1
|
Inoda S, Takahashi H, Takahashi R, Hashimoto Y, Yoshida H, Takahashi H, Fujino Y, Aizawa K, Kawashima H, Yanagi Y. Effect of Combination Use of Aqueous Humor Secretion Inhibitor Eye Drops on Aflibercept Level: A Preliminary Analysis. Transl Vis Sci Technol 2025; 14:21. [PMID: 39976962 PMCID: PMC11844225 DOI: 10.1167/tvst.14.2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/03/2025] [Indexed: 02/23/2025] Open
Abstract
Purpose To investigate the association between aqueous humor (AH) suppressant eye drops and the concentration of aflibercept at 1 month after intravitreal injection. Methods This retrospective study included 17 eyes of 17 patients with neovascular age-related macular degeneration (nAMD) who used eye drops for their glaucoma and received their first intravitreal aflibercept (IVA) at two centers between July 2013 and November 2020. As controls, we enrolled 40 age-, sex-, and axial length-matched eyes of 40 patients with nAMD who were not using any medication that would affect AH circulation. AH was collected 1 month after the first IVA. Aflibercept levels were measured by enzyme-linked immunosorbent assay and were compared between controls and cases using the Kruskal-Wallis test and Dunn's test. The drugs were categorized into two groups based on their mechanism of action on the AH: outflow drugs (e.g., prostaglandin analog) and inflow drugs (e.g., carbonic anhydrase inhibitor, beta-blockers, and alpha-2 agonists). Results Mean (interquartile range) aflibercept levels in the AH in controls and in cases who used outflow and inflow drugs were 6.83 µg/mL (1.94-10.34), 9.93 µg/mL (2.58-17.44), and 15.95 µg/mL (7.20-22.57), respectively. A Kruskal-Wallis test showed a significant difference among the control, inflow, and outflow drugs (P = 0.0075). Dunn's test showed that aflibercept levels in the aqueous humor were significantly higher in cases using inflow drugs compared to both controls and cases using outflow drugs (P = 0.0085 and P = 0.044, respectively). Conclusions Aflibercept levels in the AH 1 month after the first IVA were higher in cases using eye drops that reduce AH secretion than in controls. Translational Relevance Our results, together with previous studies in animals, suggest that combined use of these eye drops might extend the half-life of intravitreally injected drugs.
Collapse
Affiliation(s)
- Satoru Inoda
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hidenori Takahashi
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Ryota Takahashi
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yuto Hashimoto
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hana Yoshida
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hironori Takahashi
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yujiro Fujino
- Department of Ophthalmology, Japan Community Healthcare Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Tochigi, Japan
| | - Hidetoshi Kawashima
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yasuo Yanagi
- Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan
- Retina Research Group, Singapore Eye Research Institute, Singapore Eye-ACP, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
2
|
Nepita I, Brusati C, Liggieri L, Ravera F, Ferrara M, Stocchino A, Romano MR, Santini E, Repetto R. The Role of Eye Movements in the Process of Silicone Oil Emulsification After Vitreoretinal Surgery. Bioengineering (Basel) 2024; 11:1081. [PMID: 39593741 PMCID: PMC11591131 DOI: 10.3390/bioengineering11111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Emulsification is a feared and common complication of the use of silicone oil (SO) as tamponade fluid after vitrectomy as it potentially associated with significant risks to ocular health, including elevated intraocular pressure (IOP), glaucoma, corneal and retinal changes. The aim of this study was to investigate the role and interplay of physical factors on the formation of SO emulsion. Experiments were performed in a model of the vitreous chamber with a realistic shape, filled with SO and an aqueous solution containing different concentrations of albumin, an endogenous protein known to modify the interfacial properties between SO and aqueous solutions. The model was subjected to harmonic and saccadic rotations and kept at body temperature. Results indicated that no emulsions were detected in the absence of albumin in the aqueous solution, while the presence of the protein facilitated emulsion formation, acting as a surfactant. Mechanical energy from eye movements was also found to be a key mechanism to produce emulsification, with higher mechanical energy provided to the system leading to smaller droplet sizes. The emulsions formed were stable over extended times. This study highlights the complex interplay of factors influencing SO emulsification in the vitreous chamber. A better understanding of the mechanisms underlying SO emulsification is crucial for developing strategies to mitigate SO emulsion and the related complications.
Collapse
Affiliation(s)
- Irene Nepita
- Consiglio Nazionale delle Ricerche-Institute of Condensed Matter Chemistry and Technologies for Energy (CNR-ICMATE), Via de Marini 6, 16149 Genoa, Italy; (L.L.); (F.R.); (E.S.)
| | - Camilla Brusati
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy; (C.B.); (R.R.)
| | - Libero Liggieri
- Consiglio Nazionale delle Ricerche-Institute of Condensed Matter Chemistry and Technologies for Energy (CNR-ICMATE), Via de Marini 6, 16149 Genoa, Italy; (L.L.); (F.R.); (E.S.)
| | - Francesca Ravera
- Consiglio Nazionale delle Ricerche-Institute of Condensed Matter Chemistry and Technologies for Energy (CNR-ICMATE), Via de Marini 6, 16149 Genoa, Italy; (L.L.); (F.R.); (E.S.)
| | - Mariantonia Ferrara
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Alessandro Stocchino
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Eva Santini
- Consiglio Nazionale delle Ricerche-Institute of Condensed Matter Chemistry and Technologies for Energy (CNR-ICMATE), Via de Marini 6, 16149 Genoa, Italy; (L.L.); (F.R.); (E.S.)
| | - Rodolfo Repetto
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy; (C.B.); (R.R.)
