagulant (APAC) heparin proteoglycan mimetic which is able to bind to vascular injury sites. METHODS Brain ischemia was induced in mice by transient occlusion of the right middle cerebral artery for 60 min. APAC, unfractionated heparin (UFH) (both at heparin equivalent doses of 0.5 mg/kg), or vehicle was intravenously administered 10 min before or 60 min after the start of ischemia. At 24 h later, mice were scored for their neurological and motor behavior, and brain damage was quantified. RESULTS Both APAC and UFH administered before the onset of ischemia reduced brain injury. APAC and UFH pretreated mice had better neurological and motor functions (p < 0.05 and p < 0.01, respectively) and had significantly reduced cerebral infarct sizes (p < 0.01 and p < 0.001, respectively) at 24 h after transient occlusion compared with vehicle-treated mice. Importantly, no macroscopic bleeding complications were observed in either APAC- or UFH-treated animals. However, when APAC or UFH was administered 60 min after the start of ischemia, the therapeutic effect was lost, but without hemorrhaging either. CONCLUSIONS Pretreatment with APAC or UFH was safe and effective in reducing brain injury in a model of cerebral ischemia induced by transient middle cerebral artery occlusion. Further studies on the use of APAC to limit ischemic injury during temporary occlusion in neurovascular procedures are indicated.
Collapse
Affiliation(s)
- Frederik Denorme
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, Dept. of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Department of Neurosurgery, Tampere University Hospital, Tampere, Finland
| | - Annukka Jouppila
- Helsinki University Central Hospital Clinical Research Institute, Helsinki, Finland
| | - Antti Lindgren
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Julio C Resendiz-Nieves
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannu Manninen
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Riitta Lassila
- Coagulation Disorders Unit, Departments of Hematology and Cancer Center, Helsinki University Hospital, Helsinki, Finland.
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland.
- Aplagon Oy, Helsinki, Finland.
| |
Collapse
|
5
|
Bonetti NR, Jouppila AS, Saeedi Saravi SS, Cooley BC, Pasterk L, Liberale LL, Gobbato S, Lüscher TF, Camici GG, Lassila RP, Beer JH. Intravenously administered APAC, a dual AntiPlatelet AntiCoagulant, targets arterial injury site to inhibit platelet thrombus formation and tissue factor activity in mice. Thromb Res 2023; 228:163-171. [PMID: 37331119 DOI: 10.1016/j.thromres.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 06/20/2023]
Abstract
INTRODUCTION Arterial thrombosis is the main underlying mechanism of acute atherothrombosis. Combined antiplatelet and anticoagulant regimens prevent thrombosis but increase bleeding rates. Mast cell-derived heparin proteoglycans have local antithrombotic properties, and their semisynthetic dual AntiPlatelet and AntiCoagulant (APAC) mimetic may provide a new efficacious and safe tool for arterial thrombosis. We investigated the in vivo impact of intravenous APAC (0.3-0.5 mg/kg; doses chosen according to pharmacokinetic studies) in two mouse models of arterial thrombosis and the in vitro actions in mouse platelets and plasma. MATERIALS AND METHODS Platelet function and coagulation were studied with light transmission aggregometry and clotting times. Carotid arterial thrombosis was induced either by photochemical injury or surgically exposing vascular collagen after infusion of APAC, UFH or vehicle. Time to occlusion, targeting of APAC to the vascular injury site and platelet deposition on these sites were assessed by intra-vital imaging. Tissue factor activity (TF) of the carotid artery and in plasma was captured. RESULTS APAC inhibited platelet responsiveness to agonist stimulation (collagen and ADP) and prolonged APTT and thrombin time. After photochemical carotid injury, APAC-treatment prolonged times to occlusion in comparison with UFH or vehicle, and decreased TF both in carotid lysates and plasma. Upon binding from circulation to vascular collagen-exposing injury sites, APAC reduced the in situ platelet deposition. CONCLUSIONS Intravenous APAC targets arterial injury sites to exert local dual antiplatelet and anticoagulant actions and attenuates thrombosis upon carotid injuries in mice. Systemic APAC provides local efficacy, highlighting APAC as a novel antithrombotic to reduce cardiovascular complications.
