1
|
Ju C, Yang K, Yang Q, Mi Y, Wang C, Ji H. Multiscale dynamics analysis of lumbar vertebral cortical bone based on the Abaqus submodel finite element method. Sci Rep 2025; 15:6861. [PMID: 40011636 PMCID: PMC11865512 DOI: 10.1038/s41598-025-91918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/24/2025] [Indexed: 02/28/2025] Open
Abstract
The direct effect of macroscopic loads on the microstructure of bone tissue in a vibration environment is not yet known. Therefore, this study aims to investigate the macro- and micro-biomechanical properties of the lumbar spine system under dynamic loading in such an environment. We analyzed the dynamic characteristics of osteon by establishing a macro- and micro-scale model of the lumbar spine, using a submodel-specific boundary displacement method based on St. Venant's principle. Utilizing the results from the transient dynamic analysis of the entire lumbar spine as boundary conditions, this study simulates the dynamic behavior of osteon in each segment of the spine on a microscopic scale. The macroscopic results of the transient dynamic analysis showed that the rates of change in dynamic displacement amplitude relative to static displacement amplitude for the L1-L5 vertebrae were 212.60%, 242.11%, 314.80%, 1.17%, and 3.75%, respectively. The change in displacement amplitude under dynamic load relative to static load was highest for the L3 vertebra, as observed in the macroscopic model. The stress and strain values in the microscopic osteon of each lumbar spine segment under sinusoidal periodic loading were higher than those in the macroscopic osteon. In the microscopic bone unit, the maximum stress occurred at the cement line during the peak stress moment, while the minimum stress was observed at the innermost bone plate during the moment of minimum stress. Under dynamic loading, the microscopic bone osteon demonstrated a cyclic stress and strain response, with variations observed in different components of the osteon. These findings provide new insights into the biomechanical behavior of the lumbar spine in a vibration environment.
Collapse
Affiliation(s)
- Chunlei Ju
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, China
| | - Kai Yang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, China
| | - Qingwei Yang
- College of Mechanical Engineering, Xinjiang University, Urumqi, 830000, Xinjiang, China
| | - Yang Mi
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, China
| | - Chunhong Wang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, China.
| | - Hongming Ji
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
2
|
Liu T, Xiong B, Cui X, Zhang C. Numerical study of interstitial fluid flow behavior in osteons under dynamic loading. BMC Musculoskelet Disord 2025; 26:187. [PMID: 39994737 PMCID: PMC11854024 DOI: 10.1186/s12891-025-08425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The porous structure in bone tissue is essential for maintaining the physiological functions and overall health of intraosseous cells. The lacunar-canalicular net (LCN), a microscopic porous structure within osteons, facilitates the transport of nutrients and signaling molecules through interstitial fluid flow. However, the transient behavior of fluid flow within these micro-pores under dynamic loading conditions remains insufficiently studied. METHODS The study constructs a fluid-solid coupling model including the Haversian canal, canaliculi, lacunae, and interstitial fluid, to examine interstitial fluid flow behavior within the LCN under dynamic loading with varying frequencies and amplitudes. The relationship between changes of LCN pore volume and fluid velocity, and pressure is researched. RESULTS The results demonstrate that increasing strain amplitude leads to significant changes of LCN pore volume within osteons. In a complete loading cycle, with the increase of compressive strain, the pore volume in the osteon gradually shrinks, and the pressure gradient in the LCN increases, which promotes the increase of interstitial fluid velocity. When the compressive strain reaches the peak value, the flow velocity also reaches the maximum. In the subsequent unloading process, the pore volume began to recover, the pressure gradient gradually decreased, the flow rate decreased accordingly, and finally returned to the steady state level. At a loading amplitude of 1000 µε, the pore volume within LCN decreases by 1.1‰. At load amplitudes of 1500 µε, 2000 µε, and 2500 µε, the pore volume decreases by 1.6‰, 2.2‰ and 2.7‰ respectively, and the average flow velocity at the center of the superficial lacuna is 1.36 times, 1.77 times, and 2.14 times that at 1000 µε, respectively. Additionally, at a loading amplitude of 1000 µε under three different loading frequencies, the average flow velocities at the center of the superficial bone lacuna are 0.60 μm/s, 1.04 μm/s, and 1.54 μm/s, respectively. This indicates that high-frequency and high-amplitude dynamic loading can promote more vigorous fluid flow and pressure fluctuations with changes in LCN pore volume. CONCLUSIONS Dynamic mechanical loading can significantly enhance the interstitial fluid flow in LCN by the changes of LCN pore volume. and dynamic loading promoted fluid flow in shallow lacunae significantly higher than that in deep lacunae. The relationship between changes of LCN pore volume and interstitial fluid flow behavior has implications for drug delivery and bone tissue engineering research.
