1
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
2
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
4
|
Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, Li GL, Shang W, Wu H, Song L. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY) 2020; 12:5590-5611. [PMID: 32240104 PMCID: PMC7185105 DOI: 10.18632/aging.102977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/03/2020] [Indexed: 04/08/2023]
Abstract
AMP-activated protein kinase (AMPK) integrates the regulation of cell growth and metabolism. AMPK activation occurs in response to cellular energy decline and mitochondrial dysfunction triggered by reactive oxygen species (ROS). In aged Tg-mtTFB1 mice, a mitochondrial deafness mouse model, hearing loss is accompanied with cochlear pathology including reduced endocochlear potential (EP) and loss of spiral ganglion neurons (SGN), inner hair cell (IHC) synapses and outer hair cells (OHC). Accumulated ROS and increased apoptosis signaling were also detected in cochlear tissues, accompanied by activation of AMPK. To further explore the role of AMPK signaling in the auditory phenotype, we used genetically knocked out AMPKα1 as a rescue to Tg-mtTFB1 mice and observed: improved ABR wave I, EP and IHC function, normal SGNs, IHC synapses morphology and OHC survivals, with decreased ROS, reduced pro-apoptotic signaling (Bax) and increased anti-apoptotic signaling (Bcl-2) in the cochlear tissues, indicating that reduced AMPK attenuated apoptosis via ROS-AMPK-Bcl2 pathway in the cochlea. To conclude, AMPK hyperactivation causes accelerated presbycusis in Tg-mtTFB1 mice by redox imbalance and dysregulation of the apoptosis pathway. The effects of AMPK downregulation on pro-survival function and reduction of oxidative stress indicate AMPK serves as a target to rescue or relieve mitochondrial hearing loss.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Gen Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xuan Zhao
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
| | - Xin Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunge Gao
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Geng-Lin Li
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Wei Shang
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
- In Vitro Fertility (IVF) Center Department of Obstetrics and Gynecology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
5
|
Ohlemiller KK. Mouse methods and models for studies in hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3668. [PMID: 31795658 DOI: 10.1121/1.5132550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Laboratory mice have become the dominant animal model for hearing research. The mouse cochlea operates according to standard "mammalian" principles, uses the same cochlear cell types, and exhibits the same types of injury as found in other mammals. The typical mouse lifespan is less than 3 years, yet the age-associated pathologies that may be found are quite similar to longer-lived mammals. All Schuknecht's types of presbycusis have been identified in existing mouse lines, some favoring hair cell loss while others favor strial degeneration. Although noise exposure generally affects the mouse cochlea in a manner similar to other mammals, mice appear more prone to permanent alterations to hair cells or the organ of Corti than to hair cell loss. Therapeutic compounds may be applied systemically or locally through the tympanic membrane or onto (or through) the round window membrane. The thinness of the mouse cochlear capsule and annular ligament may promote drug entry from the middle ear, although an extremely active middle ear lining may quickly remove most drugs. Preclinical testing of any therapeutic will always require tests in multiple animal models. Mice constitute one model providing supporting evidence for any therapeutic, while genetically engineered mice can test hypotheses about mechanisms.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis, Missouri 63110, USA
| |
Collapse
|
6
|
Cederholm JME, Ryan AF, Housley GD. Onset kinetics of noise-induced purinergic adaptation of the 'cochlear amplifier'. Purinergic Signal 2019; 15:343-355. [PMID: 31377959 PMCID: PMC6737159 DOI: 10.1007/s11302-019-09648-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
A major component of slowly reversible hearing loss which develops with sustained exposure to noise has been attributed to release of ATP in the cochlea activating P2X2 receptor (P2X2R) type ATP-gated ion channels. This purinergic humoral adaptation is thought to enable the highly sensitive hearing organ to maintain function with loud sound, protecting the ear from acoustic overstimulation. In the study that established this hearing adaptation mechanism as reported by Housley et al. (Proc Natl Acad Sci U S A 110:7494-7499, 2013), the activation kinetics were determined in mice from auditory brainstem response (ABR) threshold shifts with sustained noise presentation at time points beyond 10 min. The present study was designed to achieve finer resolution of the onset kinetics of purinergic hearing adaptation, and included the use of cubic (2f1-f2) distortion product otoacoustic emissions (DPOAEs) to probe whether the active mechanical outer hair cell 'cochlear amplifier' contributed to this process. We show that the ABR and DPOAE threshold shifts were largely complete within the first 7.5 min of moderate broadband noise (85 dB SPL) in wildtype C57Bl/6J mice. The ABR and DPOAE adaptation rates were both best fitted by a single exponential function with ~ 3 min time constants. ABR and DPOAE threshold shifts with this noise were minimal in mice null for the P2rx2 gene encoding the P2X2R. The findings demonstrate a considerably faster purinergic hearing adaptation to noise than previously appreciated. Moreover, they strongly implicate the outer hair cell as the site of action, as the DPOAEs stem from active cochlear electromotility.
