1
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Yan K, Ye W, Martínez A, Geronzi L, Escrig P, Tomasi J, Rochette M, Haigron P, Bel-Brunon A. Fluid-structure-growth modeling in ascending aortic aneurysm: capability to reproduce a patient case. Biomech Model Mechanobiol 2025; 24:405-422. [PMID: 39760773 DOI: 10.1007/s10237-024-01915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025]
Abstract
Predicting the evolution of ascending aortic aneurysm (AscAA) growth is a challenge, complicated by the intricate interplay of aortic geometry, tissue behavior, and blood flow dynamics. We investigate a flow-structural growth and remodeling (FSG) model based on the homogenized constrained mixture theory to simulate realistic AscAA growth evolution. Our approach involves initiating a finite element model with an initial elastin insult, driven by the distribution of Time-Averaged Wall Shear Stress (TAWSS) derived from computational fluid dynamics simulations. Through FSG simulation, we first calibrate the growth and remodeling material parameters to reproduce the growth observed on a patient-specific case. Then, we explore the influence of two critical parameters: the direction of the inlet jet flow, which affects the zone of significant TAWSS, and prestretch, which impacts the tissue homeostatic state. Our results show that calibrating material parameters, inlet flow direction, and prestretch allows to reproduce the observed growth, and that prestretch calibration and inlet flow direction significantly influence the simulated growth pattern. Our workflow can be applied to additional patient cases to confirm these tendencies and progress toward a predictive tool for clinical decision support.
Collapse
Affiliation(s)
- Kexin Yan
- ANSYS, 69621, Villeurbanne, France.
- CHU Rennes, Inserm, LTSI - UMR 1099, Univ Rennes, 35000, Rennes, France.
- CNRS, LaMCoS, UMR5259, INSA Lyon, 69621, Villeurbanne, France.
| | | | | | - Leonardo Geronzi
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Rome, Italy
| | - Pierre Escrig
- CHU Rennes, Inserm, LTSI - UMR 1099, Univ Rennes, 35000, Rennes, France
| | - Jacques Tomasi
- CHU Rennes, Inserm, LTSI - UMR 1099, Univ Rennes, 35000, Rennes, France
| | | | - Pascal Haigron
- CHU Rennes, Inserm, LTSI - UMR 1099, Univ Rennes, 35000, Rennes, France
| | | |
Collapse
|
3
|
Sempértegui F, Avril S. Integration of cross-links, discrete fiber distributions and of a non-local theory in the Homogenized Constrained Mixture Model to Simulate Patient-Specific Thoracic Aortic Aneurysm Progression. J Biomech 2025; 178:112297. [PMID: 39244434 DOI: 10.1016/j.jbiomech.2024.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Thoracic aortic aneurysms (TAA) represent a critical health issue for which computational models can significantly contribute to better understand the physiopathology. Among different computational frameworks, the Homogenized Constrained Mixture Theory has shown to be a computationally efficient option, allowing the inclusion of several mechanically significant constituents into a layer-specific mixture. Different patient-specific Growth and Remodeling (G&R) models correctly predicted TAA progression, although simplifications such as the inclusion of a limited number of collagen fibers and imposed boundary conditions might limit extensive analyses. The current study aims to enhance existing models by incorporating several discrete collagen fibers and to remove restrictive boundary conditions of the previous models. The implementation of discretized fiber dispersion presents a more realistic description of the vessel, while the removal of boundary conditions was addressed by including cross-links in the model to provide a supplemental stiffness against through-thickness shearing, a feature that was previously absent, and by the development of a non-local framework that ensures the stable deposition and degradation of collagen fibers. With these improvements, the current model represents a step forward towards more robust and comprehensive simulations of TAA growth.
Collapse
Affiliation(s)
- Felipe Sempértegui
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023, Saint-Étienne, France.
| | - Stéphane Avril
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023, Saint-Étienne, France.
| |
Collapse
|
4
|
Parikh S, Wehrens A, Giudici A, Ganizada B, Saraber P, Schurgers L, Debeij G, Natour E, Maessen J, Huberts W, Delhaas T, Reesink K, Bidar E. Interpretation of intra-operative strain differences in ascending thoracic aortic repair patients. J Biomech 2025; 179:112447. [PMID: 39644801 DOI: 10.1016/j.jbiomech.2024.112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Local biaxial deformation plays a pivotal role in evaluating the tissue state of the ascending aorta and in driving intramural cell-mediated tissue remodeling. Unfortunately, the absence of anatomical markers on the ascending aorta presents challenges in capturing deformation. Utilizing our established intra-operative biaxial strain measurement method, we delineated local biaxial deformation characteristics in patients undergoing aortic valve replacement and coronary artery bypass graft surgery recipients (n = 20), and Aortic Repair surgery patients (n = 47). Expectedly, mean circumferential strains positively correlated with pulse pressure and negatively correlated with age and diameter. A new observation was that the mean axial strains exhibited the same trend as the mean circumferential strains when correlated with pulse pressure, age and diameter. Interestingly, on analyzing local biaxial strains, our findings revealed higher circumferential strains (by 1 %) proximal to the heart compared to distal regions across the cohorts and within each patient cohort. Furthermore, no discernible regional strain distinctions were noted between the medial and lateral sides of the ascending aorta for the entire patient population and individual cohorts. Patients undergoing Aortic Repair surgery indicated lower strains (ranging from 1 to 3 %) as compared to the other cohort. Our approach holds the potential to establish a foundational framework for the integrated examination of the mechanical and biological conditions and their role in ascending aortic aneurysm development.
Collapse
Affiliation(s)
- Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Anne Wehrens
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Berta Ganizada
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands; Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Pepijn Saraber
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Leon Schurgers
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Gijs Debeij
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Ehsan Natour
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Jos Maessen
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Wouter Huberts
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Biomedical Engineering, Cardiovascular Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Koen Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Elham Bidar
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| |
Collapse
|
5
|
Kim J, Zhang K, Canton G, Balu N, Meyer K, Saber R, Paydarfar D, Yuan C, Sacks MS. In Vivo Deformation of the Human Basilar Artery. Ann Biomed Eng 2025; 53:83-98. [PMID: 39240472 DOI: 10.1007/s10439-024-03605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
An estimated 6.8 million people in the United States have an unruptured intracranial aneurysms, with approximately 30,000 people suffering from intracranial aneurysms rupture each year. Despite the development of population-based scores to evaluate the risk of rupture, retrospective analyses have suggested the limited usage of these scores in guiding clinical decision-making. With recent advancements in imaging technologies, artery wall motion has emerged as a promising biomarker for the general study of neurovascular mechanics and in assessing the risk of intracranial aneurysms. However, measuring arterial wall deformations in vivo itself poses several challenges, including how to image local wall motion and deriving the anisotropic wall strains over the cardiac cycle. To overcome these difficulties, we first developed a novel in vivo MRI-based imaging method to acquire cardiac gated images of the human basilar artery (BA) over the cardiac cycle. Next, complete BA endoluminal surfaces from each frame were segmented, producing high-resolution point clouds of the endoluminal surfaces. From these point clouds we developed a novel B-spline-based surface representation, then exploited the local support nature of B-splines to determine the local endoluminal surface strains. Results indicated distinct regional and temporal variations in BA wall deformation, highlighting the heterogeneous nature BA function. These included large circumferential strains (up to ∼ 20 % ), and small longitudinal strains, which were often contractile and out of phase with the circumferential strains patterns. Of particular interest was the temporal phase lag in the maximum circumferential perimeter length, which indicated that the BA deforms asynchronously over the cardiac cycle. In summary, the proposed method enabled local deformation analysis, allowing for the successful reproduction of local features of the BA, such as regional principal stretches, areal changes, and pulsatile motion. Integrating the proposed method into existing population-based scores has the potential to improve our understanding of mechanical properties of human BA and enhance clinical decision-making.
Collapse
Affiliation(s)
- Jaemin Kim
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kaiyu Zhang
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Gador Canton
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kenneth Meyer
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Reza Saber
- Department of Neurology, Dell School of Medicine, University of Texas, Austin, TX, USA
| | - David Paydarfar
- Department of Neurology, Dell School of Medicine, University of Texas, Austin, TX, USA
| | - Chun Yuan
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Paukner D, Humphrey JD, Cyron CJ. Multiscale homogenized constrained mixture model of the bio-chemo-mechanics of soft tissue growth and remodeling. Biomech Model Mechanobiol 2024; 23:2115-2136. [PMID: 39419845 PMCID: PMC11554721 DOI: 10.1007/s10237-024-01884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 10/19/2024]
Abstract
Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects. Here, we propose such a version that resolves cellular signal processing by a set of logic-gated ordinary differential equations and captures chemo-mechanical interactions between cells by coupling a reaction-diffusion equation with the equations of nonlinear continuum mechanics. To demonstrate the potential of the model, we present 2 case studies within vascular solid mechanics: (i) the influence of angiotensin II on aortic growth and remodeling and (ii) the effect of communication between endothelial and intramural arterial cells via nitric oxide and endothelin-1.
Collapse
Affiliation(s)
- Daniel Paukner
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Christian J Cyron
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany.
