1
|
Liu H, Sacks MS, Simonian NT, Gorman JH, Gorman RC. Simulated Effects of Acute Left Ventricular Myocardial Infarction on Mitral Regurgitation in an Ovine Model. J Biomech Eng 2024; 146:101009. [PMID: 38652602 PMCID: PMC11225881 DOI: 10.1115/1.4065376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Ischemic mitral regurgitation (IMR) occurs from incomplete coaptation of the mitral valve (MV) after myocardial infarction (MI), typically worsened by continued remodeling of the left ventricular (LV). The importance of LV remodeling is clear as IMR is induced by the post-MI dual mechanisms of mitral annular dilation and leaflet tethering from papillary muscle (PM) distension via the MV chordae tendineae (MVCT). However, the detailed etiology of IMR remains poorly understood, in large part due to the complex interactions of the MV and the post-MI LV remodeling processes. Given the patient-specific anatomical complexities of the IMR disease processes, simulation-based approaches represent an ideal approach to improve our understanding of this deadly disease. However, development of patient-specific models of left ventricle-mitral valve (LV-MV) interactions in IMR are complicated by the substantial variability and complexity of the MR etiology itself, making it difficult to extract underlying mechanisms from clinical data alone. To address these shortcomings, we developed a detailed ovine LV-MV finite element (FE) model based on extant comprehensive ovine experimental data. First, an extant ovine LV FE model (Sci. Rep. 2021 Jun 29;11(1):13466) was extended to incorporate the MV using a high fidelity ovine in vivo derived MV leaflet geometry. As it is not currently possible to image the MVCT in vivo, a functionally equivalent MVCT network was developed to create the final LV-MV model. Interestingly, in pilot studies, the MV leaflet strains did not agree well with known in vivo MV leaflet strain fields. We then incorporated previously reported MV leaflet prestrains (J. Biomech. Eng. 2023 Nov 1;145(11):111002) in the simulations. The resulting LV-MV model produced excellent agreement with the known in vivo ovine MV leaflet strains and deformed shapes in the normal state. We then simulated the effects of regional acute infarctions of varying sizes and anatomical locations by shutting down the local myocardial contractility. The remaining healthy (noninfarcted) myocardium mechanical behaviors were maintained, but allowed to adjust their active contractile patterns to maintain the prescribed pressure-volume loop behaviors in the acute post-MI state. For all cases studied, the LV-MV simulation demonstrated excellent agreement with known LV and MV in vivo strains and MV regurgitation orifice areas. Infarct location was shown to play a critical role in resultant MV leaflet strain fields. Specifically, extensional deformations of the posterior leaflets occurred in the posterobasal and laterobasal infarcts, while compressive deformations of the anterior leaflet were observed in the anterobasal infarct. Moreover, the simulated posterobasal infarct induced the largest MV regurgitation orifice area, consistent with experimental observations. The present study is the first detailed LV-MV simulation that reveals the important role of MV leaflet prestrain and functionally equivalent MVCT for accurate predictions of LV-MV interactions. Importantly, the current study further underscored simulation-based methods in understanding MV function as an integral part of the LV.
Collapse
Affiliation(s)
- Hao Liu
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, The Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Michael S. Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, The Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Natalie T. Simonian
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, The Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, University of Pennsylvania, Philadelphia, PA 19146-2701
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, University of Pennsylvania, Philadelphia, PA 19146-2701
| |
Collapse
|
2
|
Mathur M, Malinowski M, Jazwiec T, Timek TA, Rausch MK. Leaflet remodeling reduces tricuspid valve function in a computational model. J Mech Behav Biomed Mater 2024; 152:106453. [PMID: 38335648 PMCID: PMC11048730 DOI: 10.1016/j.jmbbm.2024.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.
Collapse
Affiliation(s)
- Mrudang Mathur
- Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, 221 Michigan Street NE Suite 300, Grand Rapids, 49503, MI, United States of America; Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - Tomasz Jazwiec
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, 221 Michigan Street NE Suite 300, Grand Rapids, 49503, MI, United States of America
| | - Manuel K Rausch
- Department of Mechanical Engineering, University of Texas at Austin, 204 E Dean Keeton Street, Austin, 78712, TX, United States of America; Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, 2617 Wichita Street, Austin, 78712, TX, United States of America; Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton Street, Austin, 78712, TX, United States of America; Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 201 E 24th Street, Austin, 78712, TX, United States of America.
| |
Collapse
|
3
|
Haese CE, Mathur M, Lin CY, Malinowski M, Timek TA, Rausch MK. Impact of tricuspid annuloplasty device shape and size on valve mechanics-a computational study. JTCVS OPEN 2024; 17:111-120. [PMID: 38420560 PMCID: PMC10897680 DOI: 10.1016/j.xjon.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024]
Abstract
Background Tricuspid valve disease significantly affects 1.6 million Americans. The gold standard treatment for tricuspid disease is the implantation of annuloplasty devices. These ring-like devices come in various shapes and sizes. Choices for both shape and size are most often made by surgical intuition rather than scientific rationale. Methods To understand the impact of shape and size on valve mechanics and to provide a rational basis for their selection, we used a subject-specific finite element model to conduct a virtual case study. That is, we implanted 4 different annuloplasty devices of 6 different sizes in our virtual patient. After each virtual surgery, we computed the coaptation area, leaflet end-systolic angles, leaflet stress, and chordal forces. Results We found that contoured devices are better at normalizing end-systolic angles, whereas the one flat device, the Edwards Classic, maximized the coaptation area and minimized leaflet stress and chordal forces. We further found that reducing device size led to increased coaptation area but also negatively impacted end-systolic angles, stress, and chordal forces. Conclusions Based on our analyses of the coaptation area, leaflet motion, leaflet stress, and chordal forces, we found that device shape and size have a significant impact on valve mechanics. Thereby, our study also demonstrates the value of simulation tools and device tests in "virtual patients." Expanding our study to many more valves may, in the future, allow for universal recommendations.
Collapse
Affiliation(s)
- Collin E. Haese
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Tex
| | - Mrudang Mathur
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Tex
| | - Chien-Yu Lin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Tex
| | - Marcin Malinowski
- Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
- Division of Cardiothoracic Surgery, Corewell Health, Grand Rapids, Mich
| | - Tomasz A. Timek
- Division of Cardiothoracic Surgery, Corewell Health, Grand Rapids, Mich
| | - Manuel K. Rausch
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Tex
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Tex
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Tex
| |
Collapse
|
4
|
Liu H, Simonian NT, Pouch AM, Iaizzo PA, Gorman JH, Gorman RC, Sacks MS. A Computational Pipeline for Patient-Specific Prediction of the Postoperative Mitral Valve Functional State. J Biomech Eng 2023; 145:111002. [PMID: 37382900 PMCID: PMC10405284 DOI: 10.1115/1.4062849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
While mitral valve (MV) repair remains the preferred clinical option for mitral regurgitation (MR) treatment, long-term outcomes remain suboptimal and difficult to predict. Furthermore, pre-operative optimization is complicated by the heterogeneity of MR presentations and the multiplicity of potential repair configurations. In the present work, we established a patient-specific MV computational pipeline based strictly on standard-of-care pre-operative imaging data to quantitatively predict the post-repair MV functional state. First, we established human mitral valve chordae tendinae (MVCT) geometric characteristics obtained from five CT-imaged excised human hearts. From these data, we developed a finite-element model of the full patient-specific MV apparatus that included MVCT papillary muscle origins obtained from both the in vitro study and the pre-operative three-dimensional echocardiography images. To functionally tune the patient-specific MV mechanical behavior, we simulated pre-operative MV closure and iteratively updated the leaflet and MVCT prestrains to minimize the mismatch between the simulated and target end-systolic geometries. Using the resultant fully calibrated MV model, we simulated undersized ring annuloplasty (URA) by defining the annular geometry directly from the ring geometry. In three human cases, the postoperative geometries were predicted to 1 mm of the target, and the MV leaflet strain fields demonstrated close agreement with noninvasive strain estimation technique targets. Interestingly, our model predicted increased posterior leaflet tethering after URA in two recurrent patients, which is the likely driver of long-term MV repair failure. In summary, the present pipeline was able to predict postoperative outcomes from pre-operative clinical data alone. This approach can thus lay the foundation for optimal tailored surgical planning for more durable repair, as well as development of mitral valve digital twins.
Collapse
Affiliation(s)
- Hao Liu
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1229
| | - Natalie T. Simonian
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1229
| | - Alison M. Pouch
- Departments of Radiology and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul A. Iaizzo
- Visible Heart Laboratories, Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael S. Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712-1229
| |
Collapse
|
5
|
Lin CY, Mathur M, Malinowski M, Timek TA, Rausch MK. The impact of thickness heterogeneity on soft tissue biomechanics: a novel measurement technique and a demonstration on heart valve tissue. Biomech Model Mechanobiol 2023; 22:1487-1498. [PMID: 36284075 PMCID: PMC10231866 DOI: 10.1007/s10237-022-01640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
The mechanical properties of soft tissues are driven by their complex, heterogeneous composition and structure. Interestingly, studies of soft tissue biomechanics often ignore spatial heterogeneity. In our work, we are therefore interested in exploring the impact of tissue heterogeneity on the mechanical properties of soft tissues. Therein, we specifically focus on soft tissue heterogeneity arising from spatially varying thickness. To this end, our first goal is to develop a non-destructive measurement technique that has a high spatial resolution, provides continuous thickness maps, and is fast. Our secondary goal is to demonstrate that including spatial variation in thickness is important to the accuracy of biomechanical analyses. To this end, we use mitral valve leaflet tissue as our model system. To attain our first goal, we identify a soft tissue-specific contrast protocol that enables thickness measurements using a Keyence profilometer. We also show that this protocol does not affect our tissues' mechanical properties. To attain our second goal, we conduct virtual biaxial, bending, and buckling tests on our model tissue both ignoring and considering spatial variation in thickness. Thereby, we show that the assumption of average, homogeneous thickness distributions significantly alters the results of biomechanical analyses when compared to including true, spatially varying thickness distributions. In conclusion, our work provides a novel measurement technique that can capture continuous thickness maps non-invasively, at high resolution, and in a short time. Our work also demonstrates the importance of including heterogeneous thickness in biomechanical analyses of soft tissues.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Mrudang Mathur
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, 49503, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, 78712, USA.