| |
Collapse
|
3
|
Nakazawa K, Matsuo M, Kikuchi Y, Nakajima Y, Numano R. Melanopsin DNA aptamers can regulate input signals of mammalian circadian rhythms by altering the phase of the molecular clock. Front Neurosci 2024; 18:1186677. [PMID: 38694901 PMCID: PMC11062245 DOI: 10.3389/fnins.2024.1186677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
DNA aptamers can bind specifically to biomolecules to modify their function, potentially making them ideal oligonucleotide therapeutics. Herein, we screened for DNA aptamer of melanopsin (OPN4), a blue-light photopigment in the retina, which plays a key role using light signals to reset the phase of circadian rhythms in the central clock. Firstly, 15 DNA aptamers of melanopsin (Melapts) were identified following eight rounds of Cell-SELEX using cells expressing melanopsin on the cell membrane. Subsequent functional analysis of each Melapt was performed in a fibroblast cell line stably expressing both Period2:ELuc and melanopsin by determining the degree to which they reset the phase of mammalian circadian rhythms in response to blue-light stimulation. Period2 rhythmic expression over a 24-h period was monitored in Period2:ELuc stable cell line fibroblasts expressing melanopsin. At subjective dawn, four Melapts were observed to advance phase by >1.5 h, while seven Melapts delayed phase by >2 h. Some Melapts caused a phase shift of approximately 2 h, even in the absence of photostimulation, presumably because Melapts can only partially affect input signaling for phase shift. Additionally, some Melaps were able to induce phase shifts in Per1::luc transgenic (Tg) mice, suggesting that these DNA aptamers may have the capacity to affect melanopsin in vivo. In summary, Melapts can successfully regulate the input signal and shifting phase (both phase advance and phase delay) of mammalian circadian rhythms in vitro and in vivo.
Collapse
Affiliation(s)
- Kazuo Nakazawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- TechnoPro, Inc., Tokyo, Japan
| | - Minako Matsuo
- Institute for Research on Next-Generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yo Kikuchi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Institute for Research on Next-Generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yoshihiro Nakajima
- Health and Medical Research, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Rika Numano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Institute for Research on Next-Generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
4
|
Luo RH, Tram NK, Parekh AM, Puri R, Reilly MA, Swindle-Reilly KE. The Roles of Vitreous Biomechanics in Ocular Disease, Biomolecule Transport, and Pharmacokinetics. Curr Eye Res 2023; 48:195-207. [PMID: 35179421 DOI: 10.1080/02713683.2022.2033271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics of interest over the last two decades. In particular, the behavior of the vitreous humor as a viscoelastic tissue has been investigated to identify its role in a variety of processes related to biotransport, aging, and age-related pathologies of the vitreoretinal interface. METHODS A thorough search and review of peer-reviewed publications discussing the biomechanical properties of the vitreous humor in both human and animal specimens was conducted. Findings on the effects of biomechanics on vitreoretinal pathologies and vitreous biotransport were analyzed and discussed. RESULTS The pig and rabbit vitreous have been found to be most mechanically similar to the human vitreous. Age-related liquefaction of the vitreous creates two mechanically unique phases, with an overall effect of softening the vitreous. However, the techniques used to acquire this mechanical data are limited by the in vitro testing methods used, and the vitreous humor has been hypothesized to behave differently in vivo due in part to its swelling properties. The impact of liquefaction and subsequent detachment of the vitreous humor from the posterior retinal surface is implicated in a variety of tractional pathologies of the retina and macula. Liquefaction also causes significant changes in the biotransport properties of the eye, allowing for significantly faster movement of molecules compared to the healthy vitreous. Recent developments in computational and ex vivo models of the vitreous humor have helped with understanding its behavior and developing materials capable of replacing it. CONCLUSIONS A better understanding of the biomechanical properties of the vitreous humor and how these relate to its structure will potentially aid in improving clinical metrics for vitreous liquefaction, design of biomimetic vitreous substitutes, and predicting pharmacokinetics for intravitreal drug delivery.
Collapse
Affiliation(s)
- Richard H Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Nguyen K Tram
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ankur M Parekh
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Raima Puri
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Matthew A Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Velentza-Almpani A, Ibeanu N, Liu T, Redhead C, Tee Khaw P, Brocchini S, Awwad S, Bouremel Y. Effects of Flow Hydrodynamics and Eye Movements on Intraocular Drug Clearance. Pharmaceutics 2022; 14:pharmaceutics14061267. [PMID: 35745839 PMCID: PMC9229170 DOI: 10.3390/pharmaceutics14061267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023] Open
Abstract
New in vitro prototypes (PK-Eye™) were tested with and without eye movement to understand diffusion and convection effects on intraocular clearance. Port placement in front ((i) ciliary inflow model) and behind the model lens ((ii) posterior inflow model) was used to study bevacizumab (1.25 mg/50 µL) and dexamethasone (0.1 mg/100 µL) in phosphate-buffered saline (PBS, pH 7.4) and simulated vitreal fluid (SVF). Dexamethasone was studied in a (iii) retinal-choroid-sclera (RCS) outflow model (with ciliary inflow and two outflow pathways). Ciliary vs. posterior inflow placement did not affect the half-life for dexamethasone at 2.0 µL/min using PBS (4.7 days vs. 4.8 days) and SVF (4.9 days with ciliary inflow), but it did decrease the half-life for bevacizumab in PBS (20.4 days vs. 2.4 days) and SVF (19.2 days vs. 10.8 days). Eye movement only affected the half-life of dexamethasone in both media. Dexamethasone in the RCS model showed approximately 20% and 75% clearance from the RCS and anterior outflows, respectively. The half-life of the protein was comparable to human data in the posterior inflow model. Shorter half-life values for a protein in a ciliary inflow model can be achieved with other eye movements. The RCS flow model with eye movement was comparable to human half-life data for dexamethasone.
