1
|
Balaguer F, Barrena M, Enrique M, Maicas M, Álvarez B, Tortajada M, Chenoll E, Ramón D, Martorell P. Bifidobacterium animalis subsp. lactis BPL1™ and Its Lipoteichoic Acid Modulate Longevity and Improve Age/Stress-Related Behaviors in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:2107. [PMID: 38136226 PMCID: PMC10740966 DOI: 10.3390/antiox12122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Life expectancy has increased globally in recent decades, driving interest in maintaining a healthy life that includes preservation of physical and mental abilities, particularly in elderly people. The gut microbiome becomes increasingly perturbed with aging so the use of probiotics can be a strategy for maintaining a balanced gut microbiome. A previous report showed that Bifidobacterium animalis subsp. lactis BPL1™ induces through its lipoteichoic acid (LTA) fat reduction activities via the insulin/IGF-1 signaling pathway. Here, we have delved into the mechanism of action, eliminating alternative pathways as putative mechanisms. Furthermore, we have identified that BPL1™, its heat treated form (BPL1™ HT) and its LTA prolong longevity in Caenorhabditis elegans (C. elegans) in an insulin/IGF-1-dependent mechanism, and its consumption improves the oxidative stress response, gut permeability and protection against pathogenic infections. Furthermore, positive effects on C. elegans stress-related behaviors and in the Alzheimer's Disease model were found, highlighting the potential of the strain in improving the cognitive functions and proteotoxicity in the nematode. These results indicate the pivotal role of the IGF-1 pathway in the activity of the strain and pave the way for potential applications of BPL1™, BPL1™ HT and its LTA in the field of longevity and age-related markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Patricia Martorell
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain (M.B.); (M.E.); (M.T.); (E.C.)
| |
Collapse
|
2
|
Schwartz EKC, Sosner EN, Desmond HE, Lum SJ, Sze JY, Mobbs CV. Serotonin and Dopamine Mimic Glucose-Induced Reinforcement in C. elegans: Potential Role of NSM Neurons and the Serotonin Subtype 4 Receptor. Front Physiol 2022; 12:783359. [PMID: 34987416 PMCID: PMC8721000 DOI: 10.3389/fphys.2021.783359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Food produces powerful reinforcement that can lead to overconsumption and likely contributes to the obesity epidemic. The present studies examined molecular mechanisms mediating food-induced reinforcement in the model system C. elegans. After a 1-h training session during which food (bacteria) is paired with the odorant butanone, odor preference for butanone robustly increased. Glucose mimicked this effect of bacteria. Glucose-induced odor preference was enhanced similarly by prior food withdrawal or blocking glucose metabolism in the presence of food. Food- and glucose-induced odor preference was mimicked by serotonin signaling through the serotonin type-4 (5-HT4) receptor. Dopamine (thought to act primarily through a D1-like receptor) facilitated, whereas the D2 agonist bromocriptine blocked, food- and glucose-induced odor preference. Furthermore, prior food withdrawal similarly influenced reward produced by serotonin, dopamine, or food, implying post-synaptic enhancement of sensitivity to serotonin and dopamine. These results suggest that glucose metabolism plays a key role in mediating both food-induced reinforcement and enhancement of that reinforcement by prior food withdrawal and implicate serotonergic signaling through 5-HT4 receptor in the re-enforcing properties of food.