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Simonian NT, Liu H, Vakamudi S, Pirwitz MJ, Pouch AM, Gorman JH, Gorman RC, Sacks MS. Patient-Specific Quantitative In-Vivo Assessment of Human Mitral Valve Leaflet Strain Before and After MitraClip Repair. Cardiovasc Eng Technol 2023; 14:677-693. [PMID: 37670097 DOI: 10.1007/s13239-023-00680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE Mitral regurgitation (MR) is a highly prevalent and deadly cardiac disease characterized by improper mitral valve (MV) leaflet coaptation. Among the plethora of available treatment strategies, the MitraClip is an especially safe option, but optimizing its long-term efficacy remains an urgent challenge. METHODS We applied our noninvasive image-based strain computation pipeline [1] to intraoperative transesophageal echocardiography datasets taken from ten patients undergoing MitraClip repair, spanning a range of MR etiologies and MitraClip configurations. We then analyzed MV leaflet strains before and after MitraClip implementation to develop a better understanding of (1) the pre-operative state of human regurgitant MV, and (2) the MitraClip's impact on the MV leaflet deformations. RESULTS The MV pre-operative strain fields were highly variable, underscoring both the heterogeneity of the MR in the patient population and the need for patient-specific treatment approaches. Similarly, there were no consistent overall post-operative strain patterns, although the average A2 segment radial strain difference between pre- and post-operative states was consistently positive. In contrast, the post-operative strain fields were better correlated to their respective pre-operative strain fields than to the inter-patient post-operative strain fields. This quantitative result implies that the patient specific pre-operative state of the MV guides its post-operative deformation, which suggests that the post-operative state can be predicted using pre-operative data-derived modelling alone. CONCLUSIONS The pre-operative MV leaflet strain patterns varied considerably across the range of MR disease states and after MitraClip repair. Despite large inter-patient heterogeneity, the post-operative deformation appears principally dictated by the pre-operative deformation state. This novel finding suggests that though the variation in MR functional state and MitraClip-induced deformation were substantial, the post-operative state can be predicted from the pre-operative data alone. This study suggests that, with use of larger patient cohort and corresponding long-term outcomes, quantitative predictive factors of MitraClip durability can be identified.
Collapse
Affiliation(s)
- Natalie T Simonian
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin , 201 East 24th St., Stop C0200, Austin, TX, 78712-1229, USA
| | - Hao Liu
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin , 201 East 24th St., Stop C0200, Austin, TX, 78712-1229, USA
| | - Sneha Vakamudi
- Ascension Texas Cardiovascular & Division of Cardiology, Department of Internal Medicine, Dell Medical School, University of Texas, Austin, TX, USA
| | - Mark J Pirwitz
- Ascension Texas Cardiovascular & Division of Cardiology, Department of Internal Medicine, Dell Medical School, University of Texas, Austin, TX, USA
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin , 201 East 24th St., Stop C0200, Austin, TX, 78712-1229, USA.
| |
Collapse
|
7
|
Feng X, Liu Y, Kamensky D, McComb DW, Breuer CK, Sacks MS. Functional mechanical behavior of the murine pulmonary heart valve. Sci Rep 2023; 13:12852. [PMID: 37553466 PMCID: PMC10409802 DOI: 10.1038/s41598-023-40158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023] Open
Abstract
Genetically modified mouse models provide a versatile and efficient platform to extend our understanding of the underlying disease processes and evaluate potential treatments for congenital heart valve diseases. However, applications have been limited to the gene and molecular levels due to the small size of murine heart valves, which prohibits the use of standard mechanical evaluation and in vivo imaging methods. We have developed an integrated imaging/computational mechanics approach to evaluate, for the first time, the functional mechanical behavior of the murine pulmonary heart valve (mPV). We utilized extant mPV high resolution µCT images of 1-year-old healthy C57BL/6J mice, with mPVs loaded to 0, 10, 20 or 30 mmHg then chemically fixed to preserve their shape. Individual mPV leaflets and annular boundaries were segmented and key geometric quantities of interest defined and quantified. The resulting observed inter-valve variations were small and consistent at each TVP level. This allowed us to develop a high fidelity NURBS-based geometric model. From the resultant individual mPV geometries, we developed a mPV shape-evolving geometric model (SEGM) that accurately represented mPV shape changes as a continuous function of transvalvular pressure. The SEGM was then integrated into an isogeometric finite element based inverse model that estimated the individual leaflet and regional mPV mechanical behaviors. We demonstrated that the mPV leaflet mechanical behaviors were highly anisotropic and nonlinear, with substantial leaflet and regional variations. We also observed the presence of strong axial mechanical coupling, suggesting the important role of the underlying collagen fiber architecture in the mPV. When compared to larger mammalian species, the mPV exhibited substantially different mechanical behaviors. Thus, while qualitatively similar, the mPV exhibited important functional differences that will need to accounted for in murine heart valve studies. The results of this novel study will allow detailed murine tissue and organ level investigations of semi-lunar heart valve diseases.
Collapse
Affiliation(s)
- Xinzeng Feng
- Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yifei Liu
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - David Kamensky
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, 92093, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Michael S Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The effects of leaflet material properties on the simulated function of regurgitant mitral valves. J Mech Behav Biomed Mater 2023; 142:105858. [PMID: 37099920 PMCID: PMC10199327 DOI: 10.1016/j.jmbbm.2023.105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated (1) the influence of tissue extensibility and (2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, Canada
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, UT, USA
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, 19104, PA, USA.
| |
Collapse
|
9
|
Wu W, Ching S, Sabin P, Laurence DW, Maas SA, Lasso A, Weiss JA, Jolley MA. The Effects of leaflet material properties on the simulated function of regurgitant mitral valves. ARXIV 2023:arXiv:2302.04939v2. [PMID: 36798457 PMCID: PMC9934730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated 1) the influence of tissue extensibility and 2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Steve A Maas
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
10
|
You H, Zhang Q, Ross CJ, Lee CH, Hsu MC, Yu Y. A Physics-Guided Neural Operator Learning Approach to Model Biological Tissues From Digital Image Correlation Measurements. J Biomech Eng 2022; 144:121012. [PMID: 36218246 PMCID: PMC9632476 DOI: 10.1115/1.4055918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/04/2022] [Indexed: 11/08/2022]
Abstract
We present a data-driven workflow to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios, without postulating a specific constitutive model form nor possessing knowledge of the material microstructure. To this end, a material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve anterior leaflet, with which we build a neural operator learning model. The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material microstructure properties learned implicitly from the data and naturally embedded in the network parameters. Using various combinations of loading protocols, we compare the predictivity of this framework with finite element analysis based on three conventional constitutive models. From in-distribution tests, the predictivity of our approach presents good generalizability to different loading conditions and outperforms the conventional constitutive modeling at approximately one order of magnitude. When tested on out-of-distribution loading ratios, the neural operator learning approach becomes less effective. To improve the generalizability of our framework, we propose a physics-guided neural operator learning model via imposing partial physics knowledge. This method is shown to improve the model's extrapolative performance in the small-deformation regime. Our results demonstrate that with sufficient data coverage and/or guidance from partial physics constraints, the data-driven approach can be a more effective method for modeling biological materials than the traditional constitutive modeling.
Collapse
Affiliation(s)
- Huaiqian You
- Department of Mathematics, Lehigh University, Bethlehem, PA 18015
| | - Quinn Zhang
- Department of Mathematics, Lehigh University, Bethlehem, PA 18015
| | - Colton J. Ross
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011
| | - Yue Yu
- Department of Mathematics, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
11
|
Fitzpatrick DJ, Pham K, Ross CJ, Hudson LT, Laurence DW, Yu Y, Lee CH. Ex vivo experimental characterizations for understanding the interrelationship between tissue mechanics and collagen microstructure of porcine mitral valve leaflets. J Mech Behav Biomed Mater 2022; 134:105401. [PMID: 35944442 PMCID: PMC11980843 DOI: 10.1016/j.jmbbm.2022.105401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
Abstract
Unidirectional blood flow in the left side of the heart is regulated by the mitral valve. To better understand the mitral valve function, researchers have examined the structural and mechanical properties of the mitral valve leaflets; however, limitations of the previous studies include the use of mechanics- and structure-altering tissue modifications (e.g., optical clearing) that limit the ability to quantify the unique load-dependent reorientation and realignment of the collagen fibers as well as their interrelation with the valve tissue mechanics. Herein, we aimed to circumvent these limitations by utilizing an integrated polarized-light imaging and biaxial testing system for understanding the mechanics-microstructure interrelationship for porcine mitral valve leaflets. We further performed constitutive modeling and evaluated the accuracy of the affine fiber kinematics theory. From the tissue mechanics perspective, the posterior leaflet was more extensible in the radial direction than the anterior leaflet (14.2% difference in radial tissue stretch), while exhibiting smaller collagen and elastin moduli based on the determined constitutive model parameters. From the collagen microstructure's standpoint, the posterior leaflet had smaller increases in optical anisotropy (closely related to the degree of fiber alignment) than the anterior leaflet (32.8±7.7% vs. 50.0±19.7%). Further, the leaflets were found to possess two distinct fiber families - one family oriented along the circumferential tissue direction, and another more disperse family with a 30°-40° offset from the first fiber family. Finally, affine fiber kinematics consistently underpredicted the collagen fiber reorientations Overall, this study improved our understanding of the mitral valve leaflets that is essential for facilitating tissue-emulated valve replacement and cardiac valve modeling frameworks.
Collapse
Affiliation(s)
- Daniel J Fitzpatrick
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Kevin Pham
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Colton J Ross
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Luke T Hudson
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Devin W Laurence
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA
| | - Yue Yu
- Department of Mathematics, Lehigh University, USA
| | - Chung-Hao Lee
- Biomechanics & Biomaterials Design Lab, School of Aerospace & Mechanical Eng., University of Oklahoma, USA.
| |
Collapse
|
12
|
Wu W, Ching S, Maas SA, Lasso A, Sabin P, Weiss JA, Jolley MA. A Computational Framework for Atrioventricular Valve Modeling Using Open-Source Software. J Biomech Eng 2022; 144:101012. [PMID: 35510823 PMCID: PMC9254695 DOI: 10.1115/1.4054485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Indexed: 11/08/2022]
Abstract
Atrioventricular valve regurgitation is a significant cause of morbidity and mortality in patients with acquired and congenital cardiac valve disease. Image-derived computational modeling of atrioventricular valves has advanced substantially over the last decade and holds particular promise to inform valve repair in small and heterogeneous populations, which are less likely to be optimized through empiric clinical application. While an abundance of computational biomechanics studies has investigated mitral and tricuspid valve disease in adults, few studies have investigated its application to vulnerable pediatric and congenital heart populations. Further, to date, investigators have primarily relied upon a series of commercial applications that are neither designed for image-derived modeling of cardiac valves nor freely available to facilitate transparent and reproducible valve science. To address this deficiency, we aimed to build an open-source computational framework for the image-derived biomechanical analysis of atrioventricular valves. In the present work, we integrated an open-source valve modeling platform, SlicerHeart, and an open-source biomechanics finite element modeling software, FEBio, to facilitate image-derived atrioventricular valve model creation and finite element analysis. We present a detailed verification and sensitivity analysis to demonstrate the fidelity of this modeling in application to three-dimensional echocardiography-derived pediatric mitral and tricuspid valve models. Our analyses achieved an excellent agreement with those reported in the literature. As such, this evolving computational framework offers a promising initial foundation for future development and investigation of valve mechanics, in particular collaborative efforts targeting the development of improved repairs for children with congenital heart disease.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Steve A Maas
- Department of Biomedical Engineering, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
13
|
Narang H, Rego BV, Khalighi AH, Aly A, Pouch AM, Gorman RC, Gorman Iii JH, Sacks MS. Pre-surgical Prediction of Ischemic Mitral Regurgitation Recurrence Using In Vivo Mitral Valve Leaflet Strains. Ann Biomed Eng 2021; 49:3711-3723. [PMID: 33837494 PMCID: PMC9134826 DOI: 10.1007/s10439-021-02772-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Ischemic mitral regurgitation (IMR) is a prevalent cardiac disease associated with substantial morbidity and mortality. Contemporary surgical treatments continue to have limited long-term success, in part due to the complex and multi-factorial nature of IMR. There is thus a need to better understand IMR etiology to guide optimal patient specific treatments. Herein, we applied our finite element-based shape-matching technique to non-invasively estimate peak systolic leaflet strains in human mitral valves (MVs) from in-vivo 3D echocardiographic images taken immediately prior to and post-annuloplasty repair. From a total of 21 MVs, we found statistically significant differences in pre-surgical MV size, shape, and deformation patterns between the with and without IMR recurrence patient groups at 6 months post-surgery. Recurrent MVs had significantly less compressive circumferential strains in the anterior commissure region compared to the recurrent MVs (p = 0.0223) and were significantly larger. A logistic regression analysis revealed that average pre-surgical circumferential leaflet strain in the Carpentier A1 region independently predicted 6-month recurrence of IMR (optimal cutoff value - 18%, p = 0.0362). Collectively, these results suggest greater disease progression in the recurrent group and underscore the highly patient-specific nature of IMR. Importantly, the ability to identify such factors pre-surgically could be used to guide optimal treatment methods to reduce post-surgical IMR recurrence.