Collapse
Affiliation(s)
- Angeliki Velentza-Almpani
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Nkiruka Ibeanu
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Tianyang Liu
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Christopher Redhead
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
| | - Peng Tee Khaw
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Steve Brocchini
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Sahar Awwad
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Correspondence: (S.A.); (Y.B.); Tel.: +44-207-753-5802 (S.A.)
| | - Yann Bouremel
- Optceutics Ltd., 28a Menelik Road, London NW2 3RP, UK; (A.V.-A.); (N.I.); (T.L.); (C.R.); (P.T.K.); (S.B.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Correspondence: (S.A.); (Y.B.); Tel.: +44-207-753-5802 (S.A.)
| |
Collapse
|
6
|
Wang R, Tsai JH, Snead MP, Alexander P, Wilson DI. Stability of the Interface Between Two Immiscible Liquids in a Model Eye Subject to Saccadic Motion. J Biomech Eng 2022; 144:1127985. [PMID: 34773461 DOI: 10.1115/1.4053004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 11/08/2022]
Abstract
The interface between silicone oil and saline layers in a three-dimensional model of the eye chamber was studied under different eye-like saccadic motions in order to determine the stability of the interface and propensity for emulsification in the bulk. The effect of level of fill, saccade amplitude, angular velocity, latency time, and orientation were investigated experimentally in spherical flasks with internal diameters 10, 28, and 40 mm, as well as a 28 mm diameter flask with an indent replicating the lens or the presence of a buckle. The deformation of the interface was quantified in terms of the change in its length in two-dimensional images. The deformation increased with Weber number, We, and was roughly proportional to We for We > 1. The presence of the lens gave rise to higher deformation near this feature. In all cases emulsification was not observed in either bulk fluid. The velocity profile in the spherical configuration was mapped using particle imaging velocimetry and is compared with an analytical solution and a short computational fluid dynamics simulation study. These confirm that the saccadic motion induces flow near the wall in the saline layer and significantly further into the chamber in the silicone oil. Surfactants soluble in the aqueous and oil phases reduced the interfacial tension, increasing deformation but did not lead to emulsification in the bulk.
Collapse
Affiliation(s)
- Ru Wang
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Jheng-Han Tsai
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Martin P Snead
- Department of Ophthalmology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Philip Alexander
- Department of Ophthalmology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - D Ian Wilson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
7
|
Ocular Fluid Mechanics and Drug Delivery: A Review of Mathematical and Computational Models. Pharm Res 2021; 38:2003-2033. [PMID: 34936067 DOI: 10.1007/s11095-021-03141-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The human eye is a complex biomechanical structure with a range of biomechanical processes involved in various physiological as well as pathological conditions. Fluid flow inside different domains of the eye is one of the most significant biomechanical processes that tend to perform a wide variety of functions and when combined with other biophysical processes play a crucial role in ocular drug delivery. However, it is quite difficult to comprehend the effect of these processes on drug transport and associated treatment experimentally because of ethical constraints and economic feasibility. Computational modeling on the other hand is an excellent means to understand the associated complexity between these aforementioned processes and drug delivery. A wide range of computational models specific to different types of fluids present in different domains of the eye as well as varying drug delivery modes has been established to understand the fluid flow behavior and drug transport phenomenon in an insilico manner. These computational models have been used as a non-invasive tool to aid ophthalmologists in identifying the challenges associated with a particular drug delivery mode while treating particular eye diseases and to advance the understanding of the biomechanical behavior of the eye. In this regard, the author attempts to summarize the existing computational and mathematical approaches proposed in the last two decades for understanding the fluid mechanics and drug transport associated with different domains of the eye, together with their application to modify the existing treatment processes.
Collapse
|
8
|
Ankamah E, Green-Gomez M, Roche W, Ng E, Welge-Lüßen U, Kaercher T, Nolan JM. Dietary Intervention With a Targeted Micronutrient Formulation Reduces the Visual Discomfort Associated With Vitreous Degeneration. Transl Vis Sci Technol 2021; 10:19. [PMID: 34647961 PMCID: PMC8525826 DOI: 10.1167/tvst.10.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the impact of supplementation with a targeted micronutrient formulation on the visual discomfort associated with vitreous degeneration. Methods In this clinical trial, 61 patients with symptomatic vitreous floaters were randomized to consume daily, the active supplement consisting of 125 mg L-lysine, 40 mg vitamin C, 26.3 mg Vitis vinifera extract, 5 mg zinc, and 100 mg Citrus aurantium or placebo for 6 months. Change in visual discomfort from floaters, assessed with the Floater Disturbance Questionnaire, was the primary outcome measure. Secondary outcome measures included best-corrected visual acuity, letter contrast sensitivity, photopic functional contrast sensitivity with positive and negative contrast polarity, and quantitative vitreous opacity areas. Results After supplementation, the active group reported a significant decrease in their visual discomfort from floaters (P < 0.001), whereas the placebo group had no significant change in their visual discomfort (P = 0.416). At 6 months, there was a significant decrease in vitreous opacity areas in the active group (P < 0.001) and an insignificant increase in vitreous opacity areas in the placebo group (P = 0.081). Also, there was a significant improvement in photopic functional contrast sensitivity with positive contrast polarity in the active group after supplementation (P = 0.047). Conclusions The findings of this study indicate improvements in vision-related quality of life and visual function of patients suffering from vitreous floaters after supplementation with a formulation of antioxidative and antiglycation micronutrients. Notably, these improvements were confirmed by the decrease in vitreous opacity areas in the active group. Translational Relevance This targeted dietary intervention should be considered to support patients with symptomatic vitreous degeneration.