Collapse
Affiliation(s)
- Nicole R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Annukka S Jouppila
- Helsinki University Hospital Clinical Research Institute, Helsinki, Finland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Brian C Cooley
- Department of Pathology and Laboratory Medicine, Animal Surgery Core Lab, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Pasterk
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Luca L Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Sara Gobbato
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Royal Brompton and Harefield Hospital Trusts and National Heart and Lung Institute, Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; University Heart Center, University Hospital Zurich, Switzerland; Department of Research and Education, University Hospital Zurich, Switzerland
| | - Riitta P Lassila
- Coagulation Disorders Unit, University of Helsinki and Departments of Hematology and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Helsinki University, Faculty of Medicine, Research Program in Systems Oncology, Helsinki, Finland; Aplagon Ltd., Helsinki, Finland.
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| |
Collapse
|
6
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
7
|
Dominguez JH, Xie D, Dominguez JM, Kelly KJ. Role of coagulation in persistent renal ischemia following reperfusion in an animal model. Am J Physiol Renal Physiol 2022; 323:F590-F601. [PMID: 36007891 PMCID: PMC9602917 DOI: 10.1152/ajprenal.00162.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic acute kidney injury is common, deadly, and accelerates the progression of chronic kidney disease, yet has no specific therapy. After ischemia, reperfusion is patchy with early and persistent impairment in regional renal blood flow and cellular injury. We tested the hypothesis that intrarenal coagulation results in sustained renal ischemia following reperfusion, using a well-characterized model. Markedly decreased, but heterogeneous, microvascular plasma flow with microthrombi was found postischemia by intravital microscopy. Widespread tissue factor expression and fibrin deposition were also apparent. Clotting was accompanied by complement activation and inflammation. Treatment with exosomes derived from renal tubular cells or with the fibrinolytic urokinase, given 24 h postischemia when renal failure was established, significantly improved microvascular flow, coagulation, serum creatinine, and histological evidence of injury. These data support the hypothesis that intrarenal clotting occurs early and the resultant sustained ischemia is a critical determinant of renal failure following ischemia; they demonstrate that the coagulation abnormalities are amenable to therapy and that therapy results in improvement in both function and postischemic inflammation.NEW & NOTEWORTHY Ischemic renal injury carries very high morbidity and mortality, yet has no specific therapy. We found markedly decreased, heterogeneous microvascular plasma flow, tissue factor induction, fibrin deposition, and microthrombi after renal ischemia-reperfusion using a well-characterized model. Renal exosomes or the fibrinolytic urokinase, administered after renal failure was established, improved microvascular flow, coagulation, renal function, and histology. Data demonstrate that intrarenal clotting results in sustained ischemia amenable to therapy that improves both function and postischemic inflammation.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| | - Danhui Xie
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - James M. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K. J. Kelly
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| |
Collapse
|
8
|
Wang W, Teng Y, Xue JJ, Cai HK, Pan YB, Ye XN, Mao XL, Li SW. Nanotechnology in Kidney and Islet Transplantation: An Ongoing, Promising Field. Front Immunol 2022; 13:846032. [PMID: 35464482 PMCID: PMC9024121 DOI: 10.3389/fimmu.2022.846032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Organ transplantation has evolved rapidly in recent years as a reliable option for patients with end-stage organ failure. However, organ shortage, surgical risks, acute and chronic rejection reactions and long-term immunosuppressive drug applications and their inevitable side effects remain extremely challenging problems. The application of nanotechnology in medicine has proven highly successful and has unique advantages for diagnosing and treating diseases compared to conventional methods. The combination of nanotechnology and transplantation brings a new direction of thinking to transplantation medicine. In this article, we provide an overview of the application and progress of nanotechnology in kidney and islet transplantation, including nanotechnology for renal pre-transplantation preservation, artificial biological islets, organ imaging and drug delivery.