Collapse
Affiliation(s)
- Jennie M E Cederholm
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Allen F Ryan
- Departments of Surgery and Neurosciences, University of California San Diego, La Jolla, CA, USA
- Veterans Administration Medical Center, La Jolla, CA, USA
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
OHC-TRECK: A Novel System Using a Mouse Model for Investigation of the Molecular Mechanisms Associated with Outer Hair Cell Death in the Inner Ear. Sci Rep 2019; 9:5285. [PMID: 30918314 PMCID: PMC6437180 DOI: 10.1038/s41598-019-41711-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Outer hair cells (OHCs) are responsible for the amplification of sound, and the death of these cells leads to hearing loss. Although the mechanisms for sound amplification and OHC death have been well investigated, the effects on the cochlea after OHC death are poorly understood. To study the consequences of OHC death, we established an OHC knockout system using a novel mouse model, Prestin-hDTR, which uses the prestin promoter to express the human diphtheria toxin (DT) receptor gene (hDTR). Administration of DT to adult Prestin-hDTR mice results in the depletion of almost all OHCs without significant damage to other cochlear and vestibular cells, suggesting that this system is an effective tool for the analysis of how other cells in the cochlea and vestibula are affected after OHC death. To evaluate the changes in the cochlea after OHC death, we performed differential gene expression analysis between the untreated and DT-treated groups of wild-type and Prestin-hDTR mice. This analysis revealed that genes associated with inflammatory/immune responses were significantly upregulated. Moreover, we found that several genes linked to hearing loss were strongly downregulated by OHC death. Together, these results suggest that this OHC knockout system is a useful tool to identify biomarkers associated with OHC death.
Collapse
|
8
|
Ohlemiller KK, Kaur T, Warchol ME, Withnell RH. The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice. Hear Res 2018; 361:138-151. [PMID: 29426600 DOI: 10.1016/j.heares.2018.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
Abstract
The endocochlear potential (EP) provides part of the electrochemical drive for sound-driven currents through cochlear hair cells. Intense noise exposure (110 dB SPL, 2 h) differentially affects the EP in three inbred mouse strains (C57BL/6 [B6], CBA/J [CBA], BALB/cJ [BALB]) (Ohlemiller and Gagnon, 2007, Hearing Research 224:34-50; Ohlemiller et al., 2011, JARO 12:45-58). At least for mice older than 3 mos, B6 mice are unaffected, CBA mice show temporary EP reduction, and BALB mice may show temporary or permanent EP reduction. EP reduction was well correlated with histological metrics for injury to stria vascularis and spiral ligament, and little evidence was found for holes or tears in the reticular lamina that might 'short out' the EP. Thus we suggested that the genes and processes that underlie the strain EP differences primarily impact cochlear lateral wall, not the organ of Corti. Our previous work did not test the range of noise exposure conditions over which strain differences apply. It therefore remained possible that the relation between exposure severity and acute EP reduction simply has a higher exposure threshold in B6 mice compared to CBA and BALB. We also did not test for age dependence. It is well established that young adult animals are especially vulnerable to noise-induced permanent threshold shifts (NIPTS). It is unknown, however, whether heightened vulnerability of the lateral wall contributes to this condition. The present study extends our previous work to multiple noise exposure levels and durations, and explicitly compares young adult (6-7 wks) and older mice (>4 mos). We find that the exposure level-versus-acute EP relation is dramatically strain-dependent, such that B6 mice widely diverge from both CBA and BALB. For all three strains, however, acute EP reduction is greater in young mice. Above 110 dB SPL, all mice exhibited rapid and severe EP reduction that is likely related to tearing of the reticular lamina. By contrast, EP-versus-noise duration examined at 104 dB suggested that different processes contribute to EP reduction in young and older mice. The average EP falls to a constant level after ∼7.5 min in older mice, but progressively decreases with further exposure in young mice. Confocal microscopy of organ of Corti surface preparations stained for phalloidin and zonula occludens-1 (ZO-1) indicated this corresponds to rapid loss of outer hair cells (OHCs) and formation of both holes and tears in the reticular lamina of young mice. In addition, when animals exposed at 119 dB were allowed to recover for 1 mo, only young B6 mice showed collapse of the EP to ≤5 mV. Confocal analysis suggested novel persistent loss of tight junctions in the lateral organ of Corti. This may allow paracellular leakage that permanently reduces the EP. From our other findings, we propose that noise-related lateral wall pathology in young CBA and BALB mice promotes hair cell loss and opening of the reticular lamina. The heightened vulnerability of young adult animals to noise exposure may in part reflect special sensitivity of the organ of Corti to acute lateral wall dysfunction at younger ages. This feature appears genetically modifiable.