Collapse
Affiliation(s)
- Harshita Narang
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Bruno V Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ahmed Aly
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Laurence DW, Lee CH. Determination of a Strain Energy Density Function for the Tricuspid Valve Leaflets Using Constant Invariant-Based Mechanical Characterizations. J Biomech Eng 2021; 143:1120829. [PMID: 34596679 DOI: 10.1115/1.4052612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 11/08/2022]
Abstract
The tricuspid valve (TV) regulates the blood flow within the right side of the heart. Despite recent improvements in understanding TV mechanical and microstructural properties, limited attention has been devoted to the development of TV-specific constitutive models. The objective of this work is to use the first-of-its-kind experimental data from constant invariant-based mechanical characterizations to determine a suitable invariant-based strain energy density function (SEDF). Six specimens for each TV leaflet are characterized using constant invariant mechanical testing. The data is then fit with three candidate SEDF forms: (i) a polynomial model-the transversely isotropic version of the Mooney-Rivlin model, (ii) an exponential model, and (iii) a combined polynomial-exponential model. Similar fitting capabilities were found for the exponential and the polynomial forms (R2=0.92-0.99 versus 0.91-0.97) compared to the combined polynomial-exponential SEDF (R2=0.65-0.95). Furthermore, the polynomial form had larger Pearson's correlation coefficients than the exponential form (0.51 versus 0.30), indicating a more well-defined search space. Finally, the exponential and the combined polynomial-exponential forms had notably smaller but more eccentric model parameter's confidence regions than the polynomial form. Further evaluations of invariant decoupling revealed that the decoupling of the invariant terms within the exponential form leads to a less satisfactory performance. From these results, we conclude that the exponential form is better suited for the TV leaflets owing to its superb fitting capabilities and smaller parameter's confidence regions.
Collapse
Affiliation(s)
- Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, The University of Oklahoma, Norman, OK 73019
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, The University of Oklahoma, 865 Asp Avenue, Felgar Hall 219C, Norman, OK 73019; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, 865 Asp Avenue, Felgar Hall 219C, Norman, OK 73019
| |
Collapse
|
15
|
Ross CJ, Laurence DW, Echols AL, Babu AR, Gu T, Duginski GA, Johns CH, Mullins BT, Casey KM, Laurence KA, Zhao YD, Amini R, Fung KM, Mir A, Burkhart HM, Wu Y, Holzapfel GA, Lee CH. Effects of enzyme-based removal of collagen and elastin constituents on the biaxial mechanical responses of porcine atrioventricular heart valve anterior leaflets. Acta Biomater 2021; 135:425-440. [PMID: 34481053 DOI: 10.1016/j.actbio.2021.08.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
The leaflets of the atrioventricular heart valves (AHVs) regulate the one-directional flow of blood through a coordination of the extracellular matrix components, including the collagen fibers, elastin, and glycosaminoglycans. Dysfunction of the AHVs, such as those caused by unfavorable microstructural remodeling, lead to valvular heart diseases and improper blood flow, which can ultimately cause heart failure. In order to better understand the mechanics and remodeling of the AHV leaflets and how therapeutics can inadvertently cause adverse microstructural changes, a systematic characterization of the role of each constituent in the biomechanical properties is appropriate. Previous studies have quantified the contributions of the individual microstructural components to tissue-level behavior for the semilunar valve cusps, but not for the AHV leaflets. In this study, for the first time, we quantify the relationships between microstructure and mechanics of the AHV leaflet using a three-step experimental procedure: (i) biaxial tension and stress relaxation testing of control (untreated) porcine AHV anterior leaflet specimens; (ii) enzyme treatment to remove a portion of either the collagen or elastin constituent; and (iii) biaxial tensile and stress relaxation testing of the constituent-removed (treated) specimens. We have observed that the removal of ∼100% elastin resulted in a ∼10% decrease in the tissue extensibility with biaxial tension and a ∼10% increase in the overall stress reduction with stress relaxation. In contrast, removal of 46% of the collagen content insignificantly affected tissue extensibility with biaxial tension and significantly increased stress decay (10%) with stress relaxation. These findings provide an insight into the microstructure-mechanics relationship of the AHVs and will be beneficial for future developments and refinements of microstructurally informed constitutive models for the simulation of diseased and surgically intervened AHV function. STATEMENT OF SIGNIFICANCE: This study presents, for the first time, a thorough mechanical characterization of the atrioventricular heart valve leaflets before and after enzymatic removal of elastin and collagen. We found that the biaxial tensile properties of elastin-deficient tissues and collagen-deficient are stiffer. The fact of elastin supporting low-stress valve function and collagen as the main load-bearing component was evident in a decrease in the low-tension modulus for elastin-deficient tissues and in the high-tension modulus for collagen-deficient tissues. Our quantification and experimental technique could be useful in predicting the disease-related changes in heart valve mechanics. The information obtained from this work is valuable for refining the constitutive models that describe the essential microstructure-mechanics relationship.
Collapse
|
16
|
Adventures in Heart Valve Function A Personal Thank You to Dr. Ajit P. Yoganathan. Cardiovasc Eng Technol 2021; 12:651-653. [PMID: 34145557 DOI: 10.1007/s13239-021-00555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
|
17
|
Zhang W, Rossini G, Kamensky D, Bui-Thanh T, Sacks MS. Isogeometric finite element-based simulation of the aortic heart valve: Integration of neural network structural material model and structural tensor fiber architecture representations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3438. [PMID: 33463004 PMCID: PMC8223609 DOI: 10.1002/cnm.3438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 05/27/2023]
Abstract
The functional complexity of native and replacement aortic heart valves (AVs) is well known, incorporating such physical phenomenons as time-varying non-linear anisotropic soft tissue mechanical behavior, geometric non-linearity, complex multi-surface time varying contact, and fluid-structure interactions to name a few. It is thus clear that computational simulations are critical in understanding AV function and for the rational basis for design of their replacements. However, such approaches continued to be limited by ad-hoc approaches for incorporating tissue fibrous structure, high-fidelity material models, and valve geometry. To this end, we developed an integrated tri-leaflet valve pipeline built upon an isogeometric analysis framework. A high-order structural tensor (HOST)-based method was developed for efficient storage and mapping the two-dimensional fiber structural data onto the valvular 3D geometry. We then developed a neural network (NN) material model that learned the responses of a detailed meso-structural model for exogenously cross-linked planar soft tissues. The NN material model not only reproduced the full anisotropic mechanical responses but also demonstrated a considerable efficiency improvement, as it was trained over a range of realizable fibrous structures. Results of parametric simulations were then performed, as well as population-based bicuspid AV fiber structure, that demonstrated the efficiency and robustness of the present approach. In summary, the present approach that integrates HOST and NN material model provides an efficient computational analysis framework with increased physical and functional realism for the simulation of native and replacement tri-leaflet heart valves.
Collapse
Affiliation(s)
- Wenbo Zhang
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Science, University of Texas at Austin, Austin, Texas, USA
| | - Giovanni Rossini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - David Kamensky
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, California, USA
| | - Tan Bui-Thanh
- Department of Aerospace Engineering and Engineering Mechanics, Oden Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, Texas, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Science, University of Texas at Austin, Austin, Texas, USA
- Department of Aerospace Engineering and Engineering Mechanics, Oden Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, Texas, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
He Q, Laurence DW, Lee CH, Chen JS. Manifold learning based data-driven modeling for soft biological tissues. J Biomech 2020; 117:110124. [PMID: 33515902 DOI: 10.1016/j.jbiomech.2020.110124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/16/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Data-driven modeling directly utilizes experimental data with machine learning techniques to predict a material's response without the necessity of using phenomenological constitutive models. Although data-driven modeling presents a promising new approach, it has yet to be extended to the modeling of large-deformation biological tissues. Herein, we extend our recent local convexity data-driven (LCDD) framework (He and Chen, 2020) to model the mechanical response of a porcine heart mitral valve posterior leaflet. The predictability of the LCDD framework by using various combinations of biaxial and pure shear training protocols are investigated, and its effectiveness is compared with a full structural, phenomenological model modified from Zhang et al. (2016) and a continuum phenomenological Fung-type model (Tong and Fung, 1976). We show that the predictivity of the proposed LCDD nonlinear solver is generally less sensitive to the type of loading protocols (biaxial and pure shear) used in the data set, while more sensitive to the insufficient coverage of the experimental data when compared to the predictivity of the two selected phenomenological models. While no pre-defined functional form in the material model is necessary in LCDD, this study reinstates the importance of having sufficiently rich data coverage in the date-driven and machine learning type of approaches. It is also shown that the proposed LCDD method is an enhancement over the earlier distance-minimization data-driven (DMDD) against noisy data. This study demonstrates that when sufficient data is available, data-driven computing can be an alternative method for modeling complex biological materials.