Collapse
Affiliation(s)
- Wei Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ya Teng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ji-Ji Xue
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hong-Kai Cai
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yu-Biao Pan
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Xing-Nan Ye
- Taizhou Hospital of Zhejiang Province, Shaoxing University, Linhai, China
| | - Xin-Li Mao
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
9
|
Kohli S, Shahzad K, Jouppila A, Holthöfer H, Isermann B, Lassila R. Thrombosis and Inflammation—A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C. Front Cardiovasc Med 2022; 9:866751. [PMID: 35433860 PMCID: PMC9008778 DOI: 10.3389/fcvm.2022.866751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Hemostasis, thrombosis, and inflammation are tightly interconnected processes which may give rise to thrombo-inflammation, involved in infectious and non-infectious acute and chronic diseases, including cardiovascular diseases (CVD). Traditionally, due to its hemostatic role, blood coagulation is isolated from the inflammation, and its critical contribution in the progressing CVD is underrated, until the full occlusion of a critical vessel occurs. Underlying vascular injury exposes extracellular matrix to deposit platelets and inflammatory cells. Platelets being key effector cells, bridge all the three key processes (hemostasis, thrombosis, and inflammation) associated with thrombo-inflammation. Under physiological conditions, platelets remain in an inert state despite the proximity to the endothelium and other cells which are decorated with glycosaminoglycan (GAG)-rich glycocalyx (GAGs). A pathological insult to the endothelium results in an imbalanced blood coagulation system hallmarked by increased thrombin generation due to losses of anticoagulant and cytoprotective mechanisms, i.e., the endothelial GAGs enhancing antithrombin, tissue factor pathway-inhibitor (TFPI) and thrombomodulin-protein C system. Moreover, the loss of GAGs promotes the release of mediators, such as von Willebrand factor (VWF), platelet factor 4 (PF4), and P-selectin, both locally on vascular surfaces and to circulation, further enhancing the adhesion of platelets to the affected sites. Platelet-neutrophil interaction and formation of neutrophil extracellular traps foster thrombo-inflammatory mechanisms exacerbating the cardiovascular disease course. Therefore, therapies which not only target the clotting mechanisms but simultaneously or independently convey potent cytoprotective effects hemming the inflammatory mechanisms are expected to provide clinical benefits. In this regard, we review the cytoprotective protease activated protein C (aPC) and its strong anti-inflammatory effects thereby preventing the ensuing thrombotic complications in CVD. Furthermore, restoring GAG-like vasculo-protection, such as providing heparin-proteoglycan mimetics to improve regulation of platelet and coagulation activity and to suppress of endothelial perturbance and leukocyte-derived pro-inflammatory cytokines, may provide a path to alleviate thrombo-inflammatory disorders in the future. The vascular tissue-modeled heparin proteoglycan mimic, antiplatelet and anticoagulant compound (APAC), dual antiplatelet and anticoagulant, is an injury-targeting and locally acting arterial antithrombotic which downplays collagen- and thrombin-induced and complement-induced activation and protects from organ injury.
Collapse
Affiliation(s)
- Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- *Correspondence: Shrey Kohli,
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Annukka Jouppila
- Clinical Research Institute HUCH, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harry Holthöfer
- Zentrum für Innere Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Riitta Lassila
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Aplagon Ltd., Helsinki, Finland
- Riitta Lassila,
| |
Collapse
|
10
|
Winzely M, Jouppila A, Ramer G, Lux L, Lendl B, Barreiro K, Lassila R, Friedbacher G. AFM investigation of APAC (antiplatelet and anticoagulant heparin proteoglycan). Anal Bioanal Chem 2022; 414:1029-1038. [PMID: 34773471 PMCID: PMC8724117 DOI: 10.1007/s00216-021-03765-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Antiplatelet and anticoagulant drugs are classified antithrombotic agents with the purpose to reduce blood clot formation. For a successful treatment of many known complex cardiovascular diseases driven by platelet and/or coagulation activity, the need of more than one antithrombotic agent is inevitable. However, combining drugs with different mechanisms of action enhances risk of bleeding. Dual anticoagulant and antiplatelet (APAC), a novel semisynthetic antithrombotic molecule, provides both anticoagulant and antiplatelet properties in preclinical studies. APAC is entering clinical studies with this new exciting approach to manage cardiovascular diseases. For a better understanding of the biological function of APAC, comprehensive knowledge of its structure is essential. In this study, atomic force microscopy (AFM) was used to characterize APAC according to its structure and to investigate the molecular interaction of APAC with von Willebrand factor (VWF), since specific binding of APAC to VWF could reduce platelet accumulation at vascular injury sites. By the optimization of drop-casting experiments, we were able to determine the volume of an individual APAC molecule at around 600 nm3, and confirm that APAC forms multimers, especially dimers and trimers under the experimental conditions. By studying the drop-casting behavior of APAC and VWF individually, we depictured their interaction by using an indirect approach. Moreover, in vitro and in vivo conducted experiments in pigs supported the AFM results further. Finally, the successful adsorption of APAC to a flat gold surface was confirmed by using photothermal-induced resonance, whereby attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) served as a reference method.