Collapse
Affiliation(s)
- Emmanuel Ankamah
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland
| | - Marina Green-Gomez
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland
| | - Warren Roche
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland
| | - Eugene Ng
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland.,Institute of Eye Surgery, UPMC Whitfield, Buttlerstown, County Waterford, Ireland
| | | | | | - John M Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland
| |
Collapse
|
9
|
Biocompatibility of intraocular liquid tamponade agents: an update. Eye (Lond) 2021; 35:2699-2713. [PMID: 34035489 PMCID: PMC8452761 DOI: 10.1038/s41433-021-01596-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Intraocular liquids tamponade agents, such as perfluorocarbon liquids (PFCLs), semifluorinated alkanes (SFAs), silicone oils (SOs) and heavy silicone oils (HSOs), are a crucial intraoperative and/or postoperative tool in vitreoretinal surgery, in particular for the management of complex vitreoretinal diseases. However, their use is not without complications, which are potentially severe. Consequently, a growing interest has been devoted to the biocompatibility of these compounds and the adequacy of current regulations that should guarantee their safety. Obviously, an updated knowledge on research findings and potential risks associated to the use of intraocular liquid compounds is essential, not only for vitreoretinal surgeons, but also for any ophthalmologist involved in the management of patients receiving intraocular liquid tamponades. In light of this, the review provides a comprehensive characterisation of intraocular liquid tamponades, in terms of physical and chemical properties, current clinical use and possible complications. Moreover, this review focuses on the safety profile of these compounds, summarising the existing regulation and the available evidence on their biocompatibility.
Collapse
|
10
|
Ferroni M, De Gaetano F, Cereda MG, Boschetti F. Evaluation of the ocular fluid dynamic effects on intraocular magnesium-based device: A comparison between CFD and FSI approaches. Med Eng Phys 2020; 86:20-28. [PMID: 33261729 DOI: 10.1016/j.medengphy.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
Magnesium is an essential element for the ocular functions and used for the realization of medical devices due to its low corrosion resistance, bioresorbable nature and biocompatibility. Wet age-related macular degeneration is one of the main causes of blindness with patients treated by intravitreal injections of inhibitor drugs. According to the need to reduce the number of injections, the development of new drug delivery devices able to extend the therapeutical outcomes is mandatory and magnesium can be considered as a promising candidate. The aim of the work concerns the evaluation of the ocular fluid dynamic role on a magnesium-based device placed in the vitreous chamber. Particularly, the fluid-induced shear stress field on the surfaces in contact with the liquefied vitreous was studied. Both computational fluid dynamic and fluid-structure interaction approaches were proposed and then compared. Saccadic motion was implemented to recreate the vitreous fluid dynamics. High changes in terms of fluid-induced shear stress field varying the CFD and FSI numerical approaches and kinematic parameters of the saccadic function can be noticed. The comparison between CFD and FSI approaches showed minor significant differences and both implementations suggested the possibility to obtain a uniform and controlled corrosion of the device.
Collapse
Affiliation(s)
- Marco Ferroni
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; MgShell S.r.l., Milan, Italy.
| | - Francesco De Gaetano
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; MgShell S.r.l., Milan, Italy
| | - Matteo Giuseppe Cereda
- Eye Clinic, Department of Biomedical and clinical science "Luigi Sacco", Sacco Hospital, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Federica Boschetti
- LaBS, Chemistry Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
11
|
Tram NK, Maxwell CJ, Swindle-Reilly KE. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport. Curr Eye Res 2020; 46:429-444. [PMID: 33040616 DOI: 10.1080/02713683.2020.1826977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research on the vitreous humor and development of hydrogel vitreous substitutes have gained a rapid increase in interest within the past two decades. However, the properties of the vitreous humor and vitreous substitutes have yet to be consolidated. In this paper, the mechanical properties of the vitreous humor and hydrogel vitreous substitutes were systematically reviewed. The number of publications on the vitreous humor and vitreous substitutes over the years, as well as their respective testing conditions and testing techniques were analyzed. The mechanical properties of the human vitreous were found to be most similar to the vitreous of pigs and rabbits. The storage and loss moduli of the hydrogel vitreous substitutes developed were found to be orders of magnitude higher in comparison to the native human vitreous. However, the reported modulus for human vitreous, which was most commonly tested in vitro, has been hypothesized to be different in vivo. Future studies should focus on testing the mechanical properties of the vitreous in situ or in vivo. In addition to its mechanical properties, the vitreous humor has other biotransport mechanisms and biochemical functions that establish a redox balance and maintain an oxygen gradient inside the vitreous chamber to protect intraocular tissues from oxidative damage. Biomimetic hydrogel vitreous substitutes have the potential to provide ophthalmologists with additional avenues for treating and controlling vitreoretinal diseases while preventing complications after vitrectomy. Due to the proximity and interconnectedness of the vitreous humor to other ocular tissues, particularly the lens and the retina, more interest has been placed on understanding the properties of the vitreous humor in recent years. A better understanding of the properties of the vitreous humor will aid in improving the design of biomimetic vitreous substitutes and enhancing intravitreal biotransport.