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
| |
Collapse
|
7
|
Braeu FA, Avril S, Girard MJA. 3D growth and remodeling theory supports the hypothesis of staphyloma formation from local scleral weakening under normal intraocular pressure. Biomech Model Mechanobiol 2024; 23:2137-2154. [PMID: 39320690 DOI: 10.1007/s10237-024-01885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
The purpose of this study was to assess whether growth and remodeling (G&R) theory could explain staphyloma formation from a local scleral weakening-as could occur from age-related elastin degradation, myopia progression, or other factors. A finite element model of a healthy eye was reconstructed, including the lamina cribrosa, the peripapillary sclera, and the peripheral sclera. The homogenized constrained mixture model was employed to simulate the adaptation of the sclera to alterations in its biomechanical environment over a duration of 13.7 years. G&R processes were triggered by reducing the shear stiffness of the ground matrix in the peripapillary sclera and lamina cribrosa by 85%. Three distinct G&R scenarios were investigated: (1) low mass turnover rate in combination with transmural volumetric growth; (2) high mass turnover rate in combination with transmural volumetric growth; and (3) high mass turnover rate in combination with mass density growth. In scenario 1, we observed a significant outpouching of the posterior pole, closely resembling the shape of a Type-III staphyloma. Additionally, we found a notable change in scleral curvature and a thinning of the peripapillary sclera by 84%. In contrast, scenario 2 and 3 exhibited less drastic deformations, with stable posterior staphylomas after approximately 7 years. Our proposed framework suggests that local scleral weakening is sufficient to trigger staphyloma formation under a normal level of intraocular pressure. Our model also reproduced characteristics of Type-III staphylomas. With patient-specific scleral geometries (as could be obtained with wide-field optical coherence tomography), our framework could be clinically translated to help us identify those at risks of developing posterior staphylomas.
Collapse
Affiliation(s)
- Fabian A Braeu
- Singapore Eye Research Institute (SERI), Singapore National Eye Centre (SNEC), Singapore, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stéphane Avril
- Mines Saint-Etienne, Université Jean Monnet, Saint-Etienne, France
| | - Michaël J A Girard
- Singapore Eye Research Institute (SERI), Singapore National Eye Centre (SNEC), Singapore, Singapore.
- Duke-NUS Graduate Medical School, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA.
- Emory Empathetic AI for Health Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Khabaz K, Kim J, Milner R, Nguyen N, Pocivavsek L. Temporal geometric mapping defines morphoelastic growth model of Type B aortic dissection evolution. Comput Biol Med 2024; 182:109194. [PMID: 39341108 PMCID: PMC12080953 DOI: 10.1016/j.compbiomed.2024.109194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The human aorta undergoes complex morphologic changes that mirror the evolution of disease. Finite element analysis (FEA) enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometric information from computed tomography angiography (CTA) imaging scans into FEA to predict a trajectory of future geometries for four aortic disease patients. Through defining a geometric correspondence between two patient scans separated in time, a patient-specific FEA model can recreate the deformation of the aorta between the two time points, showing that pathologic growth drives morphologic heterogeneity. FEA-derived trajectories in a shape-size geometric feature space, which plots the variance of the shape index versus the inverse square root of aortic surface area (δS vs. [Formula: see text] ), quantitatively demonstrate an increase in δS. This represents a deviation from physiologic shape changes and parallels the true geometric progression of aortic disease patients.
Collapse
Affiliation(s)
- Kameel Khabaz
- David Geffen School of Medicine, University of California, Los Angeles, 855 Tiverton Dr., Los Angeles, CA, 90024, USA; Department of Surgery, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Junsung Kim
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Ross Milner
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Nhung Nguyen
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Luka Pocivavsek
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Peng C, He W, Luan J, Yuan T, Fu W, Shi Y, Wang S. Preliminary establishment and validation of the inversion method for growth and remodeling parameters of patient-specific abdominal aortic aneurysm. Biomech Model Mechanobiol 2024; 23:1137-1148. [PMID: 38548952 DOI: 10.1007/s10237-024-01828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 08/24/2024]
Abstract
Traditional medical imaging and biomechanical studies have challenges in analyzing the long-term evolution process of abdominal aortic aneurysm (AAA). The homogenized constrained mixture theory (HCMT) allows for quantitative analysis of the changes in the multidimensional morphology and composition of AAA. However, the accuracy of HCMT still requires further clinical verification. This study aims to establish a patient-specific AAA growth model based on HCMT, simulate the long-term growth and remodeling (G&R) process of AAA, and validate the feasibility and accuracy of the method using two additional AAA cases with five follow-up datasets. The media and adventitia layers of AAA were modeled as mixtures composed of elastin, collagen fibers, and smooth muscle cells (SMCs). The strain energy function was used to describe the continuous deposition and degradation effect of the mixture during the AAA evolution. Multiple sets of growth parameters were applied to finite element simulations, and the simulation results were compared with the follow-up data for gradually selecting the optimal growth parameters. Two additional AAA patients with different growth rates were used for validating this method, the optimal growth parameters were obtained using the first two follow-up imaging data, and the growth model was applied to simulate the subsequent four time points. The differences between the simulated diameters and the follow-up diameters of AAA were compared to validate the accuracy of the mechanistic model. The growth parameters, especially the stress-mediated substance deposition gain factor, are highly related to the AAA G&R process. When setting the optimal growth parameters to simulate AAA growth, the proportion of simulation results within the distance of less than 0.5 mm from the baseline models is above 80%. For the validating cases, the mean difference rates between the simulated diameter and the real-world diameter are within 2.5%, which basically meets the clinical demand for quantitatively predicting the AAA growth in maximum diameters. This study simulated the growth process of AAA, and validated the accuracy of this mechanistic model. This method was proved to be used to predict the G&R process of AAA caused by dynamic changes in the mixtures of the AAA vessel wall during long-term, assisting accurately and quantitatively predicting the multidimensional morphological development and mixtures evolution process of AAA in the clinic.
Collapse
Affiliation(s)
- Chen Peng
- Artificial Intelligence Research Institute, Zhejiang Lab, Hangzhou, Zhejiang, China
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China
| | - Wei He
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingyang Luan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Yuan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Vascular Surgery, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Vascular Surgery, Fudan University, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, China.
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Institute of Biomechanics, Fudan University, Shanghai, China.
- Institute of Biomedical Engineering Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China.
- Yiwu Research Institute, Fudan University, Yiwu, Zhejiang, China.
| |
Collapse
|
10
|
Balasubramanya A, Maes L, Rega F, Mazzi V, Morbiducci U, Famaey N, Degroote J, Segers P. Hemodynamics and wall shear metrics in a pulmonary autograft: Comparing a fluid-structure interaction and computational fluid dynamics approach. Comput Biol Med 2024; 176:108604. [PMID: 38761502 DOI: 10.1016/j.compbiomed.2024.108604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE In young patients, aortic valve disease is often treated by placement of a pulmonary autograft (PA) which adapts to its new environment through growth and remodeling. To better understand the hemodynamic forces acting on the highly distensible PA in the acute phase after surgery, we developed a fluid-structure interaction (FSI) framework and comprehensively compared hemodynamics and wall shear-stress (WSS) metrics with a computational fluid dynamic (CFD) simulation. METHODS The FSI framework couples a prestressed non-linear hyperelastic arterial tissue model with a fluid model using the in-house coupling code CoCoNuT. Geometry, material parameters and boundary conditions are based on in-vivo measurements. Hemodynamics, time-averaged WSS (TAWSS), oscillatory shear index (OSI) and topological shear variation index (TSVI) are evaluated qualitatively and quantitatively for 3 different sheeps. RESULTS Despite systolic-to-diastolic volumetric changes of the PA in the order of 20 %, the point-by-point correlation of TAWSS and OSI obtained through CFD and FSI remains high (r > 0.9, p < 0.01) for TAWSS and (r > 0.8, p < 0.01) for OSI). Instantaneous WSS divergence patterns qualitatively preserve similarities, but large deformations of the PA leads to a decrease of the correlation between FSI and CFD resolved TSVI (r < 0.7, p < 0.01). Moderate co-localization between FSI and CFD is observed for low thresholds of TAWSS and high thresholds of OSI and TSVI. CONCLUSION FSI might be warranted if we were to use the TSVI as a mechano-biological driver for growth and remodeling of PA due to varying intra-vascular flow structures and near wall hemodynamics because of the large expansion of the PA.
Collapse
Affiliation(s)
| | - Lauranne Maes
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Valentina Mazzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Nele Famaey
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Joris Degroote
- Department of Electromechanical Systems and Metal Engineering, Ghent University, Ghent, Belgium
| | | |
Collapse
|
11
|
Gierig M, Tragoudas A, Haverich A, Wriggers P. Mechano-chemo-biological model of atherosclerosis formation based on the outside-in theory. Biomech Model Mechanobiol 2024; 23:539-552. [PMID: 38141085 PMCID: PMC11343805 DOI: 10.1007/s10237-023-01790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/29/2023] [Indexed: 12/24/2023]
Abstract
Atherosclerosis is a disease in blood vessels that often results in plaque formation and lumen narrowing. It is an inflammatory response of the tissue caused by disruptions in the vessel wall nourishment. Blood vessels are nourished by nutrients originating from the blood of the lumen. In medium-sized and larger vessels, nutrients are additionally provided from outside through a network of capillaries called vasa vasorum. It has recently been hypothesized (Haverich in Circulation 135:205-207, 2017) that the root of atherosclerotic diseases is the malfunction of the vasa vasorum. This, so-called outside-in theory, is supported by a recently developed numerical model (Soleimani et al. in Arch Comput Methods Eng 28:4263-4282, 2021) accounting for the inflammation initiation in the adventitial layer of the blood vessel. Building on the previous findings, this work proposes an extended material model for atherosclerosis formation that is based on the outside-in theory. Beside the description of growth kinematics and nutrient diffusion, the roles of monocytes, macrophages, foam cells, smooth muscle cells and collagen are accounted for in a nonlinear continuum mechanics framework. Cells are activated due to a lack of vessel wall nourishment and proliferate, migrate, differentiate and synthesize collagen, leading to the formation of a plaque. Numerical studies show that the onset of atherosclerosis can qualitatively be reproduced and back the new theory.