Collapse
Affiliation(s)
- Maximilian Winzely
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Wien, Austria
| | - Annukka Jouppila
- Helsinki University Hospital, Clinical Research Institute, Helsinki, Finland
- Faculty of Medicine, Research Program in Systems Oncology, Helsinki University, Helsinki, Finland
| | - Georg Ramer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Wien, Austria
| | - Laurin Lux
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Wien, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Wien, Austria
| | | | - Riitta Lassila
- Helsinki University Hospital, Clinical Research Institute, Helsinki, Finland
- Faculty of Medicine, Research Program in Systems Oncology, Helsinki University, Helsinki, Finland
- Coagulation Disorders Unit, Department of Hematology , Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Coagulation Disorders Unit, Department of Comprehensive Cancer Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Aplagon OY, Helsinki, Finland
| | - Gernot Friedbacher
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Wien, Austria.
| |
Collapse
|
11
|
Craige S, Jouppila A, Humphries B, Lassila R. Safety and Functional Pharmacokinetic Profile of APAC, a Novel Intravascular Antiplatelet and Anticoagulant. J Cardiovasc Pharmacol 2021; 78:453-462. [PMID: 34132685 DOI: 10.1097/fjc.0000000000001080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Vascular intervention-induced platelet and coagulation activation is often managed with a combination of antiplatelets and anticoagulants, with evident benefits, but with a risk of systemic bleeding. Antiplatelet and anticoagulant (APAC) is a dual antiplatelet and anticoagulant heparin bioconjugate, which targets vascular injury sites to act as a local antithrombotic. We assessed the nonclinical safety and exposure of intravenously infused APAC in rats and cynomolgus monkeys by using single-day and 14-day repeat dose toxicology and pharmacodynamic markers. Activated partial thromboplastin time (APTT) was used as a functional surrogate of anticoagulant exposure of APAC. Routine clinical in-life observations were followed by clinical pathology and necropsy. The no-observed-adverse-effect level (NOAEL) in rats for the single APAC dose was 20 mg/kg and for the repeated administration was 10 mg/kg/d. Monkeys tolerated a single APAC dose of 10 mg/kg, although the red blood cell count reduced 16%-19% correlating with tissue hemorrhage at vein puncture and affected muscle sites during handling of the animals. However, after 2-week recovery, all clinical signs were normal. The single dose NOAEL exceeded 3 mg/kg. The repeat administration of 3-6 mg/kg/d of APAC was tolerated, but some clinical signs were observed. The NOAEL for repeated dosing was 0.5 mg/kg/d. APAC prolonged APTT dose-dependently in both species, returning to baseline after 1.5 (<10 mg/kg) or essentially by 6 hours also under repetitive dosing. The toxicology profile supports the safety of an intravenous APAC dose of 0.5 mg/kg/d for possible clinical applications. APTT is an acceptable indicator of the immediate systemic anticoagulation effect of APAC.
Collapse
Affiliation(s)
- Simon Craige
- EdGe Toxicology Consulting Limited, Stratford Upon Avon, United Kingdom
| | - Annukka Jouppila
- Clinical Research Institute HUCH, Helsinki, Finland
- Research Program Unit in Systems Oncology, Faculty of Medicine, Unit of Coagulation Disorders, University of Helsinki, Helsinki, Finland
| | | | - Riitta Lassila
- Research Program Unit in Systems Oncology, Faculty of Medicine, Unit of Coagulation Disorders, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Department of Hematology, Unit of Coagulation Disorders, Helsinki University Hospital, Helsinki, Finland; and
- Aplagon Ltd, Helsinki, Finland
| |
Collapse
|
12
|
Aboyans V, Bauersachs R, Mazzolai L, Brodmann M, Palomares JFR, Debus S, Collet JP, Drexel H, Espinola-Klein C, Lewis BS, Roffi M, Sibbing D, Sillesen H, Stabile E, Schlager O, De Carlo M. Antithrombotic therapies in aortic and peripheral arterial diseases in 2021: a consensus document from the ESC working group on aorta and peripheral vascular diseases, the ESC working group on thrombosis, and the ESC working group on cardiovascular pharmacotherapy. Eur Heart J 2021; 42:4013-4024. [PMID: 34279602 DOI: 10.1093/eurheartj/ehab390] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/27/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this collaborative document is to provide an update for clinicians on best antithrombotic strategies in patients with aortic and/or peripheral arterial diseases. Antithrombotic therapy is a pillar of optimal medical treatment for these patients at very high cardiovascular risk. While the number of trials on antithrombotic therapies in patients with aortic or peripheral arterial diseases is substantially smaller than for those with coronary artery disease, recent evidence deserves to be incorporated into clinical practice. In the absence of specific indications for chronic oral anticoagulation due to concomitant cardiovascular disease, a single antiplatelet agent is the basis for long-term antithrombotic treatment in patients with aortic or peripheral arterial diseases. Its association with another antiplatelet agent or low-dose anticoagulants will be discussed, based on patient's ischaemic and bleeding risk as well therapeutic paths (e.g. endovascular therapy). This consensus document aims to provide a guidance for antithrombotic therapy according to arterial disease localizations and clinical presentation. However, it cannot substitute multidisciplinary team discussions, which are particularly important in patients with uncertain ischaemic/bleeding balance. Importantly, since this balance evolves over time in an individual patient, a regular reassessment of the antithrombotic therapy is of paramount importance.