Collapse
Affiliation(s)
- Nguyen K Tram
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Courtney J Maxwell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology & Visual Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
De Bruyne S, Van den Broecke C, Vrielinck H, Khelifi S, De Wever O, Bracke K, Huizing M, Boston N, Himpe J, Speeckaert M, Vral A, Van Dorpe J, Van Aken E, Delanghe JR. Fructosamine-3-Kinase as a Potential Treatment Option for Age-Related Macular Degeneration. J Clin Med 2020; 9:jcm9092869. [PMID: 32899850 PMCID: PMC7565857 DOI: 10.3390/jcm9092869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration is the leading cause of blindness in the developed world. Since advanced glycation end products (AGEs) are implicated in the pathogenesis of AMD through various lines of evidence, we investigated the potential of fructosamine-3-kinase (FN3K) in the disruption of retinal AGEs, drusenoid material and drusenoid lesions in patients with AMD. AGE-type autofluorescence was measured to evaluate the effects of FN3K on glycolaldehyde-induced AGE-modified neural porcine retinas and unmodified human neural retinas. Eye pairs from cigarette-smoke- and air-exposed mice were treated and evaluated histologically. Automated optical image analysis of human tissue sections was performed to compare control- and FN3K-treated drusen and near-infrared (NIR) microspectroscopy was performed to examine biochemical differences. Optical coherence tomography (OCT) was used to evaluate the effect of FN3K on drusenoid deposits after treatment of post-mortem human eyes. FN3K treatment provoked a significant decrease (41%) of AGE-related autofluorescence in the AGE-modified porcine retinas. Furthermore, treatment of human neural retinas resulted in significant decreases of autofluorescence (−24%). FN3K-treated murine eyes showed less drusenoid material. Pairwise comparison of drusen on tissue sections revealed significant changes in color intensity after FN3K treatment. NIR microspectroscopy uncovered clear spectral differences in drusenoid material (Bruch’s membrane) and drusen after FN3K treatment. Ex vivo treatment strongly reduced size of subretinal drusenoid lesions on OCT imaging (up to 83%). In conclusion, our study demonstrated for the first time a potential role of FN3K in the disruption of AGE-related retinal autofluorescence, drusenoid material and drusenoid lesions in patients with AMD.
Collapse
Affiliation(s)
- Sander De Bruyne
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
| | | | - Henk Vrielinck
- Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.); (S.K.)
| | - Samira Khelifi
- Department of Solid State Sciences, Ghent University, 9000 Ghent, Belgium; (H.V.); (S.K.)
| | - Olivier De Wever
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (O.D.W.); (A.V.)
| | - Ken Bracke
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (K.B.); (M.S.)
| | - Manon Huizing
- Biobank, Antwerp University Hospital, 2650 Antwerp, Belgium; (M.H.); (N.B.)
| | - Nezahat Boston
- Biobank, Antwerp University Hospital, 2650 Antwerp, Belgium; (M.H.); (N.B.)
| | - Jonas Himpe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
| | - Marijn Speeckaert
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (K.B.); (M.S.)
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (O.D.W.); (A.V.)
| | - Jo Van Dorpe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Elisabeth Van Aken
- Department of Head and Skin, Ghent University, 9000 Ghent, Belgium
- Correspondence: (E.V.A.); (J.R.D.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (S.D.B.); (J.H.); (J.V.D.)
- Correspondence: (E.V.A.); (J.R.D.)
| |
Collapse
|
13
|
Silva AF, Pimenta F, Alves MA, Oliveira MSN. Flow dynamics of vitreous humour during saccadic eye movements. J Mech Behav Biomed Mater 2020; 110:103860. [PMID: 32755799 DOI: 10.1016/j.jmbbm.2020.103860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
In this work, we reveal the flow dynamics of Vitreous Humour (VH) gel and liquid phases during saccadic movements of the eye, considering the biofluids viscoelastic character as well as realistic eye chamber geometry and taking into account the saccade profile. We quantify the differences in the flow dynamics of VH gel and liquid phases using viscoelastic rheological models that are able to model the VH shear rheology, considering different amplitudes of saccadic movements (10∘, 20∘, 30∘ and 40∘). For this purpose, the computational fluid dynamics (CFD) open source software OpenFOAM® was used. The results portray a distinct flow behaviour for the VH gel and liquid phases, with inertial effects being more significant for the VH liquid phase. Moreover, the Wall Shear Stress (WSS) values produced by the VH gel phase are more than twice of those generated by the VH liquid phase. Results also show that for different amplitudes of eye movement both the velocity magnitude in the vitreous cavity and the shear stresses on the cavity walls rise with increasing saccadic movement displacement.
Collapse
Affiliation(s)
- Andreia F Silva
- James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK; School of Physics and Astronomy, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JL, UK.
| | - Francisco Pimenta
- Departamento de Engenharia Química, CEFT, Faculdade de Engenharia, Universidade do Porto, 4200-465, Porto, Portugal
| | - Manuel A Alves
- Departamento de Engenharia Química, CEFT, Faculdade de Engenharia, Universidade do Porto, 4200-465, Porto, Portugal
| | - Mónica S N Oliveira
- James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
| |
Collapse
|
14
|
A drug delivery analysis of large molecules in ocular vitreous chamber: Dependency on saccadic movements after intravitreal injection. Med Eng Phys 2020; 82:49-57. [PMID: 32709265 DOI: 10.1016/j.medengphy.2020.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study is to investigate the effect of vitreous sloshing induced by saccades on the intravitreal delivery of large molecule drugs. The vitreous body was considered in its age-related liquefaction condition. Fluid dynamics and large molecule distribution were described by the coupling of mass conservation's and Fick's laws with continuity and momentum equations for a Newtonian incompressible fluid in a 3D unsteady analysis. Two injection sites were analyzed, in both the mixing effect of a 50° periodic saccade leads to uniform drug distribution in 30 s of simulation, the initial bolus site being left after 3 s of simulation. In absence of saccadic movements, the dominant transport contribution is the diffusive one and large molecules hardly reach their uniform distribution inside the vitreous cavity. A model describing the intravitreal distribution of large molecules in presence of saccades was developed, improving the understanding of drug transport mechanism after an intravitreal injection and highlighting how advection contribution enhances its distribution in the vitreous chamber.