Collapse
Affiliation(s)
- Elizabeth K C Schwartz
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eitan N Sosner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hayley E Desmond
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie J Lum
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Charles V Mobbs
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Li L, Zhang Y, Speakman JR, Hu S, Song Y, Qin S. The gut microbiota and its products: Establishing causal relationships with obesity related outcomes. Obes Rev 2021; 22:e13341. [PMID: 34490704 DOI: 10.1111/obr.13341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms not only participate in the metabolism of carbohydrate, lipids, protein, and polypeptides in the intestine but also directly affect the metabolic phenotypes of the host. Although many studies have described the apparent effects of gut microbiota on human health, the development of metagenomics and culturomics in the past decade has generated a large amount of evidence suggesting a causal relationship between gut microbiota and obesity. The interaction between the gut microbiota and host is realized by microbial metabolites with multiple biological functions. We concentrated here on several representative beneficial species connected with obesity as well as the mechanisms, with particular emphasis on microbiota-dependent metabolites. Finally, we consider the potential clinical significance of these relationships to fuel the conception and realization of novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Life Sciences, Yantai University, Yantai, China
| | - John Roger Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Fueser H, Rauchschwalbe MT, Höss S, Traunspurger W. Food bacteria and synthetic microparticles of similar size influence pharyngeal pumping of Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105827. [PMID: 33882407 DOI: 10.1016/j.aquatox.2021.105827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Toxicity tests using the model organism Caenorhabditis elegans have shown that exposure to small microplastics such as polystyrene (PS) beads lead to high body burdens and dietary restrictions that in turn inhibit reproduction. Pharyngeal pumping is the key mechanism of C. elegans for governing the uptake of food and other particles and can be easily monitored by determining the pumping rates. In this study, pharyngeal pumping of C. elegans was examined in response to increasing quantities of food bacteria (E. coli: 106-1010 cells ml-1) and synthetic particles (107-109 beads ml-1) of similar size (1 µm). While the average pumping rate of C. elegans exposed to E. coli depended on the density of the bacterial cells, this was not the case for the synthetic beads. At 107 items ml-1, bacterial cells and synthetic beads triggered a basic stimulation of the pumping rate, independent of the nutritional value of the particle. At quantities >107 items ml-1, however, the nutritional value was essential to maximize the pumping rate, as it was upregulated only by E. coli cells, which can be chemosensorially recognized by C. elegans. Given the unselective uptake of all particles in the size range of bacteria, restricting the pumping rates for particles with low nutritional value to a basic rate, prevents the nematodes from wasting energy by high-frequency pumping, but still allows a food-quality screening at low food levels.
Collapse
Affiliation(s)
- Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany.
| | | | - Sebastian Höss
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany; Ecossa, Giselastr. 6, 82319 Starnberg, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Alcedo J, Prahlad V. Neuromodulators: an essential part of survival. J Neurogenet 2020; 34:475-481. [PMID: 33170042 PMCID: PMC7811185 DOI: 10.1080/01677063.2020.1839066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
The coordination between the animal's external environment and internal state requires constant modulation by chemicals known as neuromodulators. Neuromodulators, such as biogenic amines, neuropeptides and cytokines, promote organismal homeostasis. Over the past several decades, Caenorhabditiselegans has grown into a powerful model organism that allows the elucidation of the mechanisms of action of neuromodulators that are conserved across species. In this perspective, we highlight a collection of articles in this issue that describe how neuromodulators optimize C. elegans survival.
Collapse
Affiliation(s)
- Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P. Serotonin in Animal Cognition and Behavior. Int J Mol Sci 2020; 21:ijms21051649. [PMID: 32121267 PMCID: PMC7084567 DOI: 10.3390/ijms21051649] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator of nervous systems in both invertebrates and vertebrates. It has been proposed for several decades that it impacts animal cognition and behavior. In spite of a completely distinct organization of the 5-HT systems across the animal kingdom, several lines of evidence suggest that the influences of 5-HT on behavior and cognition are evolutionary conserved. In this review, we have selected some behaviors classically evoked when addressing the roles of 5-HT on nervous system functions. In particular, we focus on the motor activity, arousal, sleep and circadian rhythm, feeding, social interactions and aggressiveness, anxiety, mood, learning and memory, or impulsive/compulsive dimension and behavioral flexibility. The roles of 5-HT, illustrated in both invertebrates and vertebrates, show that it is more able to potentiate or mitigate the neuronal responses necessary for the fine-tuning of most behaviors, rather than to trigger or halt a specific behavior. 5-HT is, therefore, the prototypical neuromodulator fundamentally involved in the adaptation of all organisms across the animal kingdom.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Rahul Bharatiya
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy
| | - Grégory Barrière
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Jean-Paul Delbecque
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Nouhaila Bouguiyoud
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- School of Biosciences, Neuroscience Division, Cardiff University, Cardiff CF24 4HQ, UK
| | - Daniel Cattaert
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| | - Philippe De Deurwaerdère
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| |
Collapse
|
7
|
Williams AB, Heider F, Messling JE, Rieckher M, Bloch W, Schumacher B. Restoration of Proteostasis in the Endoplasmic Reticulum Reverses an Inflammation-Like Response to Cytoplasmic DNA in Caenorhabditis elegans. Genetics 2019; 212:1259-1278. [PMID: 31248887 PMCID: PMC6707470 DOI: 10.1534/genetics.119.302422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Innate immune responses protect organisms against various insults, but may lead to tissue damage when aberrantly activated. In higher organisms, cytoplasmic DNA can trigger inflammatory responses that can lead to tissue degeneration. Simpler metazoan models could shed new mechanistic light on how inflammatory responses to cytoplasmic DNA lead to pathologies. Here, we show that in a DNase II-defective Caenorhabditis elegans strain, persistent cytoplasmic DNA leads to systemic tissue degeneration and loss of tissue functionality due to impaired proteostasis. These pathological outcomes can be therapeutically alleviated by restoring protein homeostasis, either via ectopic induction of the ER unfolded protein response or N-acetylglucosamine treatment. Our results establish C. elegans as an ancestral metazoan model for studying the outcomes of inflammation-like conditions caused by persistent cytoplasmic DNA and provide insight into potential therapies for human conditions involving chronic inflammation.