Collapse
Affiliation(s)
- Victor Aboyans
- Department of Cardiology, Dupuytren University Hospital, and INSERM 1094 & IRD, University of Limoges, 2, Martin Luther King ave, 87042, Limoges, France
| | - Rupert Bauersachs
- Department of Vascular Medicine, Klinikum Darmstadt GmbH, Darmstadt Germany, and Center for Thrombosis and Hemostasis, University of Mainz, Mainz, Germany
| | - Lucia Mazzolai
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - José F Rodriguez Palomares
- Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en RedCV, CIBER CV, Barcelona, Spain
| | - Sebastian Debus
- Department of Vascular Medicine, University Heart Centre Hamburg, University Medical Centre HamburgEppendorf, Hamburg, Germany
| | - Jean-Philippe Collet
- Sorbonne Université, ACTION Study Group (www.actioncoeur.org), INSERM UMRS 1166, Institut de Cardiologie, Hôpital PitiéSalpêtrière (APHP), Paris, France
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Landeskrankenhaus Feldkirch, Austria
| | - Christine Espinola-Klein
- Section Angiology, Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Basil S Lewis
- Lady Davis Carmel Medical Center and the Ruth and Bruce Rappaport School of Medicine, TechnionIsrael Institute of Technology, Haifa, Israel
| | - Marco Roffi
- Division of Cardiology, University Hospitals, Geneva, Switzerland
| | - Dirk Sibbing
- Ludwig Maximilians Universität München and Privatklinik Lauterbacher Mühle am Ostersee, Munich, Germany
| | - Henrik Sillesen
- Department of Vascular Surgery, Rigshospitalet, University of Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Eugenio Stabile
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Oliver Schlager
- Division of Angiology, 2nd Department of Medicine, Medical University of Vienna, Austria
| | - Marco De Carlo
- Cardiothoracic and Vascular Department, Azienda OspedalieroUniversitaria Pisana, Pisa, Italy
| |
Collapse
|
13
|
Chang X, Zhang P, Xu XX, Pang B. Total Glucosides of Paeony Inhibited Autophagy and Improved Acute Kidney Injury Induced by Ischemia-Reperfusion via the lncRNA TUG1/miR-29a/PTEN Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2229-2242. [PMID: 34079224 PMCID: PMC8164873 DOI: 10.2147/dddt.s286606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/12/2021] [Indexed: 01/19/2023]
Abstract
Objective Total glucosides of paeony (TGP) has been proven to affect anti-inflammatory, immunomodulatory and hypoxia tolerance. This study investigates the effect of TGP on autophagy in acute kidney injury (AKI) induced by ischemia-reperfusion (I/R). Methods Rat model of AKI induced by I/R was established. Rats were administered with TGP at different doses by oral gavage. The contents of BUN, creatinine, NGAL, Kim-1 and IL-18 were detected. The levels of inflammatory factors (TNF-α, IL-1β and IL-6) and autophagy were measured. The expressions of lncRNA TUG1, miR-29a and PTEN were detected and their binding relationships were verified. I/R rat model with overexpressed TUG1 was established to explore the effect of TGP on kidney injury and autophagy. The hypoxia/reoxygenation (HR) model of HK-2 cells and the HR model of HK-2 cells overexpressing TUG1 and low-expressing PTEN were established. Results TGP decreased the contents of BUN, creatinine, NGAL, Kim-1 and IL-18, and reduced the levels of inflammatory factors. LncRNA TUG1 and PTEN were downregulated, and miR-29a was upregulated in kidney tissues. The binding relationships between lncRNA TUG1 and miR-29a, and miR-29a and PTEN were confirmed. TGP suppressed PTEN expression via the lncRNA TUG1/miR-29a axis. Overexpressing lncRNA TUG1 attenuated the protective effect of TGP on AKI and autophagy in HK-2 cells. TGP improved cell viability and inhibited the autophagy in HR model of HK-2 cells via lncRNA TUG1/miR-29a/PTEN axis. Conclusion TGP inhibited autophagy and improved AKI induced by I/R via the lncRNA TUG1/miR-29a/PTEN axis.