Collapse
Affiliation(s)
- Qizhi He
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK 73019, USA
| | - Jiun-Shyan Chen
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Laurence DW, Johnson EL, Hsu MC, Baumwart R, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. A pilot in silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valves. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3346. [PMID: 32362054 PMCID: PMC8039906 DOI: 10.1002/cnm.3346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 05/12/2023]
Abstract
Current clinical assessment of functional tricuspid valve regurgitation relies on metrics quantified from medical imaging modalities. Although these clinical methodologies are generally successful, the lack of detailed information about the mechanical environment of the valve presents inherent challenges for assessing tricuspid valve regurgitation. In the present study, we have developed a finite element-based in silico model of one porcine tricuspid valve (TV) geometry to investigate how various pathological conditions affect the overall biomechanical function of the TV. There were three primary observations from our results. Firstly, the results of the papillary muscle (PM) displacement study scenario indicated more pronounced changes in the TV biomechanical function. Secondly, compared to uniform annulus dilation, nonuniform dilation scenario induced more evident changes in the von Mises stresses (83.8-125.3 kPa vs 65.1-84.0 kPa) and the Green-Lagrange strains (0.52-0.58 vs 0.47-0.53) for the three TV leaflets. Finally, results from the pulmonary hypertension study scenario showed opposite trends compared to the PM displacement and annulus dilation scenarios. Furthermore, various chordae rupture scenarios were simulated, and the results showed that the chordae tendineae attached to the TV anterior and septal leaflets may be more critical to proper TV function. This in silico modeling-based study has provided a deeper insight into the tricuspid valve pathologies that may be useful, with moderate extensions, for guiding clinical decisions. NOVELTY STATEMENT: The novelties of the research are summarized below: A comprehensive in silico pilot study of how isolated functional tricuspid regurgitation pathologies and ruptured chordae tendineae would alter the tricuspid valve function; An extensive analysis of the tricuspid valve function, including mechanical quantities (eg, the von Mises stress and the Green-Lagrange strain) and clinically-relevant geometry metrics (eg, the tenting area and the coaptation height); and A developed computational modeling pipeline that can be extended to evaluate patient-specific tricuspid valve geometries and enhance the current clinical diagnosis and treatment of tricuspid regurgitation.
Collapse
Affiliation(s)
- Devin W. Laurence
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Emily L. Johnson
- Computational Fluid-Structure Interaction Laboratory, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ming-Chen Hsu
- Computational Fluid-Structure Interaction Laboratory, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Harold M. Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2 8010 Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
20
|
Ross CJ, Laurence DW, Hsu MC, Baumwart R, Zhao YD, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. Mechanics of Porcine Heart Valves' Strut Chordae Tendineae Investigated as a Leaflet-Chordae-Papillary Muscle Entity. Ann Biomed Eng 2020; 48:1463-1474. [PMID: 32006267 PMCID: PMC8048774 DOI: 10.1007/s10439-020-02464-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/23/2020] [Indexed: 11/28/2022]
Abstract
Proper blood flow through the atrioventricular heart valves (AHVs) relies on the holistic function of the valve and subvalvular structures, and a failure of any component can lead to life-threatening heart disease. A comprehension of the mechanical characteristics of healthy valvular components is necessary for the refinement of heart valve computational models. In previous studies, the chordae tendineae have been mechanically characterized as individual structures, usually in a clamping-based approach, which may not accurately reflect the in vivo chordal interactions with the leaflet insertion and papillary muscles. In this study, we performed uniaxial mechanical testing of strut chordae tendineae of the AHVs under a unique tine-based leaflet-chordae-papillary muscle testing to observe the chordae mechanics while preserving the subvalvular component interactions. Results of this study provided insight to the disparity of chordae tissue stress-stretch responses between the mitral valve (MV) and the tricuspid valve (TV) under their respective emulated physiological loading. Specifically, strut chordae tendineae of the MV anterior leaflet had peak stretches of 1.09-1.16, while peak stretches of 1.08-1.11 were found for the TV anterior leaflet strut chordae. Constitutive parameters were also derived for the chordae tissue specimens using an Ogden model, which is useful for AHV computational model refinement. Results of this study are beneficial to the eventual improvement of treatment methods for valvular disease.
Collapse
Affiliation(s)
- Colton J Ross
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019-3609, USA
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019-3609, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Arshid Mir
- Department of Pediatric Cardiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Harold M Burkhart
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019-3609, USA
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK, 73019-3609, USA.
- Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
21
|
Duginski GA, Ross CJ, Laurence DW, Johns CH, Lee CH. An investigation of the effect of freezing storage on the biaxial mechanical properties of excised porcine tricuspid valve anterior leaflets. J Mech Behav Biomed Mater 2019; 101:103438. [PMID: 31542570 PMCID: PMC8008703 DOI: 10.1016/j.jmbbm.2019.103438] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/27/2019] [Accepted: 09/15/2019] [Indexed: 01/03/2023]
Abstract
The atrioventricular heart valve (AHV) leaflets are critical to the facilitation of proper unidirectional blood flow through the heart. Previously, studies have been conducted to understand the tissue mechanics of healthy AHV leaflets to inform the development of valve-specific computational models and replacement materials for use in diagnosing and treating valvular heart disease. Generally, these studies involved biaxial mechanical testing of the AHV leaflet tissue specimens to extract relevant mechanical properties. Most of those studies considered freezing-based storage systems based on previous findings for other connective tissues such as aortic tissue or skin. However, there remains no study that specifically examines the effects of freezing storage on the characterized mechanical properties of the AHV leaflets. In this study, we aimed to address this gap in knowledge by performing biaxial mechanical characterizations of the tricuspid valve anterior leaflet (TVAL) tissue both before and after a 48-h freezing period. Primary findings of this study include: (i) a statistically insignificant change in the tissue extensibilities, with the frozen tissues being slightly stiffer and more anisotropic than the fresh tissues; and (ii) minimal variations in the stress relaxation behaviors between the fresh and frozen tissues, with the frozen tissues demonstrating slightly lessened relaxation. The findings from this study suggested that freezing-based storage does not significantly impact the observed mechanical properties of one of the five AHV leaflets-the TVAL. The results from this study are useful for reaffirming the experimental methodologies in the previous studies, as well as informing the tissue preservation methods of future investigations of AHV leaflet mechanics.
Collapse
Affiliation(s)
- Grace A Duginski
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Colton J Ross
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Cortland H Johns
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA; Institute for Biomedical Engineering, Science and Technology, School of Aerospace and Mechanical Engineering (IBEST), The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
22
|
Kramer KE, Ross CJ, Laurence DW, Babu AR, Wu Y, Towner RA, Mir A, Burkhart HM, Holzapfel GA, Lee CH. An investigation of layer-specific tissue biomechanics of porcine atrioventricular valve anterior leaflets. Acta Biomater 2019; 96:368-384. [PMID: 31260822 PMCID: PMC6717680 DOI: 10.1016/j.actbio.2019.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/29/2022]
Abstract
Atrioventricular heart valves (AHVs) are composed of structurally complex and morphologically heterogeneous leaflets. The coaptation of these leaflets during the cardiac cycle facilitates unidirectional blood flow. Valve regurgitation is treated preferably by surgical repair if possible or replacement based on the disease state of the valve tissue. A comprehensive understanding of valvular morphology and mechanical properties is crucial to refining computational models, serving as a patient-specific diagnostic and surgical tool for preoperative planning. Previous studies have modeled the stress distribution throughout the leaflet's thickness, but validations with layer-specific biaxial mechanical experiments are missing. In this study, we sought to fill this gap in literature by investigating the impact of microstructure constituents on mechanical behavior throughout the thickness of the AHVs' anterior leaflets. Porcine mitral valve anterior leaflets (MVAL) and tricuspid valve anterior leaflets (TVAL) were micro-dissected into three layers (atrialis/spongiosa, fibrosa, and ventricular) and two layers (atrialis/spongiosa and fibrosa/ventricularis), respectively, based on their relative distributions of extracellular matrix components as quantified by histological analyses: collagen, elastin, and glycosaminoglycans. Our results suggest that (i) for both valves, the atrialis/spongiosa layer is the most extensible and anisotropic layer, possibly due to its relatively low collagen content as compared to other layers, (ii) the intact TVAL response is stiffer than the atrialis/spongiosa layer but more compliant than the fibrosa/ventricularis layer, and (iii) the MVAL fibrosa and ventricularis layers behave nearly isotropic. These novel findings emphasize the biomechanical variances throughout the AHV leaflets, and our results could better inform future AHV computational model developments. STATEMENT OF SIGNIFICANCE: This study, which is the first of its kind for atrioventricular heart valve (AHV) leaflet tissue layers, rendered a mechanical characterization of the biaxial mechanical properties and distributions of extracellular matrix components (collagen, elastin, and glycosaminoglycans) of the mitral and tricuspid valve anterior leaflet layers. The novel findings from the present study emphasize the biomechanical variances throughout the thickness of AHV leaflets, and our results indicate that the previously-adopted homogenous leaflet in the AHV biomechanical modeling may be an oversimplification of the complex leaflet anatomy. Such improvement in the understanding of valvular morphology and tissue mechanics is crucial to future refinement of AHV computational models, serving as a patient-specific diagnostic and surgical tool, at the preoperative stage, for treating valvular heart diseases.
Collapse
Affiliation(s)
- Katherine E Kramer
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Colton J Ross
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Anju R Babu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, MS 60, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Harold M Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
23
|
Some Effects of Different Constitutive Laws on FSI Simulation for the Mitral Valve. Sci Rep 2019; 9:12753. [PMID: 31484963 PMCID: PMC6726639 DOI: 10.1038/s41598-019-49161-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
In this paper, three different constitutive laws for mitral leaflets and two laws for chordae tendineae are selected to study their effects on mitral valve dynamics with fluid-structure interaction. We first fit these three mitral leaflet constitutive laws and two chordae tendineae laws with experimental data. The fluid-structure interaction is implemented in an immersed boundary framework with finite element extension for solid, that is the hybrid immersed boundary/finite element(IB/FE) method. We specifically compare the fluid-structure results of different constitutive laws since fluid-structure interaction is the physiological loading environment. This allows us to look at the peak jet velocity, the closure regurgitation volume, and the orifice area. Our numerical results show that different constitutive laws can affect mitral valve dynamics, such as the transvalvular flow rate, closure regurgitation and the orifice area, while the differences in fiber strain and stress are insignificant because all leaflet constitutive laws are fitted to the same set of experimental data. In addition, when an exponential constitutive law of chordae tendineae is used, a lower closure regurgitation flow is observed compared to that of a linear material model. In conclusion, combining numerical dynamic simulations and static experimental tests, we are able to identify suitable constitutive laws for dynamic behaviour of mitral leaflets and chordae under physiological conditions.
Collapse
|
24
|
van Kelle MAJ, Rausch MK, Kuhl E, Loerakker S. A computational model to predict cell traction-mediated prestretch in the mitral valve. Comput Methods Biomech Biomed Engin 2019; 22:1174-1185. [PMID: 31423837 DOI: 10.1080/10255842.2019.1647533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Prestretch is observed in many soft biological tissues, directly influencing the mechanical behavior of the tissue in question. The development of this prestretch occurs through complex growth and remodeling phenomena, which yet remain to be elucidated. In the present study it was investigated whether local cell-mediated traction forces can explain the development of global anisotropic tissue prestretch in the mitral valve. Towards this end, a model predicting actin stress fiber-generated traction forces was implemented in a finite element framework of the mitral valve. The overall predicted magnitude of prestretch induced valvular contraction after release of in vivo boundary constraints was in good agreement with data reported on valvular retraction after excision from the heart. Next, by using a systematic variation of model parameters and structural properties, a more anisotropic prestretch development in the valve could be obtained, which was also similar to physiological values. In conclusion, this study shows that cell-generated traction forces could explain prestretch magnitude and anisotropy in the mitral valve.