Collapse
|
15
|
Friehmann A, Eng UZ, Rubowitz A. Fluid viscosity but not surface tension, determines the tamponade effect of intravitreal fluids in a novel in vitro eye model of retinal detachment. J Mech Behav Biomed Mater 2020; 101:103452. [DOI: 10.1016/j.jmbbm.2019.103452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022]
|
16
|
A Combined Approach for the Analysis of Ocular Fluid Dynamics in the Presence of Saccadic Movements. Ann Biomed Eng 2018; 46:2091-2101. [DOI: 10.1007/s10439-018-02110-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/27/2018] [Indexed: 01/04/2023]
|
17
|
Davvalo Khongar P, Pralits JO, Soleri P, Romano M, Repetto R. A study of the mechanical forces on aphakic iris-fixated intraocular lenses. J Biomech Eng 2018; 140:2686535. [PMID: 30029265 DOI: 10.1115/1.4040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 11/08/2022]
Abstract
Iris-fixated aphakic intraocular lenses (IFIOL) are used in cataract surgery, when more common intraocular lenses cannot be adopted because of the absence of capsular bag support. These lenses can be implanted either on the poste- rior or the anterior surface of the iris. In this work we study whether one of these options is preferable over the other from the mechanical point of view. In particular, we focus on the forces that the IFIOL transmits to the iris, which are asso- ciated with the risk of lens dislocation. We study the prob- lem numerically and consider aqueous flow induced by sac- cadic rotations in the cases of an IFIOL in the anterior and posterior side of the iris. The IFIOL considered is the Arti- san Aphakia +30.0 D lens (IFIOL) produced by Ophtec BV. We perform the simulations in OpenFOAM. We find that the forces transmitted by the aphakic IFIOL to the iris are sig- nificantly higher in the case of posterior implantation. This suggests that lens implantation on the posterior surface of the iris might be associated with a higher risk of lens disloca- tion, when an inadequate amount of iris tissue is enclavated during implantation.
Collapse
Affiliation(s)
- Peyman Davvalo Khongar
- Deptartment of Civil, Chemical and Environmental Engineering, University of Genoa, 16145, Genoa, Italy
| | - Jan O Pralits
- Deptartment of Civil, Chemical and Environmental Engineering, University of Genoa, 16145, Genoa, Italy
| | | | - Mario Romano
- Department of Biomedical Sciences, Humanitas University, Rozzano - Milano, Italy
| | - Rodolfo Repetto
- Deptartment of Civil, Chemical and Environmental Engineering, University of Genoa, 16145, Genoa, Italy
| |
Collapse
|
18
|
Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol 2017; 174:4205-4223. [PMID: 28865239 PMCID: PMC5715579 DOI: 10.1111/bph.14024] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
The eye is a highly specialized organ that is subject to a huge range of pathology. Both local and systemic disease may affect different anatomical regions of the eye. The least invasive routes for ocular drug administration are topical (e.g. eye drops) and systemic (e.g. tablets) formulations. Barriers that subserve as protection against pathogen entry also restrict drug permeation. Topically administered drugs often display limited bioavailability due to many physical and biochemical barriers including the pre-corneal tear film, the structure and biophysiological properties of the cornea, the limited volume that can be accommodated by the cul-de-sac, the lacrimal drainage system and reflex tearing. The tissue layers of the cornea and conjunctiva are further key factors that act to restrict drug delivery. Using carriers that enhance viscosity or bind to the ocular surface increases bioavailability. Matching the pH and polarity of drug molecules to the tissue layers allows greater penetration. Drug delivery to the posterior segment is a greater challenge and, currently, the standard route is via intravitreal injection, notwithstanding the risks of endophthalmitis and retinal detachment with frequent injections. Intraocular implants that allow sustained drug release are at different stages of development. Novel exciting therapeutic approaches include methods for promoting transscleral delivery, sustained release devices, nanotechnology and gene therapy.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Abeer H A Mohamed Ahmed
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Garima Sharma
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Jacob S Heng
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Steve Brocchini
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | | |
Collapse
|
19
|
Sengupta S, Smith DS, Smith AK, Welch EB, Smith SA. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI. Invest Ophthalmol Vis Sci 2017; 58:4390–4398. [PMID: 28813574 PMCID: PMC5559179 DOI: 10.1167/iovs.17-21861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left-right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease.
Collapse
Affiliation(s)
- Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David S Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alex K Smith
- The Centre for Functional MRI of the Brain, The University of Oxford, Oxford, United Kingdom
| | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
20
|
Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res 2017; 58:115-151. [PMID: 28109737 DOI: 10.1016/j.preteyeres.2017.01.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
This article discusses retinal oxygenation and retinal metabolism by focusing on measurements made with two of the principal methods used to study O2 in the retina: measurements of PO2 with oxygen-sensitive microelectrodes in vivo in animals with a retinal circulation similar to that of humans, and oximetry, which can be used non-invasively in both animals and humans to measure O2 concentration in retinal vessels. Microelectrodes uniquely have high spatial resolution, allowing the mapping of PO2 in detail, and when combined with mathematical models of diffusion and consumption, they provide information about retinal metabolism. Mathematical models, grounded in experiments, can also be used to simulate situations that are not amenable to experimental study. New methods of oximetry, particularly photoacoustic ophthalmoscopy and visible light optical coherence tomography, provide depth-resolved methods that can separate signals from blood vessels and surrounding tissues, and can be combined with blood flow measures to determine metabolic rate. We discuss the effects on retinal oxygenation of illumination, hypoxia and hyperoxia, and describe retinal oxygenation in diabetes, retinal detachment, arterial occlusion, and macular degeneration. We explain how the metabolic measurements obtained from microelectrodes and imaging are different, and how they need to be brought together in the future. Finally, we argue for revisiting the clinical use of hyperoxia in ophthalmology, particularly in retinal arterial occlusions and retinal detachment, based on animal research and diffusion theory.
Collapse
Affiliation(s)
- Robert A Linsenmeier
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Neurobiology Department, Northwestern University, 2205 Tech Drive, Evanston 60208-3520, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| | - Hao F Zhang
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| |
Collapse
|
21
|
Noohi P, Abdekhodaie MJ, Cheng YL. Computational modeling of intraocular gas dynamics. Phys Biol 2015; 12:066019. [PMID: 26682529 DOI: 10.1088/1478-3975/12/6/066019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency.