Collapse
Affiliation(s)
- Xiaoyan Chang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Pei Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xing-Xin Xu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Bo Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
14
|
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.
Collapse
Affiliation(s)
- Niharika Shiva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
15
|
Barreiro KA, Tulamo R, Jouppila A, Albäck A, Lassila R. Novel Locally Acting Dual Antiplatelet and Anticoagulant (APAC) Targets Multiple Sites of Vascular Injury in an Experimental Porcine Model. Eur J Vasc Endovasc Surg 2019; 58:903-911. [PMID: 31708337 DOI: 10.1016/j.ejvs.2019.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Vascular binding of dual antiplatelet and anticoagulant (APAC) was assessed in surgically created femoral arteriovenous fistula (AVF) and iliac and carotid artery injury in porcine models. METHODS Three models of collagen exposing injury were used: 1) femoral AVF, 2) in vivo iliac and carotid artery balloon angioplasty injury, and 3) in vitro femoral artery endothelial denudation injury. Biotinylated APAC (0.5 mg/mL) was incubated with the injury site before releasing blood flow. APAC, von Willebrand factor (vWF), laminin, platelet endothelial cell adhesion molecule 1 (PECAM-1), and podocalyxin were detected in histological sections using immunofluorescence and confocal microscopy and Manders' co-localisation coefficient (M1). RESULTS APAC bound to AVF at anastomosis and to both in vivo and in vitro injured arteries. APAC co-localised with matrix vWF (M1 ≥ 0.66) and laminin (M1 ≥ 0.60), but less so if endothelial PECAM-1 or podocalyxin was present (M1 ≤ 0.25). APAC targeted and penetrated the injured vessel wall, especially the AVF vein. CONCLUSIONS APAC, compatible with its high negative charge, rapidly targets injured vessels co-localizing with matrix vWF and laminin, but not with endothelial PECAM-1 and podocalyxin. This localising feature may have potential antithrombotic implications for vascular interventions.
Collapse
Affiliation(s)
- Karina A Barreiro
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland; Aplagon Oy, Helsinki, Finland
| | - Riikka Tulamo
- Department of Vascular Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Annukka Jouppila
- Helsinki University Hospital Clinical Research Institute, Helsinki, Finland
| | - Anders Albäck
- Department of Vascular Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Riitta Lassila
- Coagulation Disorders Unit, University of Helsinki, Departments of Haematology and Clinical Chemistry (HUSLAB Laboratory Services), Comprehensive Cancer Center, Helsinki University Hospital and Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki University, Faculty of Medicine, Research Program in Oncology, Helsinki, Finland; Aplagon Oy, Helsinki, Finland.
| |
Collapse
|
16
|
Barriers and Advances in Kidney Preservation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9206257. [PMID: 30643824 PMCID: PMC6311271 DOI: 10.1155/2018/9206257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Despite the fact that a significant fraction of kidney graft dysfunctions observed after transplantation is due to ischemia-reperfusion injuries, there is still no clear consensus regarding optimal kidney preservation strategy. This stems directly from the fact that as of yet, the mechanisms underlying ischemia-reperfusion injury are poorly defined, and the role of each preservation parameter is not clearly outlined. In the meantime, as donor demography changes, organ quality is decreasing which directly increases the rate of poor outcome. This situation has an impact on clinical guidelines and impedes their possible harmonization in the transplant community, which has to move towards changing organ preservation paradigms: new concepts must emerge and the definition of a new range of adapted preservation method is of paramount importance. This review presents existing barriers in transplantation (e.g., temperature adjustment and adequate protocol, interest for oxygen addition during preservation, and clear procedure for organ perfusion during machine preservation), discusses the development of novel strategies to overcome them, and exposes the importance of identifying reliable biomarkers to monitor graft quality and predict short and long-term outcomes. Finally, perspectives in therapeutic strategies will also be presented, such as those based on stem cells and their derivatives and innovative models on which they would need to be properly tested.