Collapse
Affiliation(s)
- M A J van Kelle
- Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven , The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven , The Netherlands
| | - M K Rausch
- Department of Aerospace Engineering & Engineering Mechanics, University of Texas , Austin , TX , USA
| | - E Kuhl
- Department of Mechanical Engineering, Stanford University , Stanford , CA , USA
| | - S Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven , The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven , The Netherlands
| |
Collapse
|
25
|
Ross CJ, Laurence DW, Richardson J, Babu AR, Evans LE, Beyer EG, Childers RC, Wu Y, Towner RA, Fung KM, Mir A, Burkhart HM, Holzapfel GA, Lee CH. An investigation of the glycosaminoglycan contribution to biaxial mechanical behaviours of porcine atrioventricular heart valve leaflets. J R Soc Interface 2019; 16:20190069. [PMID: 31266416 PMCID: PMC6685018 DOI: 10.1098/rsif.2019.0069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
The atrioventricular heart valve (AHV) leaflets have a complex microstructure composed of four distinct layers: atrialis, ventricularis, fibrosa and spongiosa. Specifically, the spongiosa layer is primarily proteoglycans and glycosaminoglycans (GAGs). Quantification of the GAGs' mechanical contribution to the overall leaflet function has been of recent focus for aortic valve leaflets, but this characterization has not been reported for the AHV leaflets. This study seeks to expand current GAG literature through novel mechanical characterizations of GAGs in AHV leaflets. For this characterization, mitral and tricuspid valve anterior leaflets (MVAL and TVAL, respectively) were: (i) tested by biaxial mechanical loading at varying loading ratios and by stress-relaxation procedures, (ii) enzymatically treated for removal of the GAGs and (iii) biaxially mechanically tested again under the same protocols as in step (i). Removal of the GAG contents from the leaflet was conducted using a 100 min enzyme treatment to achieve approximate 74.87% and 61.24% reductions of all GAGs from the MVAL and TVAL, respectively. Our main findings demonstrated that biaxial mechanical testing yielded a statistically significant difference in tissue extensibility after GAG removal and that stress-relaxation testing revealed a statistically significant smaller stress decay of the enzyme-treated tissue than untreated tissues. These novel findings illustrate the importance of GAGs in AHV leaflet behaviour, which can be employed to better inform heart valve therapeutics and computational models.
Collapse
Affiliation(s)
- Colton J. Ross
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Devin W. Laurence
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Jacob Richardson
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Anju R. Babu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Lauren E. Evans
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Ean G. Beyer
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Rachel C. Childers
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Rheal A. Towner
- Advanced Magnetic Resonance Center, MS 60, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Harold M. Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
26
|
Henninger HB, Ellis BJ, Scott SA, Weiss JA. Contributions of elastic fibers, collagen, and extracellular matrix to the multiaxial mechanics of ligament. J Mech Behav Biomed Mater 2019; 99:118-126. [PMID: 31351401 DOI: 10.1016/j.jmbbm.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Elastin is a biopolymer known to provide resilience to extensible biologic tissues through elastic recoil of its highly crosslinked molecular network. Recent studies have demonstrated that elastic fibers in ligament provide significant resistance to tensile and especially shear stress. We hypothesized that the biomechanics of elastic fibers in ligament could be described as transversely isotropic with both fiber and matrix components in a multi-material mixture. Similarly, we hypothesized that material coefficients derived using the experimental tensile response could be used to predict the experimental shear response. Experimental data for uniaxial and transverse tensile testing of control tissues, and those enzymatically digested to disrupt elastin, were used as inputs to a material coefficient optimization algorithm. An additive decomposition of the strain energy was used to model the total stress as the sum of contributions from collagen fibers, elastic fibers, elastic matrix, and ground substance matrix. Matrices were modeled as isotropic Veronda-Westmann hyperelastic materials, whereas fiber families were modeled as piecewise exponential-linear hyperelastic materials. Optimizations provided excellent fits to the tensile experimental data for each treatment case and material model. Given the disparity in magnitude of stresses between longitudinal and transverse/shear tests and agreement between models and experiments, the hypothesized transversely isotropic material of elastin symmetry was supported. In addition, the coefficients derived from uniaxial and transverse tensile experiments provided reasonable predictions of the experimental behavior during shear deformation. The magnitudes of coefficients representing stress, nonlinearity, and stiffness supported the experimental evidence that elastic fibers dominate the low strain tensile and shear response of ligament. These findings demonstrate that the additive decomposition modeling strategy can represent each discrete fiber and matrix constituent and their relative contribution to the material response of the tissue. These experimental data and the validated constitutive model provide essential inputs and a framework to refine existing computational models of ligament and tendon mechanics by explicitly representing the mechanical contributions of elastic fibers.
Collapse
Affiliation(s)
- Heath B Henninger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - Benjamin J Ellis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Sara A Scott
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Lee CH, Laurence DW, Ross CJ, Kramer KE, Babu AR, Johnson EL, Hsu MC, Aggarwal A, Mir A, Burkhart HM, Towner RA, Baumwart R, Wu Y. Mechanics of the Tricuspid Valve-From Clinical Diagnosis/Treatment, In-Vivo and In-Vitro Investigations, to Patient-Specific Biomechanical Modeling. Bioengineering (Basel) 2019; 6:E47. [PMID: 31121881 PMCID: PMC6630695 DOI: 10.3390/bioengineering6020047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Proper tricuspid valve (TV) function is essential to unidirectional blood flow through the right side of the heart. Alterations to the tricuspid valvular components, such as the TV annulus, may lead to functional tricuspid regurgitation (FTR), where the valve is unable to prevent undesired backflow of blood from the right ventricle into the right atrium during systole. Various treatment options are currently available for FTR; however, research for the tricuspid heart valve, functional tricuspid regurgitation, and the relevant treatment methodologies are limited due to the pervasive expectation among cardiac surgeons and cardiologists that FTR will naturally regress after repair of left-sided heart valve lesions. Recent studies have focused on (i) understanding the function of the TV and the initiation or progression of FTR using both in-vivo and in-vitro methods, (ii) quantifying the biomechanical properties of the tricuspid valve apparatus as well as its surrounding heart tissue, and (iii) performing computational modeling of the TV to provide new insight into its biomechanical and physiological function. This review paper focuses on these advances and summarizes recent research relevant to the TV within the scope of FTR. Moreover, this review also provides future perspectives and extensions critical to enhancing the current understanding of the functioning and remodeling tricuspid valve in both the healthy and pathophysiological states.
Collapse
Affiliation(s)
- Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA.
- Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, Norman, OK 73019, USA.
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA.
| | - Colton J Ross
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA.
| | - Katherine E Kramer
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA.
| | - Anju R Babu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA.
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Emily L Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, School of Engineering, University of Glasgow, Scotland G12 8LT, UK.
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Harold M Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Rheal A Towner
- Advance Magnetic Resonance Center, MS 60, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
28
|
Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium. J Mech Behav Biomed Mater 2019; 97:159-170. [PMID: 31125889 DOI: 10.1016/j.jmbbm.2019.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The durability of bioprosthetic heart valve (BHV) devices, commonly made of bovine (BP) and porcine (PP) pericardium tissue, is partly limited by device calcification and tissue degeneration, which has been associated with pathological levels of mechanical stress. This study investigated the impacts of BP and PP tissues with different thicknesses and tissue mechanical properties in BHV applications. METHODS Second Harmonic Generation (SHG) imaging was employed to visualize the collagen fibers on each side of the pericardium. Structural constitutive modeling that incorporates collagen fiber distribution obtained from multiphoton microscopy for each tissue type were derived to characterize the corresponding biaxial mechanical testing data collected in a previous study. The models were verified through finite element (FE) simulations of the biaxial test and implemented in valve closing simulations. RESULTS Smooth side collagen fibers were found to correlate with the mechanical response. BHVs with adult (ABP) and calf (CBP) BP tissues had lower maximum principal stresses than those with PP and fetal (FBP) BP tissues. Collagen fiber orientation along the circumferential axis resulted in lower maximum principal stresses and more uniform and symmetric stress distributions throughout the valve. CONCLUSIONS The use of PP and FBP tissue resulted in higher peak stresses than ABP and CBP tissues in the given valve design. Additionally, ensuring collagen fiber orientation along the circumferential axis led to lower maximum stresses felt by the valve leaflets, which could also improve BHV durability.
Collapse
|
29
|
Sacks M, Drach A, Lee CH, Khalighi A, Rego B, Zhang W, Ayoub S, Yoganathan A, Gorman RC, Gorman Iii JH. On the simulation of mitral valve function in health, disease, and treatment. J Biomech Eng 2019; 141:2731932. [PMID: 31004145 PMCID: PMC6611349 DOI: 10.1115/1.4043552] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/26/2019] [Indexed: 12/19/2022]
Abstract
The mitral valve (MV) is the heart valve that regulates blood ?ow between the left atrium and left ventricle (LV). In situations where the MV fails to fully cover the left atrioventricular ori?ce during systole, the resulting regurgitation causes pulmonary congestion, leading to heart failure and/or stroke. The causes of MV insuf?ciency can be either primary (e.g. myxomatous degeneration) where the valvular tissue is organically diseased, or secondary (typically inducded by ischemic cardiomyopathy) termed ischemic mitral regurgitation (IMR), is brought on by adverse LV remodeling. IMR is present in up to 40% of patients and more than doubles the probability of cardiovascular morbidity after 3.5 years. There is now agreement that adjunctive procedures are required to treat IMR caused by lea?et tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. There is thus an urgent need for cell and tissue physiologically based quantitative assessments of MV function to better design surgical solutions and associated therapies. Novel computational approaches directed towards optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We present the details of our MV modeling techniques, with an emphasis on what is known and investigated at various length scales.
Collapse
Affiliation(s)
- Michael Sacks
- aWillerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Chung-Hao Lee
- Department of Mechanical and Aerospace Engineering, University of Oklahoma, Norman, OK
| | - Amir Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Bruno Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Will Zhang
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Khalighi AH, Rego BV, Drach A, Gorman RC, Gorman JH, Sacks MS. Development of a Functionally Equivalent Model of the Mitral Valve Chordae Tendineae Through Topology Optimization. Ann Biomed Eng 2019; 47:60-74. [PMID: 30187238 PMCID: PMC6516770 DOI: 10.1007/s10439-018-02122-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Ischemic mitral regurgitation (IMR) is a currently prevalent disease in the US that is projected to become increasingly common as the aging population grows. In recent years, image-based simulations of mitral valve (MV) function have improved significantly, providing new tools to refine IMR treatment. However, clinical implementation of MV simulations has long been hindered as the in vivo MV chordae tendineae (MVCT) geometry cannot be captured with sufficient fidelity for computational modeling. In the current study, we addressed this challenge by developing a method to produce functionally equivalent MVCT models that can be built from the image-based MV leaflet geometry alone. We began our analysis using extant micron-resolution 3D imaging datasets to first build anatomically accurate MV models. We then systematically simplified the native MVCT structure to generate a series of synthetic models by consecutively removing key anatomic features, such as the thickness variations, branching patterns, and chordal origin distributions. In addition, through topology optimization, we identified the minimal structural complexity required to capture the native MVCT behavior. To assess the performance and predictive power of each synthetic model, we analyzed their performance by comparing the mismatch in simulated MV closed shape, as well as the strain and stress tensors, to ground-truth MV models. Interestingly, our results revealed a substantial redundancy in the anatomic structure of native chordal anatomy. We showed that the closing behavior of complete MV apparatus under normal, diseased, and surgically repaired scenarios can be faithfully replicated by a functionally equivalent MVCT model comprised of two representative papillary muscle heads, single strand chords, and a uniform insertion distribution with a density of 15 insertions/cm2. Hence, even though the complete sub-valvular structure is mostly missing in in vivo MV images, we believe our approach will allow for the development of patient-specific complete MV models for surgical repair planning.