Collapse
Affiliation(s)
- Ashley B Williams
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| | - Felix Heider
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| | - Jan-Erik Messling
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| | - Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, German Sports University, 50933 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| |
Collapse
|
8
|
Martorell P, Llopis S, González N, Chenoll E, López-Carreras N, Aleixandre A, Chen Y, Karoly ED, Ramón D, Genovés S. Probiotic Strain Bifidobacterium animalis subsp. lactis CECT 8145 Reduces Fat Content and Modulates Lipid Metabolism and Antioxidant Response in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3462-3472. [PMID: 27054371 DOI: 10.1021/acs.jafc.5b05934] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recently, microbial changes in the human gut have been proposed as a possible cause of obesity. Therefore, modulation of microbiota through probiotic supplements is of great interest to support obesity therapeutics. The present study examines the functional effect and metabolic targets of a bacterial strain, Bifidobacterium animalis subsp. lactis CECT 8145, selected from a screening in Caenorhabditis elegans. This strain significantly reduced total lipids (40.5% ± 2.4) and triglycerides (27.6% ± 0.5), exerting antioxidant effects in the nematode (30% ± 2.8 increase in survival vs control); activities were also preserved in a final food matrix (milk). Furthermore, transcriptomic and metabolomic analyses in nematodes fed with strain CECT 8145 revealed modulation of the energy and lipid metabolism, as well as the tryptophan metabolism (satiety), as the main metabolic targets of the probiotic. In conclusion, our study describes for the first time a new B. animalis subsp. lactis strain, CECT 8145, as a promising probiotic for obesity disorders. Furthermore, the data support future studies in obesity murine models.
Collapse
Affiliation(s)
- Patricia Martorell
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Silvia Llopis
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Nuria González
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Empar Chenoll
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Noemi López-Carreras
- Department of Pharmacology, School of Medicine, Complutense University of Madrid , Avda. Complutense s/n, 28040 Madrid, Spain
| | - Amaya Aleixandre
- Department of Pharmacology, School of Medicine, Complutense University of Madrid , Avda. Complutense s/n, 28040 Madrid, Spain
| | - Yang Chen
- Metabolon Inc. , Durham, North Carolina 27713, United States
| | | | - Daniel Ramón
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Salvador Genovés
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| |
Collapse
|
9
|
Seidel HS, Kimble J. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch. eLife 2015; 4. [PMID: 26551561 PMCID: PMC4718729 DOI: 10.7554/elife.10832] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022] Open
Abstract
Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.