Collapse
Affiliation(s)
- Tianyu Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Baochuan Xiong
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Xin Cui
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China.
| |
Collapse
|
3
|
Niroobakhsh M, Laughrey LE, Dallas SL, Johnson ML, Ganesh T. Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging. Biomech Model Mechanobiol 2024; 23:129-143. [PMID: 37642807 DOI: 10.1007/s10237-023-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Exercise and physical activity exert mechanical loading on the bones which induces bone formation. However, the relationship between the osteocyte lacunar-canalicular morphology and mechanical stress experienced locally by osteocytes transducing signals for bone formation is not fully understood. In this study, we used computational modeling to predict the effect of canalicular density, the number of fluid inlets, and load direction on fluid flow shear stress (FFSS) and bone strains and how these might change following the microstructural deterioration of the lacunar-canalicular network that occurs with aging. Four distinct computational models were initially generated of osteocytes with either ten or eighteen dendrites using a fluid-structure interaction method with idealized geometries. Next, a young and a simulated aged osteocyte were developed from confocal images after FITC staining of the femur of a 4-month-old C57BL/6 mouse to estimate FFSS using a computational fluid dynamics approach. The models predicted higher fluid velocities in the canaliculi versus the lacunae. Comparison of idealized models with five versus one fluid inlet indicated that with four more inlets, one-half of the dendrites experienced FFSS greater than 0.8 Pa, which has been associated with osteogenic responses. Confocal image-based models of real osteocytes indicated a six times higher ratio of canalicular to lacunar surface area in the young osteocyte model than the simulated aged model and the average FFSS in the young model (FFSS = 0.46 Pa) was three times greater than the aged model (FFSS = 0.15 Pa). Interestingly, the surface area with FFSS values above 0.8 Pa was 23 times greater in the young versus the simulated aged model. These findings may explain the impaired mechano-responsiveness of osteocytes with aging.
Collapse
Affiliation(s)
- Mohammad Niroobakhsh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Loretta E Laughrey
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Thiagarajan Ganesh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA.
| |
Collapse
|
4
|
Abstract
PURPOSE OF THE REVIEW Bone adapts structure and material properties in response to its mechanical environment, a process called mechanoadpatation. For the past 50 years, finite element modeling has been used to investigate the relationships between bone geometry, material properties, and mechanical loading conditions. This review examines how we use finite element modeling in the context of bone mechanoadpatation. RECENT FINDINGS Finite element models estimate complex mechanical stimuli at the tissue and cellular levels, help explain experimental results, and inform the design of loading protocols and prosthetics. FE modeling is a powerful tool to study bone adaptation as it complements experimental approaches. Before using FE models, researchers should determine whether simulation results will provide complementary information to experimental or clinical observations and should establish the level of complexity required. As imaging technics and computational capacity continue increasing, we expect FE models to help in designing treatments of bone pathologies that take advantage of mechanoadaptation of bone.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Osteocytes are the conductors of bone adaptation and remodelling. Buried inside the calcified matrix, they sense mechanical cues and signal osteoclasts in case of low activity, and osteoblasts when stresses are high. How do osteocytes detect mechanical stress? What physical signal do they perceive? Finite element analysis is a useful tool to address these questions as it allows calculating stresses, strains and fluid flow where they cannot be measured. The purpose of this review is to evaluate the capabilities and challenges of finite element models of bone, in particular the osteocytes and load-induced activation mechanisms. RECENT FINDINGS High-resolution imaging and increased computational power allow ever more detailed modelling of osteocytes, either in isolation or embedded within the mineralised matrix. Over the years, homogeneous models of bone and osteocytes got replaced