Collapse
|
17
|
Chen J, Verni CC, Jouppila A, Lassila R, Diamond SL. Dual antiplatelet and anticoagulant (APAC) heparin proteoglycan mimetic with shear-dependent effects on platelet-collagen binding and thrombin generation. Thromb Res 2018; 169:143-151. [PMID: 30071479 DOI: 10.1016/j.thromres.2018.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/28/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
Heparin proteoglycans (HEP-PGs) carry standard heparin-mediated anticoagulant properties as well as novel antiplatelet functions, a combination that may be significant for targeting multiple pathways in a single therapy. Recent work developing semisynthetic HEP-PG mimetics has shown promising results also in vivo, however flow conditions in vitro that replicate in vivo hemodynamics have not been reported. In this work, we present several assays (platelet calcium mobilization, aggregometry, microfluidic tests at venous and arterial hemodynamics) to characterize specific mechanistic effects of dual antiplatelet and anticoagulant (APAC) constructs as mimetics of HEP-PGs. Three APACs with different conjugation levels of heparin chains (CL10, CL18, HICL) were shown to decrease platelet deposition to collagen surfaces in PPACK-treated whole blood at venous shear rate (200 s-1). FXIIa-inhibited whole blood (CTI: corn trypsin inhibitor, 40 μg/mL) perfused over collagen/tissue factor showed reduced both platelet and fibrin deposition when treated with APACs. IC50 values for platelet and fibrin inhibition were calculated for each molecule at venous shear rate. Increasing the shear rate to arterial flows (1000 s-1) and using APAC as the sole anticoagulant, resulted in a more potent antiplatelet effect of APAC, suggesting an added effect on von Willebrand Factor (vWF) function. Additionally, APAC caused an inhibition of calcium mobilization specific to thrombin and collagen stimulation and a dose-dependent reduction in collagen-mediated platelet aggregation. Understanding the sensitivity of APAC activity to shear rate, platelet signaling and procoagulant pathways is important for applications in which APAC administration may have beneficial therapeutic effects.
Collapse
Affiliation(s)
- Jason Chen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Verni
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Annukka Jouppila
- Helsinki University Central Hospital Research Institute, Helsinki, Finland
| | - Riitta Lassila
- Coagulation Disorders Unit, University of Helsinki, Departments of Hematology and Clinical Chemistry (HUSLAB Laboratory Services), Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Aplagon Oy, Helsinki, Finland
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Karimian N, Yeh H. Opportunities for Therapeutic Intervention During Machine Perfusion. CURRENT TRANSPLANTATION REPORTS 2017; 4:141-148. [PMID: 29109929 PMCID: PMC5669266 DOI: 10.1007/s40472-017-0144-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW There is a vast discrepancy between the number of patients waiting for organ transplantation and the available donor organs. Ex vivo machine perfusion (MP) has emerged in an effort to expand the donor pool, by improving organ preservation, providing diagnostic information, and more recently, acting as a platform for organ improvement. This article reviews the current status of MP with a focus on its role in organ preconditioning and therapeutic interventions prior to transplantation. RECENT FINDINGS MP has allowed longer organ preservation compared to conventional static cold storage and allowed the use of organs that might otherwise have been discarded. Moreover, experimental studies have investigated the role of MP in reducing ischemia reperfusion injury of lungs, kidneys and livers by applying mesenchymal stem cells (MSCs), anti-inflammatory agents, cytotopic anticoagulants, and defatting cocktails. SUMMARY MP has opened a new era in the field of organ transplantation and tissue medication.
Collapse
Affiliation(s)
- Negin Karimian
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Center for Engineering in Medicine, Harvard Medical School, Boston, USA
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
19
|
Strict blood glucose control by an artificial endocrine pancreas during hepatectomy may prevent postoperative acute kidney injury. J Artif Organs 2016; 20:76-83. [DOI: 10.1007/s10047-016-0925-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/17/2016] [Indexed: 01/18/2023]
|