Collapse
Affiliation(s)
- Hannah S Seidel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,The Ellison Medical Foundation Fellow of the Life Sciences Research Foundation, The Lawrence Ellison Foundation, Mount Airy, United States
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
10
|
Zhou Y, Falck JR, Rothe M, Schunck WH, Menzel R. Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans. J Lipid Res 2015; 56:2110-23. [PMID: 26399467 PMCID: PMC4617398 DOI: 10.1194/jlr.m061887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP)-dependent eicosanoids comprise epoxy- and hydroxy-metabolites of long-chain PUFAs (LC-PUFAs). In mammals, CYP eicosanoids contribute to the regulation of cardiovascular and renal function. Caenorhabditis elegans produces a large set of CYP eicosanoids; however, their role in worm's physiology is widely unknown. Mutant strains deficient in LC-PUFA/eicosanoid biosynthesis displayed reduced pharyngeal pumping frequencies. This impairment was rescued by long-term eicosapentaenoic and/or arachidonic acid supplementation, but not with a nonmetabolizable LC-PUFA analog. Short-term treatment with 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant CYP eicosanoid in C. elegans, was as effective as long-term LC-PUFA supplementation in the mutant strains. In contrast, 20-HETE caused decreased pumping frequencies. The opposite effects of 17,18-EEQ and 20-HETE were mirrored by the actions of neurohormones. 17,18-EEQ mimicked the stimulating effect of serotonin when added to starved worms, whereas 20-HETE shared the inhibitory effect of octopamine in the presence of abundant food. In wild-type worms, serotonin increased free 17,18-EEQ levels, whereas octopamine selectively induced the synthesis of hydroxy-metabolites. These results suggest that CYP eicosanoids may serve as second messengers in the regulation of pharyngeal pumping and food uptake in C. elegans.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX 75390
| | | | | | - Ralph Menzel
- Department of Biology, Ecology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
11
|
Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans. Genetics 2015; 200:443-54. [PMID: 25903497 PMCID: PMC4492371 DOI: 10.1534/genetics.115.175851] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/16/2015] [Indexed: 12/19/2022] Open
Abstract
Caenorhabditiselegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism.
Collapse
|
12
|
Silva PIM, Martins CIM, Höglund E, Gjøen HM, Øverli Ø. Feeding motivation as a personality trait in Nile tilapia (Oreochromis niloticus): role of serotonergic neurotransmission. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1547-1557. [PMID: 24858238 DOI: 10.1007/s10695-014-9947-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Consistent individual variation in behaviour and physiology (i.e. animal personality or coping style) has emerged as a central topic in many biological disciplines. Yet, underlying mechanisms of crucial personality traits like feeding behaviour in novel environments remain unclear. Comparative studies, however, reveal a strong degree of evolutionary conservation of neural mechanisms controlling such behaviours throughout the vertebrate lineage. Previous studies have indicated duration of stress-induced anorexia as a consistent individual characteristic in teleost fishes. This study aims to determine to what degree brain 5-hydroxytryptamine (5-HT, serotonin) activity pertains to this aspect of animal personality, as a correlate to feed anticipatory behaviour and recovery of feed intake after transfer to a novel environment. Crucial to the definition of animal personality, a strong degree of individual consistency in different measures of feeding behaviour (feeding latency and feeding score), was demonstrated. Furthermore, low serotonergic activity in the hypothalamus was highly correlated with a personality characterized by high feeding motivation, with feeding motivation represented as an overall measure incorporating several behavioural parameters in a Principle Component Analyses (PCA). This study thus confirms individual variation in brain 5-HT neurotransmission as a correlate to complex behavioural syndromes related to feeding motivation.
Collapse
Affiliation(s)
- Patricia I M Silva
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Aas, Norway,
| | | | | | | | | |
Collapse
|
13
|
Andersen EC, Bloom JS, Gerke JP, Kruglyak L. A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet 2014; 10:e1004156. [PMID: 24586193 PMCID: PMC3937155 DOI: 10.1371/journal.pgen.1004156] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/17/2013] [Indexed: 01/10/2023] Open
Abstract
The mechanistic basis for how genetic variants cause differences in phenotypic traits is often elusive. We identified a quantitative trait locus in Caenorhabditis elegans that affects three seemingly unrelated phenotypic traits: lifetime fecundity, adult body size, and susceptibility to the human pathogen Staphyloccus aureus. We found a QTL for all three traits arises from variation in the neuropeptide receptor gene npr-1. Moreover, we found that variation in npr-1 is also responsible for differences in 247 gene expression traits. Variation in npr-1 is known to determine whether animals disperse throughout a bacterial lawn or aggregate at the edges of the lawn. We found that the allele that leads to aggregation is associated with reduced growth and reproductive output. The altered gene expression pattern caused by this allele suggests that the aggregation behavior might cause a weak starvation state, which is known to reduce growth rate and fecundity. Importantly, we show that variation in npr-1 causes each of these phenotypic differences through behavioral avoidance of ambient oxygen concentrations. These results suggest that variation in npr-1 has broad pleiotropic effects mediated by altered exposure to bacterial food. Using the nematode roundworm Caenorhabditis elegans, we identified differences in lifetime fecundity, adult body size, and susceptibility to the human pathogen Staphyloccus aureus between the laboratory strain (N2) from Bristol, England and a wild strain (CB4856) from Hawaii, USA. Using linkage mapping and other genetic tests, we found a QTL for all three traits arises from variation in the neuropeptide receptor gene npr-1. Moreover, we found that variation in npr-1 is also responsive for differences in 247 gene expression traits. Variation in npr-1 is known to determine whether animals disperse throughout a bacterial lawn or aggregate at the edges of the lawn. We found that the allele that leads to aggregation is associated with reduced growth and reproductive output likely caused by a weak chronic starvation state. These results suggest that variation in npr-1 has broad effects on the phenotype of an organism mediated by altered exposure to bacterial food.