Collapse
Affiliation(s)
- P Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | | | |
Collapse
|
22
|
Current Trends about Inner Limiting Membrane Peeling in Surgery for Epiretinal Membranes. J Ophthalmol 2015; 2015:671905. [PMID: 26425352 PMCID: PMC4573876 DOI: 10.1155/2015/671905] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/10/2015] [Indexed: 12/31/2022] Open
Abstract
The inner limiting membrane (ILM) is the basement membrane of the Müller cells and can act as a scaffold for cellular proliferation in the pathophysiology of disorders affecting the vitreomacular interface. The atraumatic removal of the macular ILM has been proposed for treating various forms of tractional maculopathy in particular for macular pucker. In the last decade, the removal of ILM has become a routine practice in the surgery of the epiretinal membranes (ERMs), with good anatomical results. However many recent studies showed that ILM peeling is a procedure that can cause immediate traumatic effects and progressive modification on the underlying inner retinal layers. Moreover, it is unclear whether ILM peeling is helpful to improve vision after surgery for ERM. In this review, we describe the current understanding about ILM peeling and highlight the beneficial and adverse effects associated with this surgical procedure.
Collapse
|
23
|
Awwad S, Lockwood A, Brocchini S, Khaw PT. The PK-Eye: A Novel In Vitro Ocular Flow Model for Use in Preclinical Drug Development. J Pharm Sci 2015; 104:3330-42. [PMID: 26108574 DOI: 10.1002/jps.24480] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023]
Abstract
A 2-compartment in vitro eye flow model has been developed to estimate ocular drug clearance by the anterior aqueous outflow pathway. The model is designed to accelerate the development of longer-acting ophthalmic therapeutics. Dye studies show aqueous flow is necessary for a molecule injected into the vitreous cavity to clear from the model. The clearance times of proteins can be estimated by collecting the aqueous outflow, which was first conducted with bevacizumab using phosphate-buffered saline in the vitreous cavity. A simulated vitreous solution was then used and ranibizumab (0.5 mg) displayed a clearance time of 8.1 ± 3.1 days, which is comparable to that observed in humans. The model can estimate drug release from implants or the dissolution of suspensions as a first step in their clearance mechanism, which will be the rate-limiting step for the overall resident time of a candidate dosage form in the vitreous. A suspension of triamcinolone acetonide (Kenalog®) (4.0 mg) displayed clearance times spanning 26-28 days. These results indicate that the model can be used to determine in vitro-in vivo correlations in preclinical studies to develop long-lasting therapeutics to treat blinding diseases at the back of the eye.
Collapse
Affiliation(s)
- Sahar Awwad
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Alastair Lockwood
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Steve Brocchini
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.,UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
24
|
Girard MJA, Dupps WJ, Baskaran M, Scarcelli G, Yun SH, Quigley HA, Sigal IA, Strouthidis NG. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res 2015; 40:1-18. [PMID: 24832392 PMCID: PMC4233020 DOI: 10.3109/02713683.2014.914543] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomechanics is the study of the relationship between forces and function in living organisms and is thought to play a critical role in a significant number of ophthalmic disorders. This is not surprising, as the eye is a pressure vessel that requires a delicate balance of forces to maintain its homeostasis. Over the past few decades, basic science research in ophthalmology mostly confirmed that ocular biomechanics could explain in part the mechanisms involved in almost all major ophthalmic disorders such as optic nerve head neuropathies, angle closure, ametropia, presbyopia, cataract, corneal pathologies, retinal detachment and macular degeneration. Translational biomechanics in ophthalmology, however, is still in its infancy. It is believed that its use could make significant advances in diagnosis and treatment. Several translational biomechanics strategies are already emerging, such as corneal stiffening for the treatment of keratoconus, and more are likely to follow. This review aims to cultivate the idea that biomechanics plays a major role in ophthalmology and that the clinical translation, lead by collaborative teams of clinicians and biomedical engineers, will benefit our patients. Specifically, recent advances and future prospects in corneal, iris, trabecular meshwork, crystalline lens, scleral and lamina cribrosa biomechanics are discussed.
Collapse
Affiliation(s)
- Michaël J A Girard
- In Vivo Biomechanics Laboratory, Department of Biomedical Engineering, National University of Singapore , Singapore
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mechanical models of the dynamics of vitreous substitutes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:672926. [PMID: 25147810 PMCID: PMC4131473 DOI: 10.1155/2014/672926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022]
Abstract
We discuss some aspects of the fluid dynamics of vitreous substitutes in the vitreous chamber, focussing on the flow induced by rotations of the eye bulb. We use simple, yet not trivial, theoretical models to highlight mechanical concepts that are relevant to understand the dynamics of vitreous substitutes and also to identify ideal properties for vitreous replacement fluids. We first recall results by previous authors, showing that the maximum shear stress on the retina grows with increasing viscosity of the fluid up to a saturation value. We then investigate how the wall shear stress changes if a thin layer of aqueous humour is present in the vitreous chamber, separating the retina from the vitreous replacement fluid. The theoretical predictions show that the existence of a thin layer of aqueous is sufficient to substantially decrease the shear stress on the retina. We finally discuss a theoretical model that predicts the stability conditions of the interface between the aqueous and a vitreous substitute. We discuss the implications of this model to understand the mechanisms leading to the formation of emulsion in the vitreous chamber, showing that instability of the interface is possible in a range of parameters relevant for the human eye.