Collapse
Affiliation(s)
- Amir H Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Bruno V Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Drach
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
31
|
Rego BV, Khalighi AH, Drach A, Lai EK, Pouch AM, Gorman RC, Gorman JH, Sacks MS. A noninvasive method for the determination of in vivo mitral valve leaflet strains. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3142. [PMID: 30133180 DOI: 10.1002/cnm.3142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Assessment of mitral valve (MV) function is important in many diagnostic, prognostic, and surgical planning applications for treatment of MV disease. Yet, to date, there are no accepted noninvasive methods for determination of MV leaflet deformation, which is a critical metric of MV function. In this study, we present a novel, completely noninvasive computational method to estimate MV leaflet in-plane strains from clinical-quality real-time three-dimensional echocardiography (rt-3DE) images. The images were first segmented to produce meshed medial-surface leaflet geometries of the open and closed states. To establish material point correspondence between the two states, an image-based morphing pipeline was implemented within a finite element (FE) modeling framework in which MV closure was simulated by pressurizing the open-state geometry, and local corrective loads were applied to enforce the actual MV closed shape. This resulted in a complete map of local systolic leaflet membrane strains, obtained from the final FE mesh configuration. To validate the method, we utilized an extant in vitro database of fiducially labeled MVs, imaged in conditions mimicking both the healthy and diseased states. Our method estimated local anisotropic in vivo strains with less than 10% error and proved to be robust to changes in boundary conditions similar to those observed in ischemic MV disease. Next, we applied our methodology to ovine MVs imaged in vivo with rt-3DE and compared our results to previously published findings of in vivo MV strains in the same type of animal as measured using surgically sutured fiducial marker arrays. In regions encompassed by fiducial markers, we found no significant differences in circumferential(P = 0.240) or radial (P = 0.808) strain estimates between the marker-based measurements and our novel noninvasive method. This method can thus be used for model validation as well as for studies of MV disease and repair.
Collapse
Affiliation(s)
- Bruno V Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amir H Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Eric K Lai
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
32
|
Laurence D, Ross C, Jett S, Johns C, Echols A, Baumwart R, Towner R, Liao J, Bajona P, Wu Y, Lee CH. An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets. J Biomech 2018; 83:16-27. [PMID: 30497683 PMCID: PMC8008702 DOI: 10.1016/j.jbiomech.2018.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/17/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
The facilitation of proper blood flow through the heart depends on proper function of heart valve components, and alterations to any component can lead to heart disease or failure. Comprehension of these valvular diseases is reliant on thorough characterization of healthy heart valve structures for use in computational models. Previously, computational models have treated these leaflet structures as a structurally and mechanically homogenous material, which may not be an accurate description of leaflet mechanical response. In this study, we aimed to characterize the mechanics of the heart valve leaflet as a structurally heterogenous material. Specifically, porcine mitral valve and tricuspid valve anterior leaflets were sectioned into six regions and biaxial mechanical tests with various loading ratios and stress-relaxation test were performed on each regional tissue sample. Three main findings from this study were summarized as follows: (i) the central regions of the leaflet had a more anisotropic nature than edge regions, (ii) the mitral valve anterior leaflet was more extensible in regions closer to the annulus, and (iii) there was variance in the stress-relaxation behavior among all six regions, with mitral valve leaflet tissue regions exhibiting a greater decay than the tricuspid valve regions. This study presents a novel investigation of the regional variations in the heart valve biomechanics that has not been comprehensively examined. Our results thus allow for a refinement of computational models for more accurately predicting diseased or surgically-intervened condition, where tissue heterogeneity plays an essential role in the heart valve function.
Collapse
Affiliation(s)
- Devin Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Colton Ross
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Samuel Jett
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Cortland Johns
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Allyson Echols
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, MS 60, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jun Liao
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Pietro Bajona
- Department of Cardiovascular and Thoracic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
33
|
Feng L, Qi N, Gao H, Sun W, Vazquez M, Griffith BE, Luo X. On the chordae structure and dynamic behaviour of the mitral valve. IMA JOURNAL OF APPLIED MATHEMATICS 2018; 83:1066-1091. [PMID: 30655652 PMCID: PMC6328065 DOI: 10.1093/imamat/hxy035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/29/2018] [Accepted: 07/29/2018] [Indexed: 05/07/2023]
Abstract
We develop a fluid-structure interaction (FSI) model of the mitral valve (MV) that uses an anatomically and physiologically realistic description of the MV leaflets and chordae tendineae. Three different chordae models-complex, 'pseudo-fibre' and simplified chordae-are compared to determine how different chordae representations affect the dynamics of the MV. The leaflets and chordae are modelled as fibre-reinforced hyperelastic materials, and FSI is modelled using an immersed boundary-finite element method. The MV model is first verified under static boundary conditions against the commercial finite element software ABAQUS and then used to simulate MV dynamics under physiological pressure conditions. Interesting flow patterns and vortex formulation are observed in all three cases. To quantify the highly complex system behaviour resulting from FSI, an energy budget analysis of the coupled MV FSI model is performed. Results show that the complex and pseudo-fibre chordae models yield good valve closure during systole but that the simplified chordae model leads to poorer leaflet coaptation and an unrealistic bulge in the anterior leaflet belly. An energy budget analysis shows that the MV models with complex and pseudo-fibre chordae have similar energy distribution patterns but the MV model with the simplified chordae consumes more energy, especially during valve closing and opening. We find that the complex chordae and pseudo-fibre chordae have similar impact on the overall MV function but that the simplified chordae representation is less accurate. Because a pseudo-fibre chordal structure is easier to construct and less computationally intensive, it may be a good candidate for modelling MV dynamics or interaction between the MV and heart in patient-specific applications.
Collapse
Affiliation(s)
- Liuyang Feng
- School of Mathematics and Statistics, University of Glasgow, UK
| | - Nan Qi
- Institute of Marine Science and Technology, Shandong University, Shandong, China and School of Mathematics and Statistics, University of Glasgow, UK
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, UK
| | - Wei Sun
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Boyce E Griffith
- Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, UK
| |
Collapse
|
34
|
Javid F, Shahmansouri N, Angeles J, Mongrain R. Fatigue exhaustion of the mitral valve tissue. Biomech Model Mechanobiol 2018; 18:89-97. [PMID: 30097813 DOI: 10.1007/s10237-018-1070-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 08/02/2018] [Indexed: 11/24/2022]
Abstract
Sudden failure and rupture of the tissue is a rare but serious short-term complication after the mitral valve surgical repair. Excessive cyclic loading on the suture line of the repair can progressively damage the surrounding tissue and finally cause tissue rupture. Moreover, mechanical over-tension, which occurs in a diseased mitral valve, gradually leads to tissue floppiness, mitral annular dilation, and leaflet rupture. In this work, the rupture mechanics of mitral valve is studied by characterizing the fracture toughness exhaustion of healthy tissue. Results of this study show that fracture toughness of the posterior mitral valve is lower than its anterior counterpart, indicating that posterior tissue is more prone to failure. Moreover, the decrease in fracture toughness by increasing the number of fatigue cycles shows that excessive mechanical loading leads to progressive failure and rupture of mitral valve tissue within a damage accumulative process.
Collapse
Affiliation(s)
- Farhad Javid
- Koch Institute for Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA, 02140, USA.
| | - Nastaran Shahmansouri
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. W., Montreal, Quebec, H3A 0C3, Canada
| | - Jorge Angeles
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. W., Montreal, Quebec, H3A 0C3, Canada.,Department of Mechanical Engineering, Centre for Intelligent Machines, McGill University, 3480 University Street, Montreal, Quebec, H3A 2A7, Canada
| | - Rosaire Mongrain
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. W., Montreal, Quebec, H3A 0C3, Canada
| |
Collapse
|
35
|
Jett S, Laurence D, Kunkel R, Babu AR, Kramer K, Baumwart R, Towner R, Wu Y, Lee CH. An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves. J Mech Behav Biomed Mater 2018; 87:155-171. [PMID: 30071486 PMCID: PMC8008704 DOI: 10.1016/j.jmbbm.2018.07.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/05/2018] [Accepted: 07/15/2018] [Indexed: 11/18/2022]
Abstract
Valvular heart diseases are complex disorders, varying in pathophysiological mechanism and affected valve components. Understanding the effects of these diseases on valve functionality requires a thorough characterization of the mechanics and structure of the healthy heart valves. In this study, we performed biaxial mechanical experiments with extensive testing protocols to examine the mechanical behaviors of the mitral valve and tricuspid valve leaflets. We also investigated the effect of loading rate, testing temperatures, species (porcine versus ovine hearts), and age (juvenile vs adult ovine hearts) on the mechanical responses of the leaflet tissues. In addition, we evaluated the structure of chordae tendineae within each valve and performed histological analysis on each atrioventricular leaflet. We found all tissues displayed a characteristic nonlinear anisotropic mechanical response, with radial stretches on average 30.7% higher than circumferential stretches under equibiaxial physiological loading. Tissue mechanical responses showed consistent mechanical stiffening in response to increased loading rate and minor temperature dependence in all five atrioventricular heart valve leaflets. Moreover, our anatomical study revealed similar chordae quantities in the porcine mitral (30.5 ± 1.43 chords) and tricuspid valves (35.3 ± 2.45 chords) but significantly more chordae in the porcine than the ovine valves (p < 0.010). Our histological analyses quantified the relative thicknesses of the four distinct morphological layers in each leaflet. This study provides a comprehensive database of the mechanics and structure of the atrioventricular valves, which will be beneficial to development of subject-specific atrioventricular valve constitutive models and toward multi-scale biomechanical investigations of heart valve function to improve valvular disease treatments.
Collapse
Affiliation(s)
- Samuel Jett
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219 C, Norman, OK 73019, USA
| | - Devin Laurence
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219 C, Norman, OK 73019, USA
| | - Robert Kunkel
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219 C, Norman, OK 73019, USA
| | - Anju R Babu
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219 C, Norman, OK 73019, USA
| | - Katherine Kramer
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219 C, Norman, OK 73019, USA
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, 208 S. McFarland Street, Stillwater, OK 74078, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, MS 60, Oklahoma Medical Research Foundation 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | - Yi Wu
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219 C, Norman, OK 73019, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219 C, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
36
|
Earl E, Mohammadi H. Improving finite element results in modeling heart valve mechanics. Proc Inst Mech Eng H 2018; 232:718-725. [PMID: 29879869 DOI: 10.1177/0954411918780150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.