Collapse
Affiliation(s)
- Erik C. Andersen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (ECA); (LK)
| | - Joshua S. Bloom
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Justin P. Gerke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Leonid Kruglyak
- Departments of Human Genetics and Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail: (ECA); (LK)
| |
Collapse
|
14
|
|
15
|
Kinney MP, Panting ND, Clark TM. Modulation of appetite and feeding behavior of the larval mosquito Aedes aegypti by the serotonin-selective reuptake inhibitor paroxetine: shifts between distinct feeding modes and the influence of feeding status. ACTA ACUST UNITED AC 2013; 217:935-43. [PMID: 24265428 DOI: 10.1242/jeb.094904] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of the serotonin-selective reuptake inhibitor paroxetine (2×10(-5) mol l(-1)) on behavior of the larval mosquito Aedes aegypti are described. Four discrete behavioral states dominate larval behavior: wriggling, two distinct types of feeding, and quiescence. Feeding behaviors consist of foraging along the bottom of the container (substrate browsing), and stationary filter feeding while suspended from the surface film. Fed larvae respond to paroxetine with increased wriggling, and reductions in both feeding behaviors. In contrast, food-deprived larvae treated with paroxetine show no change in the proportion of time spent wriggling or feeding, but shift from stationary filter feeding to substrate browsing. Thus, actions of paroxetine in fed larvae are consistent with suppression of appetite and stimulation of wriggling, whereas paroxetine causes food-deprived larvae to switch from one feeding behavior to another. Further analysis of unfed larvae revealed that paroxetine decreased the power stroke frequency during wriggling locomotion, but had no effect on the swimming velocity during either wriggling or substrate browsing. These data suggest that: (1) serotonergic pathways may trigger shifts between distinct behaviors by actions on higher level (brain) integrating centers where behaviors such as feeding and locomotion are coordinated; (2) these centers in fed and food-deprived larvae respond differently to serotonergic stimulation suggesting sensory feedback from feeding status; and (3) serotonergic pathways also modulate central pattern generators of the nerve cord where the bursts of action potentials originate that drive the rhythmic muscle contractions of wriggling.