by heterogeneous and microstructural models, including, e.g. the lacuno-canalicular network and the cytoskeleton. The lacuno-canalicular network induces strain amplifications and the osteocyte protrusions seem to be stimulated much more than the cell body, both by strain and fluid flow. More realistic cell geometries, like minute constrictions of the canaliculi, increase this effect. Microstructural osteocyte models describe the transduction of external stimuli to the nucleus. Supracellular multiscale models (e.g. of a tunnelling osteon) allow to study differential loading of osteocytes and to distinguish between strain and fluid flow as the pivotal stimulatory cue. In the future, the finite element models may be enhanced by including chemical transport and intercellular communication between osteocytes, osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH. Alterations in osteocyte lacunar morphology affect local bone tissue strains. J Mech Behav Biomed Mater 2021; 123:104730. [PMID: 34438250 DOI: 10.1016/j.jmbbm.2021.104730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
Osteocytes are capable of remodeling their perilacunar bone matrix, which causes considerable variations in the shape and size of their lacunae. If these variations in lacunar morphology cause changes in the mechanical environment of the osteocytes, in particular local strains, they would subsequently affect bone mechanotransduction, since osteocytes are likely able to directly sense these strains. The purpose of this study is to quantify the effect of alterations in osteocyte lacunar morphology on peri-lacunar bone tissue strains. To this end, we related the actual lacunar shape in fibulae of six young-adult (5-month) and six old (23-month) mice, quantified by high-resolution micro-computed tomography, to microscopic strains, analyzed by micro-finite element modeling. We showed that peak effective strain increased by 12.6% in osteocyte cell bodies (OCYs), 9.6% in pericellular matrix (PCM), and 5.3% in extra cellular matrix (ECM) as the lacunae volume increased from 100-200 μm3 to 500-600 μm3. Lacunae with a larger deviation (>8°) in orientation from the longitudinal axis of the bone are exposed to 8% higher strains in OCYs, 6.5% in PCM, 4.2% in ECM than lacunae with a deviation in orientation below 8°. Moreover, increased lacuna sphericity from 0 to 0.5 to 0.7-1 led to 25%, 23%, and 13% decrease in maximum effective strains in OCYs, PCM, and ECM, respectively. We further showed that due to the presence of smaller and more round lacunae in old mice, local bone tissue strains are on average 5% lower in the vicinity of lacunae and their osteocytes of old mice compared to young. Understanding how changes in lacunar morphology affect the micromechanical environment of osteocytes presents a first step in unraveling their potential role in impaired bone mechanoresponsiveness with e.g. aging.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Li T, Chen Z, Gao Y, Zhu L, Yang R, Leng H, Huo B. Fluid-solid coupling numerical simulation of trabecular bone under cyclic loading in different directions. J Biomech 2020; 109:109912. [PMID: 32807313 DOI: 10.1016/j.jbiomech.2020.109912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
The structure of a bone tissue is capable of adapting to mechanical loading through the process of bone remodeling, which is regulated by osteoblasts and osteoclasts. Fluid flow within trabecular porosity under cyclic loading is one of the factors stimulating the biological response of osteoblasts and osteoclasts. However, the relation between loading directions and interstitial fluid flow was seldom studied. In the present study, a finite element model based on micro-computed tomographic reconstructions is built by using a mouse femur. Results from the fluid-solid coupling numerical simulation indicate that the loading in different directions generates a distinct distribution of von Mises stress in the bone matrix and a fluid shear stress (FSS) in the bone marrow. The loading along the physiological direction leads to a more uniform distribution of solid stress and produces an FSS level beneficial to the biological response of osteoblasts and osteoclasts compared with those along the non-physiological direction. There was a minimum threshold line of wall FSS with a specific solid stress at the bone surface, suggesting that the wall FSS is mainly induced by the solid strain. These results may offer fundamental data in understanding the mechanical environment around osteoblasts and osteoclasts and the cellular and molecular mechanisms of mechanical loading-induced bone remodeling.