Collapse
MESH Headings
- Age Factors
- Animals
- Auditory Threshold
- Computer Simulation
- Disease Models, Animal
- Evoked Potentials, Auditory
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Models, Biological
- Noise
- Species Specificity
- Spiral Lamina/metabolism
- Spiral Lamina/pathology
- Spiral Lamina/physiopathology
- Tight Junctions/metabolism
- Tight Junctions/pathology
- Time Factors
- Zonula Occludens-1 Protein/metabolism
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Washington University School of Medicine, Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis MO, USA.
| | - Tejbeer Kaur
- Washington University School of Medicine, Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis MO, USA
| | - Mark E Warchol
- Washington University School of Medicine, Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis MO, USA
| | - Robert H Withnell
- Department of Speech and Hearing Sciences, Indiana University, Bloomington IN, USA
| |
Collapse
|
9
|
Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016; 17:493-523. [PMID: 27752925 PMCID: PMC5112220 DOI: 10.1007/s10162-016-0589-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA.
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
10
|
Ohlemiller KK, Kiener AL, Gagnon PM. QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice. J Assoc Res Otolaryngol 2016; 17:173-94. [PMID: 26980469 DOI: 10.1007/s10162-016-0558-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
We reported earlier that the endocochlear potential (EP) differs between C57BL/6J (B6) and BALB/cJ (BALB) mice, being lower in BALBs by about 10 mV (Ohlemiller et al. Hear Res 220: 10-26, 2006). This difference corresponds to strain differences with respect to the density of marginal cells in cochlear stria vascularis. After about 1 year of age, BALB mice also tend toward EP reduction that correlates with further marginal cell loss. We therefore suggested that early sub-clinical features of the BALB stria vascularis may predispose these mice to a condition modeling Schuknecht's strial presbycusis. We further reported (Ohlemiller et al. J Assoc Res Otolaryngol 12: 45-58, 2011) that the acute effects of a 2-h 110 dB SPL noise exposure differ between B6 and BALB mice, such that the EP remains unchanged in B6 mice, but is reduced by 40-50 mV in BALBs. In about 25 % of BALBs, the EP does not completely recover, so that permanent EP reduction may contribute to noise-induced permanent threshold shifts in BALBs. To identify genes and alleles that may promote natural EP variation as well as noise-related EP reduction in BALB mice, we have mapped related quantitative trait loci (QTLs) using 12 recombinant inbred (RI) strains formed from B6 and BALB (CxB1-CxB12). EP and strial marginal cell density were measured in B6 mice, BALB mice, their F1 hybrids, and RI mice without noise exposure, and 1-3 h after broadband noise (4-45 kHz, 110 dB SPL, 2 h). For unexposed mice, the strain distribution patterns for EP and marginal cell density were used to generate preliminary QTL maps for both EP and marginal cell density. Six QTL regions were at least statistically suggestive, including a significant QTL for marginal cell density on chromosome 12 that overlapped a weak QTL for EP variation. This region, termed Maced (Marginal cell density QTL) supports the notion of marginal cell density as a genetically influenced contributor to natural EP variation. Candidate genes for Maced notably include Foxg1, Foxa1, Akap6, Nkx2-1, and Pax9. Noise exposure produced significant EP reductions in two RI strains as well as significant EP increases in two RI strains. QTL mapping of the EP in noise-exposed RI mice yielded four suggestive regions. Two of these overlapped with QTL regions we previously identified for noise-related EP reduction in CBA/J mice (Ohlemiller et al. Hear Res 260: 47-53, 2010) on chromosomes 5 and 18 (Nirep). The present map may narrow the Nirep interval to a ~10-Mb region of proximal Chr. 18 that includes Zeb1, Arhgap12, Mpp7, and Gjd4. This study marks the first exploration of natural gene variants that modulate the EP. Their orthologs may underlie some human hearing loss that originates in the lateral wall.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA.