Collapse
|
26
|
Tamponade or filling effect: changes of forces in myopic eyes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:618382. [PMID: 25101290 PMCID: PMC4101978 DOI: 10.1155/2014/618382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/22/2014] [Indexed: 02/05/2023]
Abstract
Myopia is the most common ocular abnormality. Its high and growing prevalence has contributed to a recent surge in surgical interest in the disorder, since retinal detachment in eyes with high myopia differs from that in emmetropic eyes or eyes with low myopia. The myopic eye, because of its specific anatomy, poses special challenges that need to be overcome to ensure the appropriate use of vitreous substitutes. However, intraocular tamponades have shown great potential for revolutionizing retinal detachment surgery and vitreomacular surgery in general in myopic eyes. We provide an updated review of the clinical use of vitreous substitutes in the myopic eye, paying particular attention to analyzing the ideal function of endotamponade agents and comparing the effects of these agents on the physical and biological properties of the eye.
Collapse
|
27
|
Filas BA, Zhang Q, Okamoto RJ, Shui YB, Beebe DC. Enzymatic degradation identifies components responsible for the structural properties of the vitreous body. Invest Ophthalmol Vis Sci 2014; 55:55-63. [PMID: 24222300 DOI: 10.1167/iovs.13-13026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Vitreous degeneration contributes to several age-related eye diseases, including retinal detachment, macular hole, macular traction syndrome, and nuclear cataracts. Remarkably little is understood about the molecular interactions responsible for maintaining vitreous structure. The purpose of this study was to measure the structural properties of the vitreous body after enzymatic degradation of selected macromolecules. METHODS Mechanical properties of plugs of bovine and porcine vitreous were analyzed using a rheometer. Oscillatory and extensional tests measured vitreous stiffness and adhesivity, respectively. Major structural components of the vitreous were degraded by incubation overnight in collagenase, trypsin, or hyaluronidase, singly or in combination. Vitreous bodies were also incubated in hyper- or hypotonic saline. Effects of these treatments on the mechanical properties of the vitreous were measured by rheometry. RESULTS Enzymatic digestion of each class of macromolecules decreased the stiffness of bovine vitreous by approximately half (P < 0.05). Differential effects were observed on the damping capacity of the vitreous (P < 0.05), which was shown to correlate with material behavior in extension (P < 0.01). Digestion of hyaluronan significantly decreased the damping capacity of the vitreous and increased adhesivity. Collagen degradation resulted in the opposite effect, whereas digestion of proteins and proteoglycans with trypsin did not alter behavior relative to controls. Osmotic perturbations and double-enzyme treatments further implicated hyaluronan and hyaluronan-associated water as a primary regulator of adhesivity and material behavior in extension. CONCLUSIONS Collagen, hyaluronan, and proteoglycans act synergistically to maintain vitreous stiffness. Hyaluronan is a key mediator of vitreous adhesivity, and mechanical damping is an important factor influencing dynamic vitreous behavior.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | |
Collapse
|
28
|
Filas BA, Shui YB, Beebe DC. Computational model for oxygen transport and consumption in human vitreous. Invest Ophthalmol Vis Sci 2013; 54:6549-59. [PMID: 24008409 DOI: 10.1167/iovs.13-12609] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. METHODS A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. RESULTS The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. CONCLUSIONS Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri
| | | | | |
Collapse
|
29
|
Bhardwaj R, Ziegler K, Seo JH, Ramesh KT, Nguyen TD. A computational model of blast loading on the human eye. Biomech Model Mechanobiol 2013; 13:123-40. [DOI: 10.1007/s10237-013-0490-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
|
30
|
Bonfiglio A, Repetto R, Siggers JH, Stocchino A. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery. Phys Med Biol 2013; 58:1969-82. [DOI: 10.1088/0031-9155/58/6/1969] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Hugar DL, Ivanisevic A. Materials characterization and mechanobiology of the eye. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1867-75. [PMID: 23498207 DOI: 10.1016/j.msec.2013.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 02/05/2013] [Indexed: 12/29/2022]
Abstract
The eye responds to a great deal of internal and external stimuli throughout its normal function. Due to this, a mechanical or chemical analysis alone is insufficient. A systematic materials characterization is needed. A mechanobiological approach is required for a full understanding of the unique properties and function of the eye. This review compiles the mechanical properties of select eye components, summarizes mechanical and chemical testing platforms, and overviews modeling approaches. Analysis is done across studies, experimental methods, and between species in order to summarize what is known about the mechanobiology of the eye. Several opportunities for future research are identified.
Collapse
Affiliation(s)
- Daniel L Hugar
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
32
|
Abouali O, Modareszadeh A, Ghaffariyeh A, Tu J. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med Eng Phys 2012; 34:681-92. [DOI: 10.1016/j.medengphy.2011.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 09/11/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
|
33
|
Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm Res 2011; 28:1049-64. [PMID: 21258958 DOI: 10.1007/s11095-010-0356-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The vitreous humor liquefies with age and readily sloshes during eye motion. The objective was to develop a computational model to determine the effect of sloshing on intravitreal drug transport for transscleral and intra-vitreal drug sources at various locations METHODS A finite element model based on a telescopic implicit envelope tracking scheme was developed to model drug dispersion. Flow velocities due to saccadic oscillations were solved for and were used to simulate drug dispersion. RESULTS Saccades induced a three-dimensional flow field that indicates intense drug dispersion in the vitreous. Model results showed that the time scale for transport decreased for the sloshing vitreous when compared to static vitreous. Macular concentrations for the sloshing vitreous were found be much higher than that for the static vitreous. For low viscosities the position of the intravitreal source did not have a big impact on drug distribution. CONCLUSION Model results show that care should be taken when extrapolating animal data, which are mostly done on intact vitreous, to old patients whose vitreous might be a liquid. The decrease in drug transport time scales and changes in localized concentrations should be considered when deciding on treatment modalities and dosing strategies.
Collapse
|