Collapse
Affiliation(s)
- Emily Earl
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, Canada
| | - Hadi Mohammadi
- The Heart Valve Performance Laboratory, School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
37
|
Wamala I, Saeed M, Ghelani SJ, Gauvreau K, Hammer PE, Vasilyev NV, del Nido PJ. A leaflet plication clip is an effective surgical template for mitral valve foldoplasty. Eur J Cardiothorac Surg 2018; 53:939-944. [PMID: 29220425 PMCID: PMC11187796 DOI: 10.1093/ejcts/ezx423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVES During mitral valve repair using the foldoplasty technique, correct judgement of the necessary dimensions and orientation of the leaflet fold is a critical but challenging step that can affect the chances of successful repair. In this study, we investigated whether a leaflet plication clip can be used to guide suture foldoplasty for posterior leaflet prolapse of the mitral valve. METHODS Complete posterior leaflet prolapse was created in both in vivo and ex vivo pig hearts by severing the chordae supporting the middle scallop. A plication clip was applied to perform leaflet foldoplasty. Sutures were then placed using the clip as a template and the clip was removed. Leaflet width after flail creation, clip application and suture placement was determined in an ex vivo test. In vivo repair and evaluation was then performed in 7 pigs to determine the repair efficacy under normal physiological loading, at 1 and 6 h after recovery from cardiopulmonary bypass. RESULTS Leaflet width after suture placement was comparable to the clip alone (7.0 ± 1.4 vs 9.0 ± 1.6) and both were significantly less than the flail width 15.7± 2.5 mm. In vivo, average coaptation height following repair was restored to 4.7 ± 1.4 mm and 4.2 ± 1.3 mm at 1 and 6 h, respectively, after recovery compared with the baseline height of 5.5 ± 0.9 mm. Mitral regurgitation was reduced from moderate-severe to mild or less, and addition of a De-Vega annuloplasty in the last 3 animals abolished residual leaks to trivial or none. CONCLUSIONS Application of the adjustable leaflet plication clip facilitated accurate determination of the correct position, width, height and orientation of the foldoplasty. Any necessary clip repositioning was made prior to the placement of sutures avoiding the need to redo the sutures. This approach could potentially help improve the ease and reproducibility of the foldoplasty repair.
Collapse
Affiliation(s)
- Isaac Wamala
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Cardiovascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Mossab Saeed
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
| | - Sunil J Ghelani
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | | | - Peter E Hammer
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
| | - Pedro J del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
38
|
Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJ, Sacks MS, Hsu MC. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2938. [PMID: 29119728 PMCID: PMC5893448 DOI: 10.1002/cnm.2938] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/08/2017] [Accepted: 10/22/2017] [Indexed: 05/07/2023]
Abstract
Numerous studies have suggested that medical image derived computational mechanics models could be developed to reduce mortality and morbidity due to cardiovascular diseases by allowing for patient-specific surgical planning and customized medical device design. In this work, we present a novel framework for designing prosthetic heart valves using a parametric design platform and immersogeometric fluid-structure interaction (FSI) analysis. We parameterize the leaflet geometry using several key design parameters. This allows for generating various perturbations of the leaflet design for the patient-specific aortic root reconstructed from the medical image data. Each design is analyzed using our hybrid arbitrary Lagrangian-Eulerian/immersogeometric FSI methodology, which allows us to efficiently simulate the coupling of the deforming aortic root, the parametrically designed prosthetic valves, and the surrounding blood flow under physiological conditions. A parametric study is performed to investigate the influence of the geometry on heart valve performance, indicated by the effective orifice area and the coaptation area. Finally, the FSI simulation result of a design that balances effective orifice area and coaptation area reasonably well is compared with patient-specific phase contrast magnetic resonance imaging data to demonstrate the qualitative similarity of the flow patterns in the ascending aorta.
Collapse
Affiliation(s)
- Fei Xu
- Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
| | - Simone Morganti
- Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, via Ferrata 3, 27100, Pavia Italy
| | - Rana Zakerzadeh
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - David Kamensky
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085 La Jolla, CA 92093, USA
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100, Pavia, Italy
| | - Alessandro Reali
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100, Pavia, Italy
| | - Thomas J.R. Hughes
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - Michael S. Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA
| |
Collapse
|
39
|
Kamensky D, Xu F, Lee CH, Yan J, Bazilevs Y, Hsu MC. A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2018; 330:522-546. [PMID: 29736092 PMCID: PMC5935269 DOI: 10.1016/j.cma.2017.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This work formulates frictionless contact between solid bodies in terms of a repulsive potential energy term and illustrates how numerical integration of the resulting forces is computationally similar to the "pinball algorithm" proposed and studied by Belytschko and collaborators in the 1990s. We thereby arrive at a numerical approach that has both the theoretical advantages of a potential-based formulation and the algorithmic simplicity, computational efficiency, and geometrical versatility of pinball contact. The singular nature of the contact potential requires a specialized nonlinear solver and an adaptive time stepping scheme to ensure reliable convergence of implicit dynamic calculations. We illustrate the effectiveness of this numerical method by simulating several benchmark problems and the structural mechanics of the right atrioventricular (tricuspid) heart valve. Atrioventricular valve closure involves contact between every combination of shell surfaces, edges of shells, and cables, but our formulation handles all contact scenarios in a unified manner. We take advantage of this versatility to demonstrate the effects of chordal rupture on tricuspid valve coaptation behavior.
Collapse
Affiliation(s)
- David Kamensky
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author: (David Kamensky)
| | - Fei Xu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Jinhui Yan
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yuri Bazilevs
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
40
|
Drach A, Khalighi AH, Sacks MS. A comprehensive pipeline for multi-resolution modeling of the mitral valve: Validation, computational efficiency, and predictive capability. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:10.1002/cnm.2921. [PMID: 28776326 PMCID: PMC5797517 DOI: 10.1002/cnm.2921] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 05/18/2023]
Abstract
Multiple studies have demonstrated that the pathological geometries unique to each patient can affect the durability of mitral valve (MV) repairs. While computational modeling of the MV is a promising approach to improve the surgical outcomes, the complex MV geometry precludes use of simplified models. Moreover, the lack of complete in vivo geometric information presents significant challenges in the development of patient-specific computational models. There is thus a need to determine the level of detail necessary for predictive MV models. To address this issue, we have developed a novel pipeline for building attribute-rich computational models of MV with varying fidelity directly from the in vitro imaging data. The approach combines high-resolution geometric information from loaded and unloaded states to achieve a high level of anatomic detail, followed by mapping and parametric embedding of tissue attributes to build a high-resolution, attribute-rich computational models. Subsequent lower resolution models were then developed and evaluated by comparing the displacements and surface strains to those extracted from the imaging data. We then identified the critical levels of fidelity for building predictive MV models in the dilated and repaired states. We demonstrated that a model with a feature size of about 5 mm and mesh size of about 1 mm was sufficient to predict the overall MV shape, stress, and strain distributions with high accuracy. However, we also noted that more detailed models were found to be needed to simulate microstructural events. We conclude that the developed pipeline enables sufficiently complex models for biomechanical simulations of MV in normal, dilated, repaired states.
Collapse
Affiliation(s)
- Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
41
|
Abstract
Biomedical research and clinical practice are struggling to cope with the growing complexity that the progress of health care involves. The most challenging diseases, those with the largest socioeconomic impact (cardiovascular conditions; musculoskeletal conditions; cancer; metabolic, immunity, and neurodegenerative conditions), are all characterized by a complex genotype-phenotype interaction and by a "systemic" nature that poses a challenge to the traditional reductionist approach. In 2005 a small group of researchers discussed how the vision of computational physiology promoted by the Physiome Project could be translated into clinical practice and formally proposed the term Virtual Physiological Human. Our knowledge about these diseases is fragmentary, as it is associated with molecular and cellular processes on the one hand and with tissue and organ phenotype changes (related to clinical symptoms of disease conditions) on the other. The problem could be solved if we could capture all these fragments of knowledge into predictive models and then compose them into hypermodels that help us tame the complexity that such systemic behavior involves. In 2005 this was simply not possible-the necessary methods and technologies were not available. Now, 10 years later, it seems the right time to reflect on the original vision, the results achieved so far, and what remains to be done.
Collapse
Affiliation(s)
- Marco Viceconti
- Department of Mechanical Engineering and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield S1 3JD, United Kingdom;
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
42
|
Khalighi AH, Drach A, Gorman RC, Gorman JH, Sacks MS. Multi-resolution geometric modeling of the mitral heart valve leaflets. Biomech Model Mechanobiol 2017; 17:351-366. [PMID: 28983742 DOI: 10.1007/s10237-017-0965-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
An essential element of cardiac function, the mitral valve (MV) ensures proper directional blood flow between the left heart chambers. Over the past two decades, computational simulations have made marked advancements toward providing powerful predictive tools to better understand valvular function and improve treatments for MV disease. However, challenges remain in the development of robust means for the quantification and representation of MV leaflet geometry. In this study, we present a novel modeling pipeline to quantitatively characterize and represent MV leaflet surface geometry. Our methodology utilized a two-part additive decomposition of the MV geometric features to decouple the macro-level general leaflet shape descriptors from the leaflet fine-scale features. First, the general shapes of five ovine MV leaflets were modeled using superquadric surfaces. Second, the finer-scale geometric details were captured, quantified, and reconstructed via a 2D Fourier analysis with an additional sparsity constraint. This spectral approach allowed us to easily control the level of geometric details in the reconstructed geometry. The results revealed that our methodology provided a robust and accurate approach to develop MV-specific models with an adjustable level of spatial resolution and geometric detail. Such fully customizable models provide the necessary means to perform computational simulations of the MV at a range of geometric accuracies in order to identify the level of complexity required to achieve predictive MV simulations.