Collapse
Affiliation(s)
- Taiyang Li
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zebin Chen
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yan Gao
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Lingsu Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Ruili Yang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, PR China
| | - Bo Huo
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
8
|
Ganesh T, Laughrey LE, Niroobakhsh M, Lara-Castillo N. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system. Bone 2020; 137:115328. [PMID: 32201360 PMCID: PMC7354216 DOI: 10.1016/j.bone.2020.115328] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Osteocytes form over 90% of the bone cells and are postulated to be mechanosensors responsible for regulating the function of osteoclasts and osteoblasts in bone modeling and remodeling. Physical activity results in mechanical loading on the bones. Osteocytes are thought to be the main mechanosensory cells in bone. Upon load osteocytes secrete key factors initiating downstream signaling pathways that regulate skeletal metabolism including the Wnt/β-catenin signaling pathway. Osteocytes have dendritic structures and are housed in the lacunae and canaliculi within the bone matrix. Mechanical loading is known to have two primary effects, namely a mechanical strain (membrane disruption by stretching) on the lacunae/cells, and fluid flow, in the form of fluid flow shear stress (FFSS), in the space between the cell membranes and the lacuna-canalicular walls. In response, osteocytes get activated via a process called mechanotransduction in which mechanical signals are transduced to biological responses. The study of mechanotransduction is a complex subject involving principles of engineering mechanics as well as biological signaling pathway studies. Several length scales are involved as the mechanical loading on macro sized bones are converted to strain and FFSS responses at the micro-cellular level. Experimental measurements of strain and FFSS at the cellular level are very difficult and correlating them to specific biological activity makes this a very challenging task. One of the methods commonly adopted is a multi-scale approach that combines biological and mechanical experimentation with in silico numerical modeling of the engineering aspects of the problem. Finite element analysis along with fluid-structure interaction methodologies are used to compute the mechanical strain and FFSS. These types of analyses often involve a multi-length scale approach where models of both the macro bone structure and micro structure at the cellular length scale are used. Imaging modalities play a crucial role in the development of the models and present their own challenges. This paper reviews the efforts of various research groups in addressing this problem and presents the work in our research group. A clear understanding of how mechanical stimuli affect the lacunae and perilacunar tissue strains and shear stresses on the cellular membranes may ultimately lead to a better understanding of the process of osteocyte activation.
Collapse
Affiliation(s)
- Thiagarajan Ganesh
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America.
| | - Loretta E Laughrey
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
| | - Mohammadmehdi Niroobakhsh
- Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, 350L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110, United States of America
| | - Nuria Lara-Castillo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 E 25th Street, Kansas City, MO 64108, United States of America
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The bone is able to adapt its structure to mechanical signals via the bone remodeling process governed by mechanosensitive osteocytes. With aging, an imbalance in bone remodeling results in osteoporosis. In this review, we hypothesized that changes in lacunar morphology underlie the decreased bone mechanoresponsiveness to mechanical loading with aging. RECENT FINDINGS Several studies have reported considerable variations in the shape of osteocytes and their lacunae with aging. Since osteocytes can sense matrix strain directly via their cell bodies, the variations in osteocyte morphology may cause changes in osteocyte mechanosensitivity. As a consequence, the load-adaptive response of osteocytes may change with aging, even when mechanical loading would remain unchanged. Though extensive quantitative data is lacking, evidence exists that the osteocyte lacunae are becoming smaller and more spherical with aging. Future dedicated studies might reveal whether these changes would affect osteocyte mechanosensation and the subsequent biological response, and whether this is (one of) the pathways involved in age-related bone loss.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300c, 3001 Leuven, Belgium
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - G. Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300c, 3001 Leuven, Belgium
| |
Collapse
|
10
|
Fan L, Pei S, Lucas Lu X, Wang L. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone. Bone Res 2016; 4:16032. [PMID: 27722020 PMCID: PMC5037578 DOI: 10.1038/boneres.2016.32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 12/02/2022] Open
Abstract
The transport of fluid, nutrients, and signaling molecules in the bone lacunar–canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30–50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.
Collapse
Affiliation(s)
- Lixia Fan
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA; School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shaopeng Pei
- Department of Mechanical Engineering, University of Delaware , Newark, DE, USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware , Newark, DE, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware , Newark, DE, USA
| |
Collapse
|
11
|
Joukar A, Niroomand-Oscuii H, Ghalichi F. Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: Considering lacunar-canalicular interstitial fluid flow. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 133:133-141. [PMID: 27393805 DOI: 10.1016/j.cmpb.2016.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/10/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
The osteocyte cell is a bone cell that also functions as a bone mechanosensor. In this work, a three-dimensional (3D) fluid-structure interaction (FSI) model of an osteocyte cell under different mechanical loading conditions was used to obtain a better understanding of osteocyte cell behavior under different physiological conditions. In the current study, both fluid and solid parts of osteocyte cell were considered in order to allow for more accurate results. Five different loading conditions have been applied to the osteocyte cell, and consequently the different interstitial fluid flow velocities and shear stresses have been investigated. Furthermore, using a mathematical model, the change in the stimulus function value with shear stress and NO enzyme was revealed. This work suggests that changes in osteocyte morphology and direction of loadings affect cell stimulation. It was found that cell is mostly stimulated and expanded in the direction experiencing the most shear stress. Finally, the amount of cell stimulation was shown quantitatively and there was strong dependency between stimulus function, shear stress, calcium, and NO concentration.