Collapse
Affiliation(s)
- Michael P Kinney
- Department of Biology, Indiana University South Bend, 1700 Mishawaka Avenue, South Bend, IN 46634-7111, USA
| | | | | |
Collapse
|
16
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
17
|
Badisco L, Van Wielendaele P, Vanden Broeck J. Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front Physiol 2013; 4:202. [PMID: 23966944 PMCID: PMC3735985 DOI: 10.3389/fphys.2013.00202] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/17/2013] [Indexed: 01/25/2023] Open
Abstract
Insects, like all heterotrophic organisms, acquire from their food the nutrients that are essential for anabolic processes that lead to growth (larval stages) or reproduction (adult stage). In adult females, this nutritional input is processed and results in a very specific output, i.e., the production of fully developed eggs ready for fertilization and deposition. An important role in this input-output transition is attributed to the insulin signaling pathway (ISP). The ISP is considered to act as a sensor of the organism's nutritional status and to stimulate the progression of anabolic events when the status is positive. In several insect species belonging to different orders, the ISP has been demonstrated to positively control vitellogenesis and oocyte growth. Whether or not ISP acts herein via a mediator action of lipophilic insect hormones (ecdysteroids and juvenile hormone) remains debatable and might be differently controlled in different insect orders. Most likely, insulin-related peptides, ecdysteroids and juvenile hormone are involved in a complex regulatory network, in which they mutually influence each other and in which the insect's nutritional status is a crucial determinant of the network's output. The current review will present an overview of the regulatory role of the ISP in female insect reproduction and its interaction with other pathways involving nutrients, lipophilic hormones and neuropeptides.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Research Group of Molecular Developmental Physiology and Signal Transduction KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
18
|
Stawicki TM, Takayanagi-Kiya S, Zhou K, Jin Y. Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans. PLoS Genet 2013; 9:e1003472. [PMID: 23658528 PMCID: PMC3642046 DOI: 10.1371/journal.pgen.1003472] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf), that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf) causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf). The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf) causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf) mutants. We further find that acr-2(gf) causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf) mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf) leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance. Imbalanced neuronal circuit activity is considered a major underlying cause in many neurological disorders, such as epilepsy and autism. Neuropeptides are small polypeptides that are released from neurons. They are widely known to provide neuromodulatory functions and have diverse roles in the nervous system. By investigating a C. elegans mutant that exhibits convulsions as the result of an imbalanced excitation and inhibition in the locomotor circuit, we have identified a homeostatic mechanism involving two distinct neuropeptide genes. We find that the expression of the neuropeptides is up-regulated in response to over-excitation and that, in turn, they act to increase inhibitory transmission. While current treatment strategies for epilepsy have focused on targeting fast synaptic transmission, this work supports the general notion that manipulating slow neuropeptide neurotransmission can strongly influence neural excitation and inhibition imbalance.
Collapse
Affiliation(s)
- Tamara M. Stawicki
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| | - Seika Takayanagi-Kiya
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| | - Keming Zhou
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Hashmi S, Wang Y, Parhar RS, Collison KS, Conca W, Al-Mohanna F, Gaugler R. A C. elegans model to study human metabolic regulation. Nutr Metab (Lond) 2013; 10:31. [PMID: 23557393 PMCID: PMC3636097 DOI: 10.1186/1743-7075-10-31] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/19/2013] [Indexed: 12/16/2022] Open
Abstract
Lipid metabolic disorder is a critical risk factor for metabolic syndrome, triggering debilitating diseases like obesity and diabetes. Both obesity and diabetes are the epicenter of important medical issues, representing a major international public health threat. Accumulation of fat in adipose tissue, muscles and liver and/or the defects in their ability to metabolize fatty acids, results in insulin resistance. This triggers an early pathogenesis of type 2 diabetes (T2D). In mammals, lipid metabolism involves several organs, including the brain, adipose tissue, muscles, liver, and gut. These organs are part of complex homeostatic system and communicate through hormones, neurons and metabolites. Our study dissects the importance of mammalian Krüppel-like factors in over all energy homeostasis. Factors controlling energy metabolism are conserved between mammals and Caenorhabditis elegans providing a new and powerful strategy to delineate the molecular pathways that lead to metabolic disorder. The C. elegans intestine is our model system where genetics, molecular biology, and cell biology are used to identify and understand genes required in fat metabolism. Thus far, we have found an important role of C. elegans KLF in FA biosynthesis, mitochondrial proliferation, lipid secretion, and β-oxidation. The mechanism by which KLF controls these events in lipid metabolism is unknown. We have recently observed that C. elegans KLF-3 selectively acts on insulin components to regulate insulin pathway activity. There are many factors that control energy homeostasis and defects in this control system are implicated in the pathogenesis of human obesity and diabetes. In this review we are discussing a role of KLF in human metabolic regulation.