Collapse
Affiliation(s)
- Meike Gierig
- Institute of Continuum Mechanics, Leibniz University of Hannover, An der Universität 1, 30823, Garbsen, Germany
| | - Alexandros Tragoudas
- Institute of Continuum Mechanics, Leibniz University of Hannover, An der Universität 1, 30823, Garbsen, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz University of Hannover, An der Universität 1, 30823, Garbsen, Germany.
| |
Collapse
|
12
|
Gheysen L, Maes L, Famaey N, Segers P. Growth and remodeling of the dissected membrane in an idealized dissected aorta model. Biomech Model Mechanobiol 2024; 23:413-431. [PMID: 37945985 PMCID: PMC10963465 DOI: 10.1007/s10237-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
While transitioning from the acute to chronic phase, the wall of a dissected aorta often expands in diameter and adaptations in thickness and microstructure take place in the dissected membrane. Including the mechanisms, leading to these changes, in a computational model is expected to improve the accuracy of predictions of the long-term complications and optimal treatment timing of dissection patients. An idealized dissected wall was modeled to represent the elastin and collagen production and/or degradation imposed by stress- and inflammation-mediated growth and remodeling, using the homogenized constrained mixture theory. As no optimal growth and remodeling parameters have been defined for aortic dissections, a Latin hypercube sampling with 1000 parameter combinations was assessed for four inflammation patterns, with a varying spatial extent (full/local) and temporal evolution (permanent/transient). The dissected membrane thickening and microstructure was considered together with the diameter expansion over a period of 90 days. The highest success rate was found for the transient inflammation patterns, with about 15% of the samples leading to converged solutions after 90 days. Clinically observed thickening rates were found for 2-4% of the transient inflammation samples, which represented median total diameter expansion rates of about 5 mm/year. The dissected membrane microstructure showed an elastin decrease and, in most cases, a collagen increase. In conclusion, the model with the transient inflammation pattern allowed the reproduction of clinically observed dissected membrane thickening rates, diameter expansion rates and adaptations in microstructure, thus providing guidance in reducing the parameter space in growth and remodeling models of aortic dissections.
Collapse
Affiliation(s)
- Lise Gheysen
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Ghent, Belgium.
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Patrick Segers
- Institute for Biomedical Engineering and Technology, Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Brown AL, Sexton ZA, Hu Z, Yang W, Marsden AL. Computational approaches for mechanobiology in cardiovascular development and diseases. Curr Top Dev Biol 2024; 156:19-50. [PMID: 38556423 DOI: 10.1016/bs.ctdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The cardiovascular development in vertebrates evolves in response to genetic and mechanical cues. The dynamic interplay among mechanics, cell biology, and anatomy continually shapes the hydraulic networks, characterized by complex, non-linear changes in anatomical structure and blood flow dynamics. To better understand this interplay, a diverse set of molecular and computational tools has been used to comprehensively study cardiovascular mechanobiology. With the continual advancement of computational capacity and numerical techniques, cardiovascular simulation is increasingly vital in both basic science research for understanding developmental mechanisms and disease etiologies, as well as in clinical studies aimed at enhancing treatment outcomes. This review provides an overview of computational cardiovascular modeling. Beginning with the fundamental concepts of computational cardiovascular modeling, it navigates through the applications of computational modeling in investigating mechanobiology during cardiac development. Second, the article illustrates the utility of computational hemodynamic modeling in the context of treatment planning for congenital heart diseases. It then delves into the predictive potential of computational models for elucidating tissue growth and remodeling processes. In closing, we outline prevailing challenges and future prospects, underscoring the transformative impact of computational cardiovascular modeling in reshaping cardiovascular science and clinical practice.
Collapse
Affiliation(s)
- Aaron L Brown
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Zachary A Sexton
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Zinan Hu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Weiguang Yang
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States.
| |
Collapse
|
14
|
Schwarz EL, Pfaller MR, Szafron JM, Latorre M, Lindsey SE, Breuer CK, Humphrey JD, Marsden AL. A Fluid-Solid-Growth Solver for Cardiovascular Modeling. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2023; 417:116312. [PMID: 38044957 PMCID: PMC10691594 DOI: 10.1016/j.cma.2023.116312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We implement full, three-dimensional constrained mixture theory for vascular growth and remodeling into a finite element fluid-structure interaction (FSI) solver. The resulting "fluid-solid-growth" (FSG) solver allows long term, patient-specific predictions of changing hemodynamics, vessel wall morphology, tissue composition, and material properties. This extension from short term (FSI) to long term (FSG) simulations increases clinical relevance by enabling mechanobioloigcally-dependent studies of disease progression in complex domains.
Collapse
Affiliation(s)
- Erica L Schwarz
- Department of Bioengineering, Stanford Univeristy, Stanford, CA 94306, USA
| | - Martin R Pfaller
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94306, USA
| | - Jason M Szafron
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94306, USA
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València 46022, Spain
| | - Stephanie E Lindsey
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94306, USA
| | - Christopher K Breuer
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43210, USA
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale Univeristy, New Haven, CT 06520, USA
| | - Alison L Marsden
- Department of Bioengineering, Stanford Univeristy, Stanford, CA 94306, USA
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94306, USA
| |
Collapse
|
15
|
Gebauer AM, Pfaller MR, Braeu FA, Cyron CJ, Wall WA. A homogenized constrained mixture model of cardiac growth and remodeling: analyzing mechanobiological stability and reversal. Biomech Model Mechanobiol 2023; 22:1983-2002. [PMID: 37482576 PMCID: PMC10613155 DOI: 10.1007/s10237-023-01747-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Cardiac growth and remodeling (G&R) patterns change ventricular size, shape, and function both globally and locally. Biomechanical, neurohormonal, and genetic stimuli drive these patterns through changes in myocyte dimension and fibrosis. We propose a novel microstructure-motivated model that predicts organ-scale G&R in the heart based on the homogenized constrained mixture theory. Previous models, based on the kinematic growth theory, reproduced consequences of G&R in bulk myocardial tissue by prescribing the direction and extent of growth but neglected underlying cellular mechanisms. In our model, the direction and extent of G&R emerge naturally from intra- and extracellular turnover processes in myocardial tissue constituents and their preferred homeostatic stretch state. We additionally propose a method to obtain a mechanobiologically equilibrated reference configuration. We test our model on an idealized 3D left ventricular geometry and demonstrate that our model aims to maintain tensional homeostasis in hypertension conditions. In a stability map, we identify regions of stable and unstable G&R from an identical parameter set with varying systolic pressures and growth factors. Furthermore, we show the extent of G&R reversal after returning the systolic pressure to baseline following stage 1 and 2 hypertension. A realistic model of organ-scale cardiac G&R has the potential to identify patients at risk of heart failure, enable personalized cardiac therapies, and facilitate the optimal design of medical devices.
Collapse
Affiliation(s)
- Amadeus M Gebauer
- Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany.
| | - Martin R Pfaller
- Pediatric Cardiology, Stanford Maternal & Child Health Research Institute, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA
| | - Fabian A Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christian J Cyron
- Institute of Continuum and Material Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
16
|
Vervenne T, Maes L, Van Hoof L, Rega F, Famaey N. Drivers of vascular growth and remodeling: A computational framework to promote benign adaptation in the Ross procedure. J Mech Behav Biomed Mater 2023; 148:106170. [PMID: 37852088 DOI: 10.1016/j.jmbbm.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
In the sixties, Dr Donald Ross designed a surgical solution for young patients with aortic valve disease by using the patients' own pulmonary valve. The Ross procedure is the only aortic valve replacement technique that can restore long-term survival and preserve quality of life. The main failure mode of the Ross procedure is wall dilatation, potentially leading to valve regurgitation and leakage. Dilatation occurs due to the inability of the pulmonary autograft to adapt to the sudden increase in loading when exposing to aortic pressures. Previous experimental data has shown that a permanent external support wrapped around the artery can prevent the acute dilatation of the arterial wall. However, the textile support leads to stress-shielding phenomena due to the loss of mechanical wall compliance. We present a pragmatic and modular computational framework of arterial growth and remodeling predicting the long-term outcomes of cardiovascular tissue adaptation, with and without textile wrapping. The model integrates mean, systolic and diastolic pressures and assumes the resulting wall stresses to drive the biological remodeling rules. Rather than a single mean pressure or stress deviation from the homeostatic state, we demonstrate that only pulsatile stresses can predict available experimental results. Therefore, we suggest that a biodegradable external support could induce benign remodeling in the Ross procedure. Indeed, a biodegradable textile wrapped around the autograft fulfills the trade-off between prevention of acute dilatation on the one hand and recovery of arterial wall compliance on the other hand. After further validation, the computational framework can set the basis for the development of an actual biodegradable external support for the Ross procedure with optimized polymer mechanical properties and degradation behavior.
Collapse
Affiliation(s)
- Thibault Vervenne
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium.
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium
| | - Lucas Van Hoof
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Filip Rega
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium
| |
Collapse
|
17
|
Navarrete Á, Utrera A, Rivera E, Latorre M, Celentano DJ, García-Herrera CM. An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta. Front Bioeng Biotechnol 2023; 11:1301988. [PMID: 38053847 PMCID: PMC10694237 DOI: 10.3389/fbioe.2023.1301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Claudio M. García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| |
Collapse
|
18
|
da Silva MLF, de Freitas Gonçalves S, Costa MCB, Huebner R, Navarro TP. Structural numerical analysis of a branched modular stent-graft for aneurysms encompassing all zones of the aortic arch. J Mech Behav Biomed Mater 2023; 147:106135. [PMID: 37769370 DOI: 10.1016/j.jmbbm.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
The development of stent-grafts for the total repair of aneurysms in the aortic arch is still a technical challenge due mainly to the anatomical complexity of this region. Research performed here structurally evaluated a modular branched stent-graft for aneurysms encompassing all zones of the aortic arch by means of numerical simulations using fluid-structure interaction. The geometric domain obtained by means of computed tomography was subjected to physiological boundary conditions. The blood was modelled as non-Newtonian by the Carreau model, and the arterial wall was modelled as anisotropic hyperelastic by the Holzapfel model. The material adopted for the stents was Nitinol, and expanded polytetrafluoroethylene (ePTFE) was used for the graft. A comparison of the structural behaviour of the aneurysmal aortic arch before and after stent-graft implantation was performed. The numerical flow model was experimentally verified in vitro on a representative test bench of blood flow in the aortic arch. The stent-graft was shown to minimally modify arterial wall dynamics and was not susceptible to migration and endoleak. Peak stresses and strains were found in the stents and graft, respectively, while the stresses in the aneurysm sac were significantly reduced, of the order of 97.5%, due to the isolation of the arterial wall by the stent-graft.