Collapse
Affiliation(s)
- Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
43
|
Gao H, Qi N, Feng L, Ma X, Danton M, Berry C, Luo X. Modelling mitral valvular dynamics-current trend and future directions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2858. [PMID: 27935265 PMCID: PMC5697636 DOI: 10.1002/cnm.2858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/30/2016] [Accepted: 11/26/2016] [Indexed: 05/19/2023]
Abstract
Dysfunction of mitral valve causes morbidity and premature mortality and remains a leading medical problem worldwide. Computational modelling aims to understand the biomechanics of human mitral valve and could lead to the development of new treatment, prevention and diagnosis of mitral valve diseases. Compared with the aortic valve, the mitral valve has been much less studied owing to its highly complex structure and strong interaction with the blood flow and the ventricles. However, the interest in mitral valve modelling is growing, and the sophistication level is increasing with the advanced development of computational technology and imaging tools. This review summarises the state-of-the-art modelling of the mitral valve, including static and dynamics models, models with fluid-structure interaction, and models with the left ventricle interaction. Challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Hao Gao
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | - Nan Qi
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | - Liuyang Feng
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | | | - Mark Danton
- Department of Cardiac SurgeryRoyal Hospital for ChildrenGlasgowUK
| | - Colin Berry
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowUK
| | - Xiaoyu Luo
- School of Mathematics and StatisticsUniversity of GlasgowUK
| |
Collapse
|
44
|
Mao W, Caballero A, McKay R, Primiano C, Sun W. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS One 2017; 12:e0184729. [PMID: 28886196 PMCID: PMC5590990 DOI: 10.1371/journal.pone.0184729] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we present a fully-coupled fluid-structure interaction (FSI) framework that combines smoothed particle hydrodynamics (SPH) and nonlinear finite element (FE) method to investigate the coupled aortic and mitral valves structural response and the bulk intraventricular hemodynamics in a realistic left ventricle (LV) model during the entire cardiac cycle. The FSI model incorporates valve structures that consider native asymmetric leaflet geometries, anisotropic hyperelastic material models and human material properties. Comparison of FSI results with subject-specific echocardiography data demonstrates that the SPH-FE approach is able to quantitatively predict the opening and closing times of the valves, the mitral leaflet opening and closing angles, and the large-scale intraventricular flow phenomena with a reasonable agreement. Moreover, comparison of FSI results with a LV model without valves reveals substantial differences in the flow field. Peak systolic velocities obtained from the FSI model and the LV model without valves are 2.56 m/s and 1.16 m/s, respectively, compared to the Doppler echo data of 2.17 m/s. The proposed SPH-FE FSI framework represents a further step towards modeling patient-specific coupled LV-valve dynamics, and has the potential to improve our understanding of cardiovascular physiology and to support professionals in clinical decision-making.
Collapse
Affiliation(s)
- Wenbin Mao
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Raymond McKay
- Cardiology Department, The Hartford Hospital, Hartford, Connecticut, United States of America
| | - Charles Primiano
- Cardiology Department, The Hartford Hospital, Hartford, Connecticut, United States of America
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| |
Collapse
|
45
|
Lee CH, Zhang W, Feaver K, Gorman RC, Gorman JH, Sacks MS. On the in vivo function of the mitral heart valve leaflet: insights into tissue-interstitial cell biomechanical coupling. Biomech Model Mechanobiol 2017; 16:1613-1632. [PMID: 28429161 DOI: 10.1007/s10237-017-0908-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
There continues to be a critical need for developing data-informed computational modeling techniques that enable systematic evaluations of mitral valve (MV) function. This is important for a better understanding of MV organ-level biomechanical performance, in vivo functional tissue stresses, and the biosynthetic responses of MV interstitial cells (MVICs) in the normal, pathophysiological, and surgically repaired states. In the present study, we utilized extant ovine MV population-averaged 3D fiducial marker data to quantify the MV anterior leaflet (MVAL) deformations in various kinematic states. This approach allowed us to make the critical connection between the in vivo functional and the in vitro experimental configurations. Moreover, we incorporated the in vivo MVAL deformations and pre-strains into an enhanced inverse finite element modeling framework (Path 1) to estimate the resulting in vivo tissue prestresses [Formula: see text] and the in vivo peak functional tissue stresses [Formula: see text]. These in vivo stress estimates were then cross-verified with the results obtained from an alternative forward modeling method (Path 2), by taking account of the changes in the in vitro and in vivo reference configurations. Moreover, by integrating the tissue-level kinematic results into a downscale MVIC microenvironment FE model, we were able to estimate, for the first time, the in vivo layer-specific MVIC deformations and deformation rates of the normal and surgically repaired MVALs. From these simulations, we determined that the placement of annuloplasty ring greatly reduces the peak MVIC deformation levels in a layer-specific manner. This suggests that the associated reductions in MVIC deformation may down-regulate MV extracellular matrix maintenance, ultimately leading to reduction in tissue mechanical integrity. These simulations provide valuable insight into MV cellular mechanobiology in response to organ- and tissue-level alternations induced by MV disease or surgical repair. They will also assist in the future development of computer simulation tools for guiding MV surgery procedure with enhanced durability and improved long-term surgical outcomes.
Collapse
Affiliation(s)
- Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall, Rm. 219C, Norman, OK, 73019, USA.,Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, POB 5.236, 1 University Station, C0200, Austin, TX, 78712, USA
| | - Will Zhang
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, POB 5.236, 1 University Station, C0200, Austin, TX, 78712, USA
| | - Kristen Feaver
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, POB 5.236, 1 University Station, C0200, Austin, TX, 78712, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Michael S Sacks
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, POB 5.236, 1 University Station, C0200, Austin, TX, 78712, USA. .,W. A. Moncrief, Jr. Simulation-Based Engineering Science Chair I, Department of Biomedical Engineering, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, ACES 5.438, 1 University Station, C0200, Austin, TX, 78712-0027, USA.
| |
Collapse
|
46
|
Khalighi AH, Drach A, Bloodworth CH, Pierce EL, Yoganathan AP, Gorman RC, Gorman JH, Sacks MS. Mitral Valve Chordae Tendineae: Topological and Geometrical Characterization. Ann Biomed Eng 2017; 45:378-393. [PMID: 27995395 PMCID: PMC7077931 DOI: 10.1007/s10439-016-1775-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 12/07/2016] [Indexed: 01/27/2023]
Abstract
Mitral valve (MV) closure depends upon the proper function of each component of the valve apparatus, which includes the annulus, leaflets, and chordae tendineae (CT). Geometry plays a major role in MV mechanics and thus highly impacts the accuracy of computational models simulating MV function and repair. While the physiological geometry of the leaflets and annulus have been previously investigated, little effort has been made to quantitatively and objectively describe CT geometry. The CT constitute a fibrous tendon-like structure projecting from the papillary muscles (PMs) to the leaflets, thereby evenly distributing the loads placed on the MV during closure. Because CT play a major role in determining the shape and stress state of the MV as a whole, their geometry must be well characterized. In the present work, a novel and comprehensive investigation of MV CT geometry was performed to more fully quantify CT anatomy. In vitro micro-tomography 3D images of ovine MVs were acquired, segmented, then analyzed using a curve-skeleton transform. The resulting data was used to construct B-spline geometric representations of the CT structures, enriched with a continuous field of cross-sectional area (CSA) data. Next, Reeb graph models were developed to analyze overall topological patterns, along with dimensional attributes such as segment lengths, 3D orientations, and CSA. Reeb graph results revealed that the topology of ovine MV CT followed a full binary tree structure. Moreover, individual chords are mostly planar geometries that together form a 3D load-bearing support for the MV leaflets. We further demonstrated that, unlike flow-based branching patterns, while individual CT branches became thinner as they propagated further away from the PM heads towards the leaflets, the total CSA almost doubled. Overall, our findings indicate a certain level of regularity in structure, and suggest that population-based MV CT geometric models can be generated to improve current MV repair procedures.
Collapse
Affiliation(s)
- Amir H Khalighi
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Drach
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Charles H Bloodworth
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric L Pierce
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajit P Yoganathan
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
47
|
Feng Y, Lee CH, Sun L, Ji S, Zhao X. Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling. J Mech Behav Biomed Mater 2017; 65:490-501. [PMID: 27665084 PMCID: PMC5154882 DOI: 10.1016/j.jmbbm.2016.09.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 01/11/2023]
Abstract
Characterizing the mechanical properties of white matter is important to understand and model brain development and injury. With embedded aligned axonal fibers, white matter is typically modeled as a transversely isotropic material. However, most studies characterize the white matter tissue using models with a single anisotropic invariant or in a small-strain regime. In this study, we combined a single experimental procedure - asymmetric indentation - with inverse finite element (FE) modeling to estimate the nearly incompressible transversely isotropic material parameters of white matter. A minimal form comprising three parameters was employed to simulate indentation responses in the large-strain regime. The parameters were estimated using a global optimization procedure based on a genetic algorithm (GA). Experimental data from two indentation configurations of porcine white matter, parallel and perpendicular to the axonal fiber direction, were utilized to estimate model parameters. Results in this study confirmed a strong mechanical anisotropy of white matter in large strain. Further, our results suggested that both indentation configurations are needed to estimate the parameters with sufficient accuracy, and that the indenter-sample friction is important. Finally, we also showed that the estimated parameters were consistent with those previously obtained via a trial-and-error forward FE method in the small-strain regime. These findings are useful in modeling and parameterization of white matter, especially under large deformation, and demonstrate the potential of the proposed asymmetric indentation technique to characterize other soft biological tissues with transversely isotropic properties.
Collapse
Affiliation(s)
- Yuan Feng
- School of Mechanical and Electronic Engineering, Soochow University, Suzhou 215021, Jiangsu, China; Robotics and Microsystems Center, Soochow University, Suzhou 215021, Jiangsu, China.
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, United States; Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78705, United States
| | - Lining Sun
- School of Mechanical and Electronic Engineering, Soochow University, Suzhou 215021, Jiangsu, China; Robotics and Microsystems Center, Soochow University, Suzhou 215021, Jiangsu, China
| | - Songbai Ji
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
| | - Xuefeng Zhao
- School of Mechanical and Electronic Engineering, Soochow University, Suzhou 215021, Jiangsu, China
| |
Collapse
|
48
|
Grbic S, Easley TF, Mansi T, Bloodworth CH, Pierce EL, Voigt I, Neumann D, Krebs J, Yuh DD, Jensen MO, Comaniciu D, Yoganathan AP. Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography. Med Image Anal 2017; 35:238-249. [DOI: 10.1016/j.media.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
|
49
|
Abstract
Fibrous structures are an integral and dynamic feature of soft biological tissues that are directly related to the tissues' condition and function. A greater understanding of mechanical tissue behavior can be gained through quantitative analyses of structure alone, as well as its integration into computational models of soft tissue function. Histology and other nonoptical techniques have traditionally dominated the field of tissue imaging, but they are limited by their invasiveness, inability to provide resolution on the micrometer scale, and dynamic information. Recent advances in optical modalities can provide higher resolution, less invasive imaging capabilities, and more quantitative measurements. Here we describe contemporary optical imaging techniques with respect to their suitability in the imaging of tissue structure, with a focus on characterization and implementation into subsequent modeling efforts. We outline the applications and limitations of each modality and discuss the overall shortcomings and future directions for optical imaging of soft tissue structure.
Collapse
Affiliation(s)
- Will Goth
- Department of Biomedical Engineering
| | - John Lesicko
- Department of Biomedical Engineering
- Center for Cardiovascular Simulation, and
| | - Michael S Sacks
- Department of Biomedical Engineering
- Center for Cardiovascular Simulation, and
- Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas 78712;
| | | |
Collapse
|
50
|
High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods. Biomech Model Mechanobiol 2016; 15:1619-1630. [PMID: 27094182 DOI: 10.1007/s10237-016-0786-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
Abstract
The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography ([Formula: see text]CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for [Formula: see text]CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against [Formula: see text]CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV.
Collapse
|