| | - Anna L Kiener
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH, USA
| | - Patricia M Gagnon
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA
| |
Collapse
|
11
|
Macrophage Migration Inhibitory Factor Deficiency Causes Prolonged Hearing Loss After Acoustic Overstimulation. Otol Neurotol 2016; 36:1103-8. [PMID: 25853607 DOI: 10.1097/mao.0000000000000755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HYPOTHESIS Macrophage migration inhibitory factor plays an important role in noise-induced hearing loss. BACKGROUND Macrophage migration inhibitory factor is an essential factor in axis formation and neural development. Macrophage migration inhibitory factor is expressed in the inner ear, but its function remains to be elucidated. METHODS Macrophage migration inhibitory factor-deficient mice (MIF(-/-) mice) were used in this study. Wild-type and MIF(-/-) mice received noise exposure composed of octave band noise. Auditory brainstem response thresholds were examined before (control) and at 0, 12, and 24 hours and 2 weeks after the intense noise exposure. Morphological findings of cochlear hair cells were investigated using scanning electron microscopy. Histopathological examination with hematoxylin and eosin staining and TUNEL assay were also performed. RESULTS In both the wild-type and MIF(-/-) mice, acoustic overstimulation induced significant hearing loss compared with the control level. Two weeks after the intense noise exposure, the MIF(-/-) mice had an increased hearing threshold compared with the wild-type mice. Scanning electron microscopy demonstrated that the outer hair cells in the MIF(-/-) mice were affected 2 weeks after noise exposure compared with the wild-type mice. TUNEL-positive cells were identified in the organ of Corti of the MIF(-/-) mice. CONCLUSION The MIF(-/-) mice had prolonged hearing loss and significant loss of cochlear hair cells after intense noise exposure. Macrophage migration inhibitory factor may play an important role in recovery from acoustic trauma. Management of macrophage migration inhibitory factor may be a novel therapeutic option for noise-induced hearing loss.
Collapse
|
12
|
Murillo-Cuesta S, Rodríguez-de la Rosa L, Contreras J, Celaya AM, Camarero G, Rivera T, Varela-Nieto I. Transforming growth factor β1 inhibition protects from noise-induced hearing loss. Front Aging Neurosci 2015; 7:32. [PMID: 25852546 PMCID: PMC4367183 DOI: 10.3389/fnagi.2015.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/28/2015] [Indexed: 12/20/2022] Open
Abstract
Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor β (TGF-β) is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-β as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss (NIHL), we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-β1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-β1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-β1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Julio Contreras
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Veterinary Faculty, Complutense University of Madrid Madrid, Spain
| | - Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain
| | - Guadalupe Camarero
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Teresa Rivera
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Príncipe de Asturias University Hospital, University of Alcalá, Alcalá de Henares Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| |
Collapse
|
13
|
Zhang Q, Liu H, Soukup GA, He DZZ. Identifying microRNAs involved in aging of the lateral wall of the cochlear duct. PLoS One 2014; 9:e112857. [PMID: 25405349 PMCID: PMC4236067 DOI: 10.1371/journal.pone.0112857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023] Open
Abstract
Age-related hearing loss is a progressive sensorineural hearing loss that occurs during aging. Degeneration of the organ of Corti and atrophy of the lateral wall of the cochlear duct (or scala media) in the inner ear are the two primary causes. MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA/protein targets, are important regulators of cellular senescence and aging. We examined miRNA gene expression profiles in the lateral wall of two mouse strains, along with exploration of the potential targets of those miRNAs that showed dynamic expression during aging. We show that 95 and 60 miRNAs exhibited differential expression in C57 and CBA mice during aging, respectively. A majority of downregulated miRNAs are known to regulate pathways of cell proliferation and differentiation, while all upregulated miRNAs are known regulators in the pro-apoptotic pathways. By using apoptosis-related gene array and bioinformatic approaches to predict miRNA targets, we identify candidate miRNA-regulated genes that regulate apoptosis pathways in the lateral wall of C57 and CBA mice during aging.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Garrett A. Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