Collapse
Affiliation(s)
- Amin Joukar
- Mechanical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran
| | - Hanieh Niroomand-Oscuii
- Mechanical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran.
| | - Farzan Ghalichi
- Mechanical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran
| |
Collapse
|
12
|
Verbruggen SW, Vaughan TJ, McNamara LM. Mechanisms of osteocyte stimulation in osteoporosis. J Mech Behav Biomed Mater 2016; 62:158-168. [PMID: 27203269 DOI: 10.1016/j.jmbbm.2016.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 01/08/2023]
Abstract
Experimental studies have shown that primary osteoporosis caused by oestrogen-deficiency results in localised alterations in bone tissue properties and mineral composition. Additionally, changes to the lacunar-canalicular architecture surrounding the mechanosensitive osteocyte have been observed in animal models of the disease. Recently, it has also been demonstrated that the mechanical stimulation sensed by osteocytes changes significantly during osteoporosis. Specifically, it was shown that osteoporotic bone cells experience higher maximum strains than healthy bone cells after short durations of oestrogen deficiency. However, in long-term oestrogen deficiency there was no significant difference between bone cells in healthy and normal bone. The mechanisms by which these changes arise are unknown. In this study, we test the hypothesis that complex changes in tissue composition and lacunar-canalicular architecture during osteoporosis alter the mechanical stimulation of the osteocyte. The objective of this research is to employ computational methods to investigate the relationship between changes in bone tissue composition and microstructure and the mechanical stimulation of osteocytes during osteoporosis. By simulating physiological loading, it was observed that an initial decrease in tissue stiffness (of 0.425GPa) and mineral content (of 0.66wt% Ca) relative to controls could explain the mechanical stimulation observed at the early stages of oestrogen deficiency (5 weeks post-OVX) during in situ bone cell loading in an oestrogen-deficient rat model of post-menopausal osteoporosis (Verbruggen et al., 2015). Moreover, it was found that a later increase in stiffness (of 1.175GPa) and mineral content (of 1.64wt% Ca) during long-term osteoporosis (34 weeks post-OVX), could explain the mechanical stimuli previously observed at a later time point due to the progression of osteoporosis. Furthermore, changes in canalicular tortuosity arising during osteoporosis were shown to result in increased osteogenic strain stimulation, though to a lesser extent than has been observed experimentally. The findings of this study indicate that changes in the extracellular environment during osteoporosis, arising from altered mineralisation and lacunar-canalicular architecture, lead to altered mechanical stimulation of osteocytes, and provide an enhanced understanding of changes in bone mechanobiology during osteoporosis.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Laoise M McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
13
|
Mechanical biocompatibility of highly deformable biomedical materials. J Mech Behav Biomed Mater 2015; 48:100-124. [DOI: 10.1016/j.jmbbm.2015.03.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/20/2022]
|
14
|
Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:376474. [PMID: 25664319 PMCID: PMC4312579 DOI: 10.1155/2015/376474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/21/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
Osteocytes, the major type of bone cells which reside in their lacunar and canalicular system within the bone matrix, function as biomechanosensors and biomechanotransducers of the bone. Although biomechanical behaviour of the osteocyte-lacunar-canalicular system has been investigated in previous studies mostly using computational 2-dimensional (2D) geometric models, only a few studies have used the 3-dimensional (3D) finite element (FE) model. In the current study, a 3D FE model was used to predict the responses of strain distributions of osteocyte-lacunar-canalicular system analyzed under static and cyclic loads. The strain amplification factor was calculated for all simulations. Effects on the strain of the osteocyte system were investigated under 500, 1500, 2000, and 3000 microstrain loading magnitudes and 1, 5, 10, 40, and 100 Hz loading frequencies. The maximum strain was found to change with loading magnitude and frequency. It was observed that maximum strain under 3000-microstrain loading was higher than those under 500, 1500, and 2000 microstrains. When the loading strain reached the maximum magnitude, the strain amplification factor of 100 Hz was higher than those of the other frequencies. Data from this 3D FE model study suggests that the strain amplification factor of the osteocyte-lacunar-canalicular system increases with loading frequency and loading strain increasing.