Collapse
Affiliation(s)
- Mário Luis Ferreira da Silva
- Graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Saulo de Freitas Gonçalves
- Graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Matheus Carvalho Barbosa Costa
- Graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Rudolf Huebner
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Túlio Pinho Navarro
- Faculty of Medicine, Department of Surgery, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena, 190, 30130-100 Santa Efigênia, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Maes L, Vervenne T, Van Hoof L, Jones EAV, Rega F, Famaey N. Computational modeling reveals inflammation-driven dilatation of the pulmonary autograft in aortic position. Biomech Model Mechanobiol 2023; 22:1555-1568. [PMID: 36764979 DOI: 10.1007/s10237-023-01694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
The pulmonary autograft in the Ross procedure, where the aortic valve is replaced by the patient's own pulmonary valve, is prone to failure due to dilatation. This is likely caused by tissue degradation and maladaptation, triggered by the higher experienced mechanical loads in aortic position. In order to further grasp the causes of dilatation, this study presents a model for tissue growth and remodeling of the pulmonary autograft, using the homogenized constrained mixture theory and equations for immuno- and mechano-mediated mass turnover. The model outcomes, compared to experimental data from an animal model of the pulmonary autograft in aortic position, show that inflammation likely plays an important role in the mass turnover of the tissue constituents and therefore in the autograft dilatation over time. We show a better match and prediction of long-term outcomes assuming immuno-mediated mass turnover, and show that there is no linear correlation between the stress-state of the material and mass production. Therefore, not only mechanobiological homeostatic adaption should be taken into account in the development of growth and remodeling models for arterial tissue in similar applications, but also inflammatory processes.
Collapse
Affiliation(s)
- Lauranne Maes
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300 box 2419, 3001, Leuven, Belgium.
| | - Thibault Vervenne
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300 box 2419, 3001, Leuven, Belgium
| | - Lucas Van Hoof
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49 box 276, 3000, Leuven, Belgium
| | - Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, KU Leuven, UZ Herestraat 49 box 911, 3000, Leuven, Belgium
| | - Filip Rega
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49 box 276, 3000, Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300 box 2419, 3001, Leuven, Belgium
| |
Collapse
|
20
|
Zhu Y, Xu XY, Mason J, Mirsadraee S. Irregular anatomical features can alter hemodynamics in Takayasu arteritis. JVS Vasc Sci 2023; 4:100125. [PMID: 37771369 PMCID: PMC10522970 DOI: 10.1016/j.jvssci.2023.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023] Open
Abstract
Objective Takayasu arteritis (TA) is a difficult disease to deal with because there are neither reliable clinical signs, laboratory biomarkers, nor a single noninvasive imaging technique that can be used for early diagnosis and disease activity monitoring. Knowledge of aortic hemodynamics in TA is lacking. This study aimed to fill this gap by assessing hemodynamics in patients with TA using image-based computational fluid dynamics (CFD) simulations. Methods Eleven patients with TA were included in the present study. Patient-specific geometries were reconstructed from either clinical aortic computed tomography angiography or magnetic resonance angiography studies and coupled with physiological boundary conditions for CFD simulations. Key anatomical and hemodynamic parameters were compared with a control group consisting of 18 age- and sex-matched adults without TA who had healthy aortas. Results Compared with controls, patients with TA had significantly higher aortic velocities (0.9 m/s [0.7, 1.1 m/s] vs 0.6 m/s [0.5, 0.7 m/s]; P = .002), maximum time-averaged wall shear stress (14.2 Pa [9.8, 20.9 Pa] vs 8.0 Pa [6.2, 10.3 Pa]; P = .004), and maximum pressure drops between the ascending and descending aorta (36.9 mm Hg [29.0, 49.3 mm Hg] vs 28.5 mm Hg [25.8, 31.5 mm Hg]; P = .004). These significant hemodynamic alterations in patients with TA might result from abnormal anatomical features including smaller arch diameter (20.0 mm [13.8, 23.3 mm] vs 25.2 mm [23.3, 26.8 mm]; P = .003), supra-aortic branch diameters (21.9 mm [18.5, 24.6 mm] vs 25.7 mm [24.3, 28.3 mm]; P = .003) and descending aorta diameter (14.7 mm [12.2, 16.8 mm] vs 22.5 mm [19.8, 24.0 mm]; P < .001). Conclusions CFD analysis reveals hemodynamic changes in the aorta of patients with TA. The applicability of CFD technique coupled with standard imaging assessments in predicting disease progression of such patients will be explored in future studies. Future large cohort study with outcome correlation is also warranted. Clinical Relevance Based on patient-specific computational fluid dynamics simulations, the present retrospective study revealed significant difference in aortic hemodynamics between the patients with and without Takayasu arteritis (TA). To the best of our knowledge, this study is the first to evaluate hemodynamic conditions within TA, demonstrating the potential of computational flow modeling in capturing abnormal hemodynamic forces, such as high wall shear stress, resulted from irregular morphological changes. In the future, assessing the hemodynamic parameters within patients with TA during the prestenotic period, together with longitudinal computational fluid dynamics studies may allow better monitoring and management of TA.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Justin Mason
- Rheumatology and Vascular Science, Hammersmith Hospital, Imperial College London, London, UK
| | - Saeed Mirsadraee
- Department of Radiology, Royal Brompton and Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
21
|
Liang L, Liu M, Elefteriades J, Sun W. PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107616. [PMID: 37230048 PMCID: PMC10330852 DOI: 10.1016/j.cmpb.2023.107616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Finite-element analysis (FEA) is widely used as a standard tool for stress and deformation analysis of solid structures, including human tissues and organs. For instance, FEA can be applied at a patient-specific level to assist in medical diagnosis and treatment planning, such as risk assessment of thoracic aortic aneurysm rupture/dissection. These FEA-based biomechanical assessments often involve both forward and inverse mechanics problems. Current commercial FEA software packages (e.g., Abaqus) and inverse methods exhibit performance issues in either accuracy or speed. METHODS In this study, we propose and develop a new library of FEA code and methods, named PyTorch-FEA, by taking advantage of autograd, an automatic differentiation mechanism in PyTorch. We develop a class of PyTorch-FEA functionalities to solve forward and inverse problems with improved loss functions, and we demonstrate the capability of PyTorch-FEA in a series of applications related to human aorta biomechanics. In one of the inverse methods, we combine PyTorch-FEA with deep neural networks (DNNs) to further improve performance. RESULTS We applied PyTorch-FEA in four fundamental applications for biomechanical analysis of human aorta. In the forward analysis, PyTorch-FEA achieved a significant reduction in computational time without compromising accuracy compared with Abaqus, a commercial FEA package. Compared to other inverse methods, inverse analysis with PyTorch-FEA achieves better performance in either accuracy or speed, or both if combined with DNNs. CONCLUSIONS We have presented PyTorch-FEA, a new library of FEA code and methods, representing a new approach to develop FEA methods to forward and inverse problems in solid mechanics. PyTorch-FEA eases the development of new inverse methods and enables a natural integration of FEA and DNNs, which will have numerous potential applications.
Collapse
Affiliation(s)
- Liang Liang
- Department of Computer Science, University of Miami, Coral Gables, FL, United States.
| | - Minliang Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - John Elefteriades
- Aortic Institute, School of Medicine, Yale University, New Haven, CT, United States
| | - Wei Sun
- Sutra Medical Inc, Lake Forest, CA, United States
| |
Collapse
|
22
|
Maes L, Famaey N. How to implement constrained mixture growth and remodeling algorithms for soft biological tissues. J Mech Behav Biomed Mater 2023; 140:105733. [PMID: 36821910 DOI: 10.1016/j.jmbbm.2023.105733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Biological soft tissues are constantly adapting to their mechanical environment and remodel to restore certain mechanobiological homeostatic conditions. These effects can be modeled using the constrained mixture theory, that assumes degradation of material over time and the gradual replacement of extant material by newly deposited material. While this theory presents an elegant way to grasp phenomena of growth and remodeling in soft biological tissues, implementation difficulties may arise. Therefore, we give a detailed overview of the mathematical description of the constrained mixture theory and its homogenized equivalent, and present practical suggestions to numerically implement the theories. These implementations are thoroughly tested with multiple example growth and remodeling models. Results show a good correspondence between both theories, with the homogenized theory favored in terms of time efficiency. Results of a step time convergence study show the importance of choosing a small enough time step, especially when using the classical theory.
Collapse
Affiliation(s)
- Lauranne Maes
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300 box 2419, 3001 Leuven, Belgium.
| | - Nele Famaey
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300 box 2419, 3001 Leuven, Belgium.
| |
Collapse
|
23
|
Fok PW. Shear stress regulation in cylindrical arteries through medial growth and nitric oxide release. J Math Biol 2023; 86:55. [PMID: 36928428 DOI: 10.1007/s00285-023-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
The mechanisms employed by blood vessels in order to adapt to their hemodynamic environment are important for our general understanding of disease and development. Changes in arterial geometry are generally induced by two effects: vasodilation and/or constriction; and growth and remodeling ("G &R"). The first can occur over short periods of a few minutes, while the second usually occurs over timescales of weeks or months. The free radical Nitric oxide (NO) is one of the few biological signaling molecules that is gaseous. When smooth muscle cells internalize NO, they lengthen and ultimately induce a relaxation of the artery. Platelet-Derived Growth Factor (PDGF) is a growth factor released by smooth muscle cells and platelets that regulates cell growth and division. In this paper we present a single-layered, axisymmetric hyperelastic model for a deforming, growing artery in which the opening angle is regulated by NO and growth is induced by PDGF. Our model describes vasodilation and G &R in a long cylindrical artery regulated by a steady-state Poiseuille flow. The transport of NO released by the endothelium is governed by a diffusion equation with a shear-stress dependent flux boundary condition. Arterial opening angle is assumed to be a Hill function of the wall-averaged NO concentration. We find that both growth and NO help to regulate shear stress with respect to the flow rate, but regulation through growth occurs only at large times. In contrast, regulation through NO is immediate but can only occur as long as the opening angle is able to continually decrease as a function of flow rate. Our model is calibrated using experimental data from ligated, control, and anastomosed carotid arteries of adult and weanling rabbits. Our results generate shear stress/flow rate and lumen radius/flow rate curves that agree with experimental data from control and NO-inhibited rabbit carotid arteries.