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Developmental Biology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ, 08901, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Miranda DMD, Mamede M, Souza BRD, Almeida Barros AGD, Magno LA, Alvim-Soares A, Rosa DV, Castro CJD, Malloy-Diniz L, Gomez MV, Marco LAD, Correa H, Romano-Silva MA. Molecular medicine: a path towards a personalized medicine. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34:82-91. [PMID: 22392394 DOI: 10.1016/s1516-4446(12)70015-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 08/21/2011] [Indexed: 10/27/2022]
Abstract
Psychiatric disorders are among the most common human illnesses; still, the molecular and cellular mechanisms underlying their complex pathophysiology remain to be fully elucidated. Over the past 10 years, our group has been investigating the molecular abnormalities in major signaling pathways involved in psychiatric disorders. Recent evidences obtained by the Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (National Institute of Science and Technology - Molecular Medicine, INCT-MM) and others using behavioral analysis of animal models provided valuable insights into the underlying molecular alterations responsible for many complex neuropsychiatric disorders, suggesting that "defects" in critical intracellular signaling pathways have an important role in regulating neurodevelopment, as well as in pathophysiology and treatment efficacy. Resources from the INCT have allowed us to start doing research in the field of molecular imaging. Molecular imaging is a research discipline that visualizes, characterizes, and quantifies the biologic processes taking place at cellular and molecular levels in humans and other living systems through the results of image within the reality of the physiological environment. In order to recognize targets, molecular imaging applies specific instruments (e.g., PET) that enable visualization and quantification in space and in real-time of signals from molecular imaging agents. The objective of molecular medicine is to individualize treatment and improve patient care. Thus, molecular imaging is an additional tool to achieve our ultimate goal.
Collapse
Affiliation(s)
- Debora Marques de Miranda
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sengupta P. The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses. Curr Opin Neurobiol 2012; 23:68-75. [PMID: 22939570 DOI: 10.1016/j.conb.2012.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 07/25/2012] [Accepted: 08/02/2012] [Indexed: 10/27/2022]
Abstract
Feeding history and the presence of food dramatically alter chemosensory behaviors. Recent results indicate that internal nutritional state can gate peripheral gustatory and olfactory sensory responses to affect behavior. Focusing primarily on recent work in C. elegans and Drosophila, I describe the neuromodulatory mechanisms that translate feeding state information into changes in chemosensory neuron response properties and behavioral output.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and the National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
22
|
Arguel MJ, Jaouannet M, Magliano M, Abad P, Rosso MN. siRNAs Trigger Efficient Silencing of a Parasitism Gene in Plant Parasitic Root-Knot Nematodes. Genes (Basel) 2012; 3:391-408. [PMID: 24704976 PMCID: PMC3899990 DOI: 10.3390/genes3030391] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/18/2012] [Accepted: 06/26/2012] [Indexed: 12/20/2022] Open
Abstract
Expanding genomic data on plant pathogens open new perspectives for the development of specific and environment friendly pest management strategies based on the inhibition of parasitism genes that are essential for the success of infection. Identifying such genes relies on accurate reverse genetics tools and the screening of pathogen knock-down phenotypes. Root-knot nematodes are major cosmopolitan crop pests that feed on a wide range of host plants. Small interfering RNAs (siRNAs) would provide a powerful tool for reverse genetics of nematode parasitism genes provided that they could (1) target genes expressed in inner tissues of infective nematodes and (2) target genes expressed during parasitism. In this study, we show that siRNAs can access inner tissues of the infective juveniles during soaking and accumulate in the esophagus, amphidial pouches and related neurons of the nematode. We provide evidence that siRNAs can trigger knock-down of the parasitism gene Mi-CRT, a calreticulin gene expressed in the esophageal glands of Meloidogyne incognita. Mi-CRT knock-down in infective juveniles affected nematode virulence. However, Mi-CRT knock-down was not persistent after plant infection, indicating that siRNA-mediated RNAi is best suited for functional analysis of genes involved in pre-parasitic stages or in the early steps of infection.
Collapse
Affiliation(s)
- Marie-Jeanne Arguel
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| | - Maëlle Jaouannet
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| | - Marc Magliano
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| | - Pierre Abad
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| | - Marie-Noëlle Rosso
- INRA, UMR 1355 Institut Sophia Agrobiotech, Interactions Plantes-Nematodes, Sophia Antipolis F-06903, France.
| |
Collapse
|
23
|
de Miranda DM, Mamede M, de Souza BR, de Almeida Barros AG, Magno LA, Alvim-Soares A, Rosa DV, de Castro CJ, Malloy-Diniz L, Gomez MV, De Marco LA, Correa H, Romano-Silva MA. Molecular medicine: a path towards a personalized medicine. BRAZILIAN JOURNAL OF PSYCHIATRY 2012. [DOI: 10.1590/s1516-44462012000100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|