Collapse
|
15
|
Synchrotron X-ray phase nano-tomography-based analysis of the lacunar–canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis. Biomech Model Mechanobiol 2014; 14:267-82. [DOI: 10.1007/s10237-014-0601-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/06/2014] [Indexed: 11/26/2022]
|
16
|
Modeling microdamage behavior of cortical bone. Biomech Model Mechanobiol 2014; 13:1227-42. [PMID: 24622917 DOI: 10.1007/s10237-014-0568-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Bone is a complex material which exhibits several hierarchical levels of structural organization. At the submicron-scale, the local tissue porosity gives rise to discontinuities in the bone matrix which have been shown to influence damage behavior. Computational tools to model the damage behavior of bone at different length scales are mostly based on finite element (FE) analysis, with a range of algorithms developed for this purpose. Although the local mechanical behavior of bone tissue is influenced by microstructural features such as bone canals and osteocyte lacunae, they are often not considered in FE damage models due to the high computational cost required to simulate across several length scales, i.e., from the loads applied at the organ level down to the stresses and strains around bone canals and osteocyte lacunae. Hence, the aim of the current study was twofold: First, a multilevel FE framework was developed to compute, starting from the loads applied at the whole bone scale, the local mechanical forces acting at the micrometer and submicrometer level. Second, three simple microdamage simulation procedures based on element removal were developed and applied to bone samples at the submicrometer-scale, where cortical microporosity is included. The present microdamage algorithm produced a qualitatively analogous behavior to previous experimental tests based on stepwise mechanical compression combined with in situ synchrotron radiation computed tomography. Our results demonstrate the feasibility of simulating microdamage at a physiologically relevant scale using an image-based meshing technique and multilevel FE analysis; this allows relating microdamage behavior to intracortical bone microstructure.
Collapse
|
17
|
Stern AR, Nicolella DP. Measurement and estimation of osteocyte mechanical strain. Bone 2013; 54:191-5. [PMID: 23369990 DOI: 10.1016/j.bone.2013.01.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 01/13/2013] [Accepted: 01/20/2013] [Indexed: 12/29/2022]
Abstract
Osteocytes are the most abundant cell type in bone and are responsible for sensing mechanical strain and signaling bone (re)modeling, making them the primary mechanosensors within bone. Under aging and osteoporotic conditions, bone is known to be less responsive to loading (exercise), but it is unclear why. Perhaps, the levels of mechanical strain required to initiate these biological events are not perceived by the osteocytes embedded within the bone tissue. In this review we examine the methods used to measure and estimate the strains experienced by osteocytes in vivo as well as the results of related published experiments. Although the physiological levels of strain experienced by osteocytes in vivo are still under investigation, through computational modeling and laboratory experiments, it has been shown that there is significant amplification of average bone strain at the level of the osteocyte lacunae. It has also been proposed that the material properties of the perilacunar region surrounding the osteocyte can have significant effects of the strain perceived by the embedded osteocyte. These facts have profound implications for studies involving osteoporotic bone where the material properties are known to become stiffer.