- * E-mail: (GS); (DH)
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
- * E-mail: (GS); (DH)
| |
Collapse
|
14
|
Park J, Kim S, Park K, Choung Y, Jou I, Park S. Pravastatin attenuates noise-induced cochlear injury in mice. Neuroscience 2012; 208:123-32. [DOI: 10.1016/j.neuroscience.2012.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
15
|
α-Synuclein deficiency and efferent nerve degeneration in the mouse cochlea: a possible cause of early-onset presbycusis. Neurosci Res 2011; 71:303-10. [PMID: 21840348 DOI: 10.1016/j.neures.2011.07.1835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/14/2011] [Accepted: 07/26/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVES/HYPOTHESIS Efferent nerves under the outer hair cells (OHCs) play a role in the protection of these cells from loud stimuli. Previously, we showed that cochlear α-synuclein expression is localized to efferent auditory synapses at the base of the OHCs. To prove our hypothesis that α-synuclein deficiency and efferent auditory deficit might be a cause of hearing loss, we compared the morphology of efferent nerve endings and α-synuclein expression within the cochleae of two mouse models of presbycusis. STUDY DESIGN Comparative animal study of presbycusis. METHODS The C57BL/6J(C57) mouse strain, a well-known model of early-onset hearing loss, and the CBA mouse strain, a model of relatively late-onset hearing loss, were examined. Auditory brainstem responses and distortion product otoacoustic emissions were recorded, and cochlear morphology with efferent nerve ending was compared. Western blotting was used to examine α-synuclein expression in the cochlea. RESULTS Compared with CBA mice, C57 mice showed earlier onset high-frequency hearing loss and decreased function in OHCs, especially within high-frequency regions. C57 mice demonstrated more severe pathologic changes within the cochlea, particularly within the basal turn, than CBA mice of the same age. Weaker α-synuclein and synaptophysin expression in the efferent nerve endings and cochlear homogenates in C57 mice was observed. CONCLUSIONS Our results support the hypothesis that efferent nerve degeneration, possibly due to differential α-synuclein expression, is a potential cause of early-onset presbycusis. Further studies at the cellular level are necessary to verify our results.
Collapse
|
16
|
Ohlemiller KK, Rybak Rice ME, Rellinger EA, Ortmann AJ. Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ mice. Hear Res 2010; 272:13-20. [PMID: 21108998 DOI: 10.1016/j.heares.2010.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/28/2022]
Abstract
CBA/CaJ and CBA/J inbred mouse strains appear relatively resistant to age- and noise-related cochlear pathology, and constitute the predominant 'good hearing' control strains in mouse studies of hearing and deafness. These strains have often been treated as nearly equivalent in their hearing characteristics, and have even been mixed in some studies. Nevertheless, we recently showed that their trajectories with regard to age-associated cochlear pathology diverge after one year of age (Ohlemiller et al., 2010a). We also recently reported that they show quite different susceptibility to cochlear noise injury during the 'sensitive period' of heightened vulnerability to noise common to many models, CBA/J being far more vulnerable than CBA/CaJ (Fernandez et al., 2010 J. Assoc. Res. Otolaryngol. 11:235-244). Here we explore this relation in a side-by-side comparison of the effect of varying noise exposure duration in young (6 week) and older (6 month) CBA/J and CBA/CaJ mice, and in F1 hybrids formed from these. Both the extent of permanent noise-induced threshold shifts (NIPTS) and the probability of a defined NIPTS were determined as exposure to intense broadband noise (4-45 kHz, 110 dB SPL) increased by factors of two from 7 s to 4 h. At 6 months of age the two strains appeared very similar by both measures. At 6 weeks of age, however, both the extent and probability of NIPTS grew much more rapidly with noise duration in CBA/J than in CBA/CaJ. The 'threshold' exposure duration for NIPTS was <1.0 min in CBA/J versus >4.0 min in CBA/CaJ. F1 hybrid mice showed both NIPTS and hair cell loss similar to that in CBA/J. This suggests that dominant-acting alleles at unknown loci distinguish CBA/J from CBA/CaJ. These loci have novel effects on hearing phenotype, as they come into play only during the sensitive period, and may encode factors that demarcate this period. Since the cochlear cells whose fragility defines the early window appear to be hair cells, these loci may principally impact the mechanical or metabolic resiliency of hair cells or the organ of Corti.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Program in Audiology and Communication Sciences, Washington University School of Medicine, United States.
| | | | | | | |
Collapse
|