Collapse
Affiliation(s)
- Pak-Wing Fok
- Department of Mathematical Sciences, University of Delaware, Newark, USA.
| |
Collapse
|
24
|
Patki P, Simon S, Manning KB, Costanzo F. Computational analysis of effects of clot length on Acute ischemic stroke recanalization under different cyclic aspiration loading conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3667. [PMID: 36511815 PMCID: PMC9960186 DOI: 10.1002/cnm.3667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Acute ischemic stroke, the second leading cause of death worldwide, results from occlusion of a cerebral artery by a blood clot. Application of cyclic aspiration using an aspiration catheter is a current therapy for the removal of lodged clots. In this study, we perform finite element simulations to analyze deformation of long clots, having length to radius ratio of 2-10, which corresponds to clot-length of 2.85-14.25 mm, under peak-to-peak cyclic aspiration pressures of 10-50 mmHg, and frequencies of 0.5, 1, and 2 Hz. Our computational system comprises of a nonlinear viscoelastic solid clot, a hyperelastic artery, and a nonlinear viscoelastic cohesive zone, the latter modeling the clot-artery interface. We observe that clots having length-to-radius ratio approximately greater than two separate from the inner arterial surface somewhere between the axial and distal ends, irrespective of the cyclic aspiration loading conditions. The stress distribution within the clot shows large tensile stresses in the clot interior, indicating the possibility of simultaneous fragmentation of the clot. Thus, this study shows us the various failure mechanisms simultaneously present in the clot during cyclic aspiration. Similarly, the stress distribution within the artery implies a possibility of endothelial damage to the arterial wall near the end where the aspiration pressure is applied. This framework provides a foundation for further investigation to clot fracture and adhesion characterization.
Collapse
Affiliation(s)
- Priyanka Patki
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott Simon
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Surgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Keefe B. Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Surgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Francesco Costanzo
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
25
|
Moradi H, Al-Hourani A, Concilia G, Khoshmanesh F, Nezami FR, Needham S, Baratchi S, Khoshmanesh K. Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning. Biophys Rev 2023; 15:19-33. [PMID: 36909958 PMCID: PMC9995635 DOI: 10.1007/s12551-022-01040-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality, morbidity, and hospitalization around the world. Recent technological advances have facilitated analyzing, visualizing, and monitoring cardiovascular diseases using emerging computational fluid dynamics, blood flow imaging, and wearable sensing technologies. Yet, computational cost, limited spatiotemporal resolution, and obstacles for thorough data analysis have hindered the utility of such techniques to curb cardiovascular diseases. We herein discuss how leveraging machine learning techniques, and in particular deep learning methods, could overcome these limitations and offer promise for translation. We discuss the remarkable capacity of recently developed machine learning techniques to accelerate flow modeling, enhance the resolution while reduce the noise and scanning time of current blood flow imaging techniques, and accurate detection of cardiovascular diseases using a plethora of data collected by wearable sensors.
Collapse
Affiliation(s)
- Hamed Moradi
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Akram Al-Hourani
- School of Engineering, RMIT University, Melbourne, Victoria Australia
| | | | - Farnaz Khoshmanesh
- School of Allied Health, Human Services & Sport, La Trobe University, Melbourne, Victoria Australia
| | - Farhad R. Nezami
- Division of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Scott Needham
- Leading Technology Group, Melbourne, Victoria Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria Australia
| | | |
Collapse
|
26
|
Gacek E, Mahutga RR, Barocas VH. Hybrid Discrete-Continuum Multiscale Model of Tissue Growth and Remodeling. Acta Biomater 2022; 163:7-24. [PMID: 36155097 DOI: 10.1016/j.actbio.2022.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Tissue growth and remodeling (G&R) is often central to disease etiology and progression, so understanding G&R is essential for understanding disease and developing effective therapies. While the state-of-the-art in this regard is animal and cellular models, recent advances in computational tools offer another avenue to investigate G&R. A major challenge for computational models is bridging from the cellular scale (at which changes are actually occurring) to the macroscopic, geometric-scale (at which physiological consequences arise). Thus, many computational models simplify one scale or another in the name of computational tractability. In this work, we develop a discrete-continuum modeling scheme for analyzing G&R, in which we apply changes directly to the discrete cell and extracellular matrix (ECM) architecture and pass those changes up to a finite-element macroscale geometry. We demonstrate the use of the model in three case-study scenarios: the media of a thick-walled artery, and the media and adventitia of a thick-walled artery, and chronic dissection of an arterial wall. We analyze each case in terms of the new and insightful data that can be gathered from this technique, and we compare our results from this model to several others. STATEMENT OF SIGNIFICANCE: This work is significant in that it provides a framework for combining discrete, microstructural- and cellular-scale models to the growth and remodeling of large tissue structures (such as the aorta). It is a significant advance in that it couples the microscopic remodeling with an existing macroscopic finite element model, making it relatively easy to use for a wide range of conceptual models. It has the potential to improve understanding of many growth and remodeling processes, such as organ formation during development and aneurysm formation, growth, and rupture.
Collapse
Affiliation(s)
- Elizabeth Gacek
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455
| | - Ryan R Mahutga
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, 55455.
| |
Collapse
|
27
|
Weiss D, Long AS, Tellides G, Avril S, Humphrey JD, Bersi MR. Evolving Mural Defects, Dilatation, and Biomechanical Dysfunction in Angiotensin II-Induced Thoracic Aortopathies. Arterioscler Thromb Vasc Biol 2022; 42:973-986. [PMID: 35770665 PMCID: PMC9339505 DOI: 10.1161/atvbaha.122.317394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Thoracic aortopathy associates with extracellular matrix remodeling and altered biomechanical properties. We sought to quantify the natural history of thoracic aortopathy in a common mouse model and to correlate measures of wall remodeling such as aortic dilatation or localized mural defects with evolving microstructural composition and biomechanical properties of the wall. METHODS We combined a high-resolution multimodality imaging approach (panoramic digital image correlation and optical coherence tomography) with histopathologic examinations and biaxial mechanical testing to correlate spatially, for the first time, macroscopic mural defects and medial degeneration within the ascending aorta with local changes in aortic wall composition and mechanical properties. RESULTS Findings revealed strong correlations between local decreases in elastic energy storage and increases in circumferential material stiffness with increasing proximal aortic diameter and especially mural defect size. Mural defects tended to exhibit a pronounced biomechanical dysfunction that is driven by an altered organization of collagen and elastic fibers. CONCLUSIONS While aneurysmal dilatation is often observed within particular segments of the aorta, dissection and rupture initiate as highly localized mechanical failures. We show that wall composition and material properties are compromised in regions of local mural defects, which further increases the dilatation and overall structural vulnerability of the wall. Identification of therapies focused on promoting robust collagen accumulation may protect the wall from these vulnerabilities and limit the incidence of dissection and rupture.
Collapse
Affiliation(s)
- Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Aaron S. Long
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, University Jean Monnet, INSERM, Saint-Etienne, France
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Matthew R. Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
28
|
He X, Lu J. On strain-based rupture criterion for ascending aortic aneurysm: the role of fiber waviness. Acta Biomater 2022; 149:51-59. [PMID: 35760348 DOI: 10.1016/j.actbio.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 11/01/2022]
Abstract
We propose a new approach for constructing strain-based rupture criterion for ascending thoracic aortic aneurysm. The rupture metric is formulated using an effective strain, which is a measure of net strain that the collagen bundles experience after fiber uncrimping. The effective strain is a function of the total strain and the waviness properties of the collagen fibers. In the present work, the waviness properties are obtained from fitting biaxial response data to constitutive models that explicitly consider the collagen waviness and fiber recruitment. Inflation test data from 10 ascending thoracic aortic aneurysm specimens are analyzed. For each specimen, tension-strain data at ∼2300 material points are garnered. The effective strain fields in the configuration immediately before rupture are computed. It is found that the hotspots of the effective strain match the rupture sites very well in all 10 samples. More importantly, the values of effective strain at the hotsopts are closely clustered around 0.1, in contrast to a much wider distribution of the total strain. The study underscores the importance of considering the fiber recruitment in formulating strain-based rupture metric, and suggests that ϵ¯≈0.1, where ϵ¯ is the effective strain metric defined in this work, can be considered as a criterion for assessing the imminent rupture risk of ascending aortic aneurysms.
Collapse
Affiliation(s)
- Xuehuan He
- Department of Mechanical Engineering, and Iowa Technology Institute The University of Iowa, Iowa City, IA 52242, USA
| | - Jia Lu
- Department of Mechanical Engineering, and Iowa Technology Institute The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Dong H, Liu M, Qin T, Liang L, Ziganshin B, Ellauzi H, Zafar M, Jang S, Elefteriades J, Sun W, Gleason RL. A novel computational growth framework for biological tissues: Application to growth of aortic root aneurysm repaired by the V-shape surgery. J Mech Behav Biomed Mater 2022; 127:105081. [DOI: 10.1016/j.jmbbm.2022.105081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/15/2023]
|
30
|
Almeida GDC, Gomes BADA, Azevedo FSD, Kalaun K, Ibanez I, Teixeira PS, Gottlieb I, Melo MM, Oliveira GMMD, Nieckele AO. Fluidodinâmica Computacional na Avaliação do Risco Futuro de Aneurismas de Aorta Ascendente. Arq Bras Cardiol 2022; 118:448-460. [PMID: 35262580 PMCID: PMC8856676 DOI: 10.36660/abc.20200926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Fundamentos Uma metodologia para identificação de pacientes portadores de aneurisma de aorta ascendente (AAAs) sob alto risco de remodelamento aórtico não está completamente definida. Objetivo Esta pesquisa objetiva caracterizar numericamente o fluxo sanguíneo aórtico, relacionando a distribuição do estresse mecânico resultante com o crescimento de AAAs. Métodos Estudo analítico, observacional, unicêntrico, em que um protocolo de fluidodinâmica computacional (CFD - Computacional Fluid Dynamics) foi aplicado a imagens de angiotomografia computadorizada (ATC) de aorta de pacientes portadores de AAAs. Duas ATC de aorta com pelo menos um ano de intervalo foram obtidas. Dados clínicos dos pacientes foram registrados e, a partir das imagens de ATC, foram gerados modelos tridimensionais. Foram realizados estudos do campo de velocidade e estruturas coerentes (vórtices) com o objetivo de relacioná-los ao crescimento ou não do aneurisma e, posteriormente, compará-los com os dados clínicos dos pacientes. O teste de Kolmogorov-Smirnov foi utilizado para avaliar a normalidade da amostra e o teste não-paramétrico Wilcoxon signed-rank foi aplicado para comparações de dados pareados entre os ângulos aórticos. A significância estatística foi fixada em 5%. Resultados Para o grupo que apresentou crescimento do aneurisma, a incidência do jato na parede aórtica gerou áreas de recirculação posterior ao jato, induzindo à formação de vórtices complexos, ocasionando um incremento na pressão média no endotélio aórtico. O grupo sem crescimento do aneurisma apresentou diminuição na pressão média. Conclusão Este estudo piloto mostrou que a CFD baseada em ATC pode, em um futuro próximo, ser uma ferramenta auxiliar na identificação dos padrões de fluxo associados ao processo de remodelamento de AAAs.
Collapse
|
31
|
Zhang S, Laubrie JD, Mousavi SJ, Avril S. 3D finite-element modeling of vascular adaptation after endovascular aneurysm repair. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3547. [PMID: 34719114 DOI: 10.1002/cnm.3547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Aneurysm shrinkage is clinically observed after successful endovascular aortic aneurysm repair (EVAR). However, global understanding of post-operative aneurysm evolutions remains weak. In this work, we propose to study these effects using numerical simulation. We set up a 3D finite-element model of post-EVAR vascular adaptation within an open-source finite-element code, which was initially developed for growth and remodeling (G&R). We modeled the endograft with a set of uniaxial prestrained springs that apply radial forces on the inner surface of the artery. Constitutive equations, momentum balance equations, and equations related to the mechanobiology of the artery were formulated based on the homogenized constrained mixture theory. We performed a sensitivity analysis by varying different selected parameters, namely oversizing and compliance of the stent-graft, gain parameters related to collagen G&R, and the residual pressure in the aneurysm sac. This permitted us to evaluate how each factor influences post-EVAR vascular adaptation. It was found that oversizing, compliance or gain parameters have a limited influence compared to that of the residual pressure in the aneurysm sac, which was found to play a critical role in the stability of aneurysm after stent-graft implantation. An excessive residual pressure larger than 50 mmHg can induce a continuous expansion of the aneurysm while a moderate residual pressure below this critical threshold yields continuous shrinkage of the aneurysm. Moreover, it was found that elderly patients, with relatively lower amounts of remnant elastin in the arterial wall, are more sensitive to the effect of residual pressure. Therefore, these results show that elderly patients may present a higher potential risk of aortic sac expansion due to intra-aneurysm sac pressure after EVAR than younger patients.
Collapse
Affiliation(s)
- Shaojie Zhang
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Joan D Laubrie
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - S Jamaleddin Mousavi
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Stéphane Avril
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| |
Collapse
|
32
|
Fatma K, Carine GC, Marine G, Philippe P, Valérie D. Numerical modeling of residual type B aortic dissection: longitudinal analysis of favorable and unfavorable evolution. Med Biol Eng Comput 2022; 60:769-783. [PMID: 35076858 DOI: 10.1007/s11517-021-02480-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/24/2021] [Indexed: 11/26/2022]
Abstract
Residual type B aortic dissection was numerically investigated to highlight the contribution of biomechanical parameters to the pathology's evolution. Patient-specific geometries from cases involving both favorable and unfavorable evolution were modeled to assess their hemodynamic features. This original approach was supported by a longitudinal study confirming the association between morphological changes, hemodynamic features, adverse clinical outcomes, and CT-angioscan observations on the same patient. Comparing one patient with unfavorable evolution with one with favorable one, we identify potential biomechanical indicators predictive of unfavorable evolution: (i) a patent false lumen with a flow rate above 50% of inlet flow rate; (ii) high wall shear stress above 18 Pa at entry tears, and above 10 Pa at some regions of the false lumen wall; (iii) low time-averaged wall shear stress in distal false lumen below 0.5 Pa; (iv) vortical structure dynamics. Although these comparisons could only be conducted on 2 patients and need to be confirmed by a larger number of cases, our findings point to these hemodynamic markers as possible candidates for early evaluation of the pathology's evolution towards an unfavorable scenario. Graphical Abstract Correlation between hemodynamics index and thrombus initiation for unfavorable case. ET2 and ET3 are entry tear numbers 2 and 3 respectively. WSS is wall shear stress. TAWSS is time average shear stress.
Collapse
Affiliation(s)
- Khannous Fatma
- Aix Marseille Univ, CNRS, IRPHE-UMR7342, Ecole Centrale, Marseille, France
| | | | - Gaudry Marine
- Aix Marseille Univ, CNRS, IRPHE-UMR7342, Ecole Centrale, Marseille, France
- Aix Marseille Univ, APHM, Timone Hospital, Department of Vascular Surgery, Marseille, France
| | - Piquet Philippe
- Aix Marseille Univ, APHM, Timone Hospital, Department of Vascular Surgery, Marseille, France
| | - Deplano Valérie
- Aix Marseille Univ, CNRS, IRPHE-UMR7342, Ecole Centrale, Marseille, France.
| |
Collapse
|
33
|
Laubrie JD, Mousavi SJ, Avril S. About prestretch in homogenized constrained mixture models simulating growth and remodeling in patient-specific aortic geometries. Biomech Model Mechanobiol 2022; 21:455-469. [PMID: 35067825 PMCID: PMC8940846 DOI: 10.1007/s10237-021-01544-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 11/10/2022]
Abstract
Evolution of mechanical and structural properties in the Ascending Thoracic Aorta (ATA) is the results of complex mechanobiological processes. In this work, we address some numerical challenges in order to elaborate computational models of these processes. For that, we extend the state of the art of homogenized constrained mixture (hCM) models. In these models, prestretches are assigned to the mixed constituents in order to ensure local mechanical equilibrium macroscopically, and to maintain a homeostatic level of tension in collagen fibers microscopically. Although the initial prestretches were assumed as homogeneous in idealized straight tubes, more elaborate prestretch distributions need to be considered for curved geometrical models such as patient-specific ATA. Therefore, we introduce prestretches having a three-dimensional gradient across the ATA geometry in the homeostatic reference state. We test different schemes with the objective to ensure stable growth and remodeling (G&R) simulations on patient-specific curved vessels. In these simulations, aneurysm progression is triggered by tissue changes in the constituents such as mass degradation of intramural elastin. The results show that the initial prestretches are not only critical for the stability of numerical simulations, but they also affect the G&R response. Eventually, we submit that initial conditions required for G&R simulations need to be identified regionally for ensuring realistic patient-specific predictions of aneurysm progression.
Collapse
|
34
|
Vastmans J, Maes L, Peirlinck M, Vanderveken E, Rega F, Kuhl E, Famaey N. Growth and remodeling in the pulmonary autograft: Computational evaluation using kinematic growth models and constrained mixture theory. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3545. [PMID: 34724357 DOI: 10.1002/cnm.3545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Computational investigations of how soft tissues grow and remodel are gaining more and more interest and several growth and remodeling theories have been developed. Roughly, two main groups of theories for soft tissues can be distinguished: kinematic-based growth theory and theories based on constrained mixture theory. Our goal was to apply these two theories on the same experimental data. Within the experiment, a pulmonary artery was exposed to systemic conditions. The change in diameter was followed-up over time. A mechanical and microstructural analysis of native pulmonary artery and pulmonary autograft was conducted. Whereas the kinematic-based growth theory is able to accurately capture the growth of the tissue, it does not account for the mechanobiological processes causing this growth. The constrained mixture theory takes into account the mechanobiological processes including removal, deposition and adaptation of all structural constituents, allowing us to simulate a changing microstructure and mechanical behavior.
Collapse
Affiliation(s)
- Julie Vastmans
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Mathias Peirlinck
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Emma Vanderveken
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Avril S, Gee MW, Hemmler A, Rugonyi S. Patient-specific computational modeling of endovascular aneurysm repair: State of the art and future directions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3529. [PMID: 34490740 DOI: 10.1002/cnm.3529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Endovascular aortic repair (EVAR) has become the preferred intervention option for aortic aneurysms and dissections. This is because EVAR is much less invasive than the alternative open surgery repair. While in-hospital mortality rates are smaller for EVAR than open repair (1%-2% vs. 3%-5%), the early benefits of EVAR are lost after 3 years due to larger rates of complications in the EVAR group. Clinicians follow instructions for use (IFU) when possible, but are left with personal experience on how to best proceed and what choices to make with respect to stent-graft (SG) model choice, sizing, procedural options, and their implications on long-term outcomes. Computational modeling of SG deployment in EVAR and tissue remodeling after intervention offers an alternative way of testing SG designs in silico, in a personalized way before intervention, to ultimately select the strategies leading to better outcomes. Further, computational modeling can be used in the optimal design of SGs in cases of complex geometries. In this review, we address some of the difficulties and successes associated with computational modeling of EVAR procedures. There is still work to be done in all areas of EVAR in silico modeling, including model validation, before models can be applied in the clinic, but much progress has already been made. Critical to clinical implementation are current efforts focusing on developing fast algorithms that can achieve (near) real-time solutions, as well as ways of dealing with inherent uncertainties related to patient aortic wall degradation on an individualized basis. We are optimistic that EVAR modeling in the clinic will soon become a reality to help clinicians optimize EVAR interventions and ultimately reduce EVAR-associated complications.
Collapse
Affiliation(s)
- Stéphane Avril
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, Saint-Étienne, France
| | - Michael W Gee
- Mechanics & High Performance Computing Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - André Hemmler
- Mechanics & High Performance Computing Group, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
36
|
Zhang M, Liu H, Cai Z, Sun C, Sun W. A novel framework for quantifying the subject-specific three-dimensional residual stress field in the aortic wall. J Mech Behav Biomed Mater 2021; 125:104906. [PMID: 34736024 DOI: 10.1016/j.jmbbm.2021.104906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Quantification of subject-specific residual stress field remains a challenge that prohibits accurate stress analysis and refined understanding of the biomechanical behavior of the aortic wall. METHOD This study presents a framework combining experiments, constitutive modeling, and computer simulation to quantify the subject-specific three-dimensional residual stress field of the aortic wall. The material properties and residual deformations were acquired from the same porcine aortic sample, so that the subject-specific residual stress field was quantified analytically. Consequently, a novel stress-driven tissue growth model was developed and incorporated in a finite element aortic model to recover the subject-specific residual stress with the help of analytical solution. We then evaluated the framework's efficacy by simulating the residual stress distribution in the aortic dissection (AD). RESULT Subject-specific residual stress field of the aortic sample was quantified analytically. No appreciable discrepancy was observed between the numerically simulated and analytically derived residual stress distributions, indicating the effectiveness of the tissue growth model. Errors arising from the numerically simulated circumferential opening angle and axial bending angle were within 5% relative to experimental results, highlighting that the framework was accurate in terms of subject-specific residual stress estimation. Finally, numerical simulations recovered the buckling behavior of the intimal flap of the dissected aorta and revealed the expansion of the false lumen and compression of the true lumen as the tear propagates circumferentially. CONCLUSION The proposed framework is effective in quantifying the three-dimensional subject-specific residual stress field and it is potentially applicable in more sophisticated scenarios involving residual stress.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Mechanics, Tianjin University, 92 Weijin Road, Tianjin, 30072, China; China Nuclear Power Technology Research Institute Co. Ltd., Shenzhen, Guangdong, 518000, China
| | - Haofei Liu
- Department of Mechanics, Tianjin University, 92 Weijin Road, Tianjin, 30072, China.
| | - Zongxi Cai
- Department of Mechanics, Tianjin University, 92 Weijin Road, Tianjin, 30072, China
| | - Cuiru Sun
- Department of Mechanics, Tianjin University, 92 Weijin Road, Tianjin, 30072, China
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedica, Engineering, Georgia Institute of Technology, Atlanta, GA, 30313-2412, United States
| |
Collapse
|
37
|
Humphrey JD. Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After. JOURNAL OF ELASTICITY 2021; 145:49-75. [PMID: 34483462 PMCID: PMC8415366 DOI: 10.1007/s10659-020-09809-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
Abstract
Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.
Collapse
Affiliation(s)
- J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
38
|
Jamaleddin Mousavi S, Jayendiran R, Farzaneh S, Campisi S, Viallon M, Croisille P, Avril S. Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 205:106107. [PMID: 33933713 DOI: 10.1016/j.cmpb.2021.106107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The prevention of ascending thoracic aortic aneurysms (ATAAs), which affect thousands of persons every year worldwide, remains a major issue. ATAAs may be caused by anything that weakens the aortic wall. Altered hemodynamics, which concerns a majority of patients with bicuspid aortic valves, has been shown to be related to such weakening and to contribute to ATAA development and progression. However the underlying mechanisms remain unclear and computational modeling in this field could help significantly to elucidate how hemodynamics and mechanobiology interact in ATAAs. METHODS Accordingly, we propose a numerical framework combining computational fluid dynamics and 4D flow magnetic resonance imaging (MRI) coupled with finite element (FE) analyses to simulate growth and remodeling (G&R) occurring in patient-specific aortas in relation with altered hemodynamics. The geometries and the blood velocities obtained from 4D flow MRI are used as boundary conditions for CFD simulations. CFD simulations provide an estimation of the wall shear stress (WSS) and relative residence time (RRT) distribution across the luminal surface of the wall. An initial insult is then applied to the FE model of the aortic wall, assuming that the magnitude of the insult correlates spatially with the normalized RRT distribution obtained from CFD simulations. G&R simulations are then performed. The material behavior of each Gauss point in these FE models is evolved continuously to compensate for the deviation of the actual wall stress distribution from the homeostatic state after the initial insult. The whole approach is illustrated on two healthy and two diseased subjects. The G&R parameters are calibrated against previously established statistical models of ATAA growth rates. RESULTS Among the variety of results provided by G&R simulations, the analysis focused especially on the evolution of the wall stiffness, which was shown to be a major risk factor for ATAAs. It was shown that the G&R parameters, such as for instance the rate of collagen production or cell mechanosensitivity, play a critical role in ATAA progression and remodeling. CONCLUSIONS These preliminary findings show that patient-specific computational modeling coupling hemodynamics with mechanobiology is a promising approach to explore aneurysm progression.
Collapse
Affiliation(s)
- S Jamaleddin Mousavi
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France
| | - Raja Jayendiran
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France
| | - Solmaz Farzaneh
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France
| | - Salvatore Campisi
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France; University Hospital of Saint-Étienne, Department of Cardiovascular Surgery, Saint-Étienne cedex, France
| | - Magalie Viallon
- Université de Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne,F-42023 France; University Hospital of Saint-Étienne, Department of Radiology, Saint-Étienne, France
| | - Pierre Croisille
- Université de Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne,F-42023 France; University Hospital of Saint-Étienne, Department of Radiology, Saint-Étienne, France
| | - Stéphane Avril
- Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France.
| |
Collapse
|
39
|
Maes L, Cloet AS, Fourneau I, Famaey N. A homogenized constrained mixture model of restenosis and vascular remodelling after balloon angioplasty. J R Soc Interface 2021; 18:20210068. [PMID: 33947223 DOI: 10.1098/rsif.2021.0068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Restenosis is one of the main adverse effects of the treatment of atherosclerosis through balloon angioplasty or stenting. During the intervention, the arterial wall is overstretched, causing a cascade of cellular events and subsequent neointima formation. This mechanical stimulus and its mechanobiological effects can be reproduced in biomechanical simulations. The aim of these models is to predict the long-term outcome of these procedures, to help increase the understanding of restenosis formation and to allow for in silico optimization of the treatment. We propose a predictive finite-element model of restenosis, using the homogenized constrained mixture modelling framework designed to model growth and remodelling in soft tissues. We compare the results with clinical observations in human coronary arteries and experimental findings in non-human primate models. We also explore the model's clinical relevance by testing its response to different balloon loads and to the use of drug-eluting balloons. The comparison of the results with experimental data shows the relevance of the model. We show its ability to predict both inward and outward remodelling as observed in vivo and we show the importance of an improved understanding of restenosis formation from a biomechanical point of view.
Collapse
Affiliation(s)
- Lauranne Maes
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, 3001 Leuven, Belgium
| | - An-Sofie Cloet
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, 3001 Leuven, Belgium
| | - Inge Fourneau
- Department of Vascular Surgery, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, 3001 Leuven, Belgium
| |
Collapse
|
40
|
Jiang Z, Choi J, Baek S. Machine learning approaches to surrogate multifidelity Growth and Remodeling models for efficient abdominal aortic aneurysmal applications. Comput Biol Med 2021; 133:104394. [PMID: 34015599 DOI: 10.1016/j.compbiomed.2021.104394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Computational Growth and Remodeling (G&R) models have been widely used to capture the pathological development of arterial diseases and have shown promise for aiding clinical diagnosis, prognosis prediction, and staging classification. However, due to the high complexity of the arterial adaptation mechanism, high-fidelity arterial G&R simulation usually takes hours or even days, which hinders its application in clinical practice. To remedy this problem, we develop a computationally efficient arterial G&R simulation framework that comprehensively combines the physics-based G&R simulations and data-driven machine learning approaches. The proposed framework greatly enhances the computational efficiency of arterial G&R simulations, thereby enabling more time-consuming arterial applications, including personalized parameter estimation and arterial disease progression prediction. In particular, we achieve significant computational cost reduction mainly through two methods: (1) constructing a Multifidelity Surrogate (MFS) to approximate multifidelity G&R simulations by using a cokriging approach and (2) developing a novel iterative optimization algorithm for personalized parameter estimation. The proposed framework is demonstrated by estimating G&R model parameters and predicting individual aneurysm growth using follow-up CT images of Abdominal Aortic Aneurysms (AAAs) from 21 patients. Results show that the personalized parameters are satisfactorily estimated and the growth of AAAs is predicted within the clinically relevant time frame, i.e., less than 2 h, without a loss of accuracy.
Collapse
Affiliation(s)
- Zhenxiang Jiang
- Department of Mechanical Engineering, Michigan State University, Room 3259, 428 S. Shaw Lane, East Lansing, MI, 48824, USA.
| | - Jongeun Choi
- School of Mechanical Engineering, Yonsei University, Room C319, 50 Yonsei Ro, Seodaemun Gu, Seoul, 03722, South Korea.
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, Room 3259, 428 S. Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
41
|
Maes L, Vastmans J, Avril S, Famaey N. A Chemomechanobiological Model of the Long-Term Healing Response of Arterial Tissue to a Clamping Injury. Front Bioeng Biotechnol 2021; 8:589889. [PMID: 33575250 PMCID: PMC7870691 DOI: 10.3389/fbioe.2020.589889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022] Open
Abstract
Vascular clamping often causes injury to arterial tissue, leading to a cascade of cellular and extracellular events. A reliable in silico prediction of these processes following vascular injury could help us to increase our understanding thereof, and eventually optimize surgical techniques or drug delivery to minimize the amount of long-term damage. However, the complexity and interdependency of these events make translation into constitutive laws and their numerical implementation particularly challenging. We introduce a finite element simulation of arterial clamping taking into account acute endothelial denudation, damage to extracellular matrix, and smooth muscle cell loss. The model captures how this causes tissue inflammation and deviation from mechanical homeostasis, both triggering vascular remodeling. A number of cellular processes are modeled, aiming at restoring this homeostasis, i.e., smooth muscle cell phenotype switching, proliferation, migration, and the production of extracellular matrix. We calibrated these damage and remodeling laws by comparing our numerical results to in vivo experimental data of clamping and healing experiments. In these same experiments, the functional integrity of the tissue was assessed through myograph tests, which were also reproduced in the present study through a novel model for vasodilator and -constrictor dependent smooth muscle contraction. The simulation results show a good agreement with the in vivo experiments. The computational model was then also used to simulate healing beyond the duration of the experiments in order to exploit the benefits of computational model predictions. These results showed a significant sensitivity to model parameters related to smooth muscle cell phenotypes, highlighting the pressing need to further elucidate the biological processes of smooth muscle cell phenotypic switching in the future.
Collapse
Affiliation(s)
- Lauranne Maes
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Julie Vastmans
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Stéphane Avril
- Mines Saint-Etienne, Université de Lyon, Université Jean Monnet, INSERM, Saint-Étienne, France
| | - Nele Famaey
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Ghavamian A, Mousavi SJ, Avril S. Computational Study of Growth and Remodeling in Ascending Thoracic Aortic Aneurysms Considering Variations of Smooth Muscle Cell Basal Tone. Front Bioeng Biotechnol 2020; 8:587376. [PMID: 33224937 PMCID: PMC7670047 DOI: 10.3389/fbioe.2020.587376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, we investigate the progression of Ascending Thoracic Aortic Aneurysms (ATAA) using a computational model of Growth and Remodeling (G&R) taking into account the composite (elastin, four collagen fiber families and Smooth Muscle Cells—SMCs) and multi-layered (media and adventitia) nature of the aorta. The G&R model, which is based on the homogenized Constrained Mixture theory, is implemented as a UMAT in the Abaqus finite-element package. Each component of the mixture is assigned a strain energy density function: nearly-incompressible neo-Hookean for elastin and Fung-type for collagen and SMCs. Active SMCs tension is additionally considered, through a length-tension relationship having a classic inverted parabola shape, in order to investigate its effects on the progression of ATAA in a patient-specific model. A sensitivity analysis is performed to evaluate the potential impact of variations in the parameters of the length-tension relationships. These variations reflect in variations of SMCs normal tone during ATAA progression, with active stress contributions ranging between 30% (best case scenario) and 0% (worst case scenario) of the total wall circumferential stress. Low SMCs active stress in the worst case scenarios, in fact, affect the rates of collagen deposition by which the elastin loss is gradually compensated by collagen deposition in the simulated ATAA progression, resulting eventually in larger aneurysm diameters. The types of length-tension relationships leading to a drop of SMCs active stress in our simulations reveal a critical condition which could also result in SMCs apoptosis.
Collapse
Affiliation(s)
- Ataollah Ghavamian
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Étienne, France
| | - S Jamaleddin Mousavi
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Étienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Étienne, France
| |
Collapse
|
43
|
Latorre M, Humphrey JD. Numerical knockouts-In silico assessment of factors predisposing to thoracic aortic aneurysms. PLoS Comput Biol 2020; 16:e1008273. [PMID: 33079926 PMCID: PMC7598929 DOI: 10.1371/journal.pcbi.1008273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/30/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Myriad risk factors–including uncontrolled hypertension, aging, and diverse genetic mutations–contribute to the development and enlargement of thoracic aortic aneurysms. Detailed analyses of clinical data and longitudinal studies of murine models continue to provide insight into the natural history of these potentially lethal conditions. Yet, because of the co-existence of multiple risk factors in most cases, it has been difficult to isolate individual effects of the many different factors or to understand how they act in combination. In this paper, we use a data-informed computational model of the initiation and progression of thoracic aortic aneurysms to contrast key predisposing risk factors both in isolation and in combination; these factors include localized losses of elastic fiber integrity, aberrant collagen remodeling, reduced smooth muscle contractility, and dysfunctional mechanosensing or mechanoregulation of extracellular matrix along with superimposed hypertension and aortic aging. In most cases, mild-to-severe localized losses in cellular function or matrix integrity give rise to varying degrees of local dilatations of the thoracic aorta, with enlargement typically exacerbated in cases wherein predisposing risk factors co-exist. The simulations suggest, for the first time, that effects of compromised smooth muscle contractility are more important in terms of dysfunctional mechanosensing and mechanoregulation of matrix than in vessel-level control of diameter and, furthermore, that dysfunctional mechanobiological control can yield lesions comparable to those in cases of compromised elastic fiber integrity. Particularly concerning, therefore, is that loss of constituents such as fibrillin-1, as in Marfan syndrome, can compromise both elastic fiber integrity and mechanosensing. Aneurysms are local dilatations of the arterial wall that are responsible for significant disability and death. Detailed analyses of clinical data continue to provide insight into the natural history of these potentially lethal conditions, with myriad risk factors–including uncontrolled hypertension, aging, and diverse genetic mutations–contributing to their development and enlargement. Yet, because of the co-existence of these risk factors in most cases, it has been difficult to isolate individual effects or to understand how they act in combination. In this paper, we use a computational model of the initiation and progression of thoracic aortic aneurysms to contrast key predisposing factors both in isolation and in combination as well as with superimposed hypertension and aging. The present study recovers many findings from mouse models but with new and important observations that promise to guide in vivo and ex vivo studies as we seek to understand and eventually better treat these complex, multi-factorial lesions, with data-informed patient-specific computations eventually the way forward.
Collapse
Affiliation(s)
- M. Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - J. D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ghavamian A, Mousavi SJ, Avril S. Computational modeling of the role of smooth muscle cells contractility on the progression of aortic aneurysms. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1812845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Ghavamian
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, Sainbiose, Centre CIS, Saint-Etienne, France
| | - S. J. Mousavi
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, Sainbiose, Centre CIS, Saint-Etienne, France
| | - S. Avril
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, Sainbiose, Centre CIS, Saint-Etienne, France
| |
Collapse
|
45
|
Modeling biological growth and remodeling: Contrasting methods, contrasting needs. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Latorre M, Humphrey JD. Fast, Rate-Independent, Finite Element Implementation of a 3D Constrained Mixture Model of Soft Tissue Growth and Remodeling. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2020; 368:113156. [PMID: 32655195 PMCID: PMC7351114 DOI: 10.1016/j.cma.2020.113156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Constrained mixture models of soft tissue growth and remodeling can simulate many evolving conditions in health as well as in disease and its treatment, but they can be computationally expensive. In this paper, we derive a new fast, robust finite element implementation based on a concept of mechanobiological equilibrium that yields fully resolved solutions and allows computation of quasi-equilibrated evolutions when imposed perturbations are slow relative to the adaptive process. We demonstrate quadratic convergence and verify the model via comparisons with semi-analytical solutions for arterial mechanics. We further examine the enlargement of aortic aneurysms for which we identify new mechanobiological insights into factors that affect the nearby non-aneurysmal segment as it responds to the changing mechanics within the diseased segment. Because this new 3D approach can be implemented within many existing finite element solvers, constrained mixture models of growth and remodeling can now be used more widely.
Collapse
Affiliation(s)
- Marcos Latorre
- Department of Biomedical Engineering Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
47
|
Jayendiran R, Condemi F, Campisi S, Viallon M, Croisille P, Avril S. Computational prediction of hemodynamical and biomechanical alterations induced by aneurysm dilatation in patient-specific ascending thoracic aortas. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3326. [PMID: 32087044 DOI: 10.1002/cnm.3326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The aim of the present work is to propose a robust computational framework combining computational fluid dynamics (CFD) and 4D flow MRI to predict the progressive changes in hemodynamics and wall rupture index (RPI) induced by aortic morphological evolutions in patients harboring ascending thoracic aortic aneurysms (ATAAs). An analytical equation has been proposed to predict the aneurysm progression based on age, sex, and body surface area. Parameters such as helicity, wall shear stress (WSS), time-averaged WSS, oscillatory shear index, relative residence time, and viscosity were evaluated for two patients at different stages of aneurysm growth, and compared with age-sex-matched healthy subjects. The study shows that evolution of hemodynamics and RPI, despite being very slow in ATAAs, is strongly affected by morphological alterations and, in turn could impact biomechanical factors and aortic mechanobiology. An aspect of the current work is that the patient-specific 4D MRI data sets were obtained with a follow-up of 1 year and the measured time-averaged velocity maps and flow eccentricity were compared with the CFD simulation for validation. The computational framework presented here is capable of capturing the blood flow patterns and the hemodynamic descriptors during the various stages of aneurysm growth. Further investigations will be conducted in order to verify these results on a larger cohort of patients and with long follow-up times to finally elucidate the link