Collapse
Affiliation(s)
- Amber Rath Stern
- University of Missouri-Kansas City, Departments of Oral Biology and Civil and Mechanical Engineering, 370G Robert H. Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
| | | |
Collapse
|
18
|
Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach. Biomech Model Mechanobiol 2013; 13:85-97. [DOI: 10.1007/s10237-013-0487-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
|
19
|
Verbruggen SW, Vaughan TJ, McNamara LM. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface 2012; 9:2735-44. [PMID: 22675160 DOI: 10.1098/rsif.2012.0286] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The osteocyte is believed to act as the main sensor of mechanical stimulus in bone, controlling signalling for bone growth and resorption in response to changes in the mechanical demands placed on our bones throughout life. However, the precise mechanical stimuli that bone cells experience in vivo are not yet fully understood. The objective of this study is to use computational methods to predict the loading conditions experienced by osteocytes during normal physiological activities. Confocal imaging of the lacunar-canalicular network was used to develop three-dimensional finite element models of osteocytes, including their cell body, and the surrounding pericellular matrix (PCM) and extracellular matrix (ECM). We investigated the role of the PCM and ECM projections for amplifying mechanical stimulation to the cells. At loading levels, representing vigorous physiological activity (3000 µε), our results provide direct evidence that (i) confocal image-derived models predict 350-400% greater strain amplification experienced by osteocytes compared with an idealized cell, (ii) the PCM increases the cell volume stimulated more than 3500 µε by 4-10% and (iii) ECM projections amplify strain to the cell by approximately 50-420%. These are the first confocal image-derived computational models to predict osteocyte strain in vivo and provide an insight into the mechanobiology of the osteocyte.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Biomechanics Research Centre (BMEC), Mechanical and Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Republic of Ireland
| | | | | |
Collapse
|
20
|
Schneider P, Meier M, Wepf R, Müller R. Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network. Bone 2011; 49:304-11. [PMID: 21514408 DOI: 10.1016/j.bone.2011.04.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/15/2011] [Accepted: 04/06/2011] [Indexed: 11/18/2022]
Abstract
Up to now, a quantitative three-dimensional (3D) assessment of the lacuno-canalicular network (LCN) within bone has not been achieved in a comprehensive way and the LCN has mostly been investigated using two-dimensional imaging methods only. First attempts for the 3D assessment of the osteocytes and their cell processes have been reported using different imaging techniques. Nevertheless, various experimental limitations allowed for assessment of isolated or incompletely interconnected osteocytes only. On the other hand, serial focused ion beam/scanning electron microscopy (FIB/SEM) currently seems to be a promising imaging method for quantitative 3D assessment of the LCN. However, combined 3D visualization and quantification of the LCN using serial FIB/SEM imaging has not been reported so far. The aim of this study was to provide a proof of concept that serial FIB/SEM meets all requirements for quantitative 3D imaging of the LCN. To this end, we developed a new bone sample preparation protocol for serial FIB/SEM imaging providing a resolution on the order of 30nm. This technique was successfully applied to the mid-diaphysis of a mouse femur. Moreover, we devised and applied novel measures for subsequent quantitative 3D morphometry of the LCN. Briefly, serial FIB/SEM was shown to be an appropriate technique to quantify the morphology of the LCN truly in 3D. This will allow investigating bone matrix changes on an ultrastructural level, which result from aging, disease, and treatment.
Collapse
|
21
|
Schneider P, Meier M, Wepf R, Müller R. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone 2010; 47:848-58. [PMID: 20691297 DOI: 10.1016/j.bone.2010.07.026] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 11/29/2022]
Abstract
Osteocytes are the most abundant cells in bone and the only cells embedded in the bone mineral matrix. They form an extended, three-dimensional (3D) network, whose processes interconnecting the cell bodies reside in thin canals, the canaliculi. Together with the osteocyte lacunae, the canaliculi form the lacuno-canalicular network (LCN). As the negative imprint of the cellular network within bone tissue, the LCN morphology is considered to play a central role for bone mechanosensation and mechanotransduction. However, the LCN has neither been visualized nor quantified in an adequate way up to now. On this account, this article summarizes the current state of knowledge of the LCN morphology and then reviews different imaging methods regarding the quantitative 3D assessment of bone tissue in general and of the LCN in particular. These imaging methods will provide new insights in the field of bone mechanosensation and mechanotransduction and thus, into processes of strain sensation and transduction, which are tightly associated with osteocyte viability and bone quality.
Collapse
|
22
|
Wang X, Nyman J, Dong X, Leng H, Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00246ed1v01y200912tis004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Viceconti M, Taddei F, Schileo E. Letter to the editor commenting on "Multilevel finite element modeling for the prediction of local cellular deformation in bone," Deligianni DD and Apostolopoulos CA (2008) Biomech Model Mechanobiol 7(2):151-159. Biomech Model Mechanobiol 2008; 8:427-8. [PMID: 18998179 DOI: 10.1007/s10237-008-0141-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 10/13/2008] [Indexed: 11/27/2022]
|
24
|
Deligianni DD, Apostolopoulos CA. Reply to the Letter to the Editor commenting on “Multilevel finite element modeling for the prediction of local cellular deformation in bone by Deligianni DD and Apostolopoulos CA (2008) Biomech Model Mechanobiol 7(2):151–159”. Biomech Model Mechanobiol 2008. [DOI: 10.1007/s10237-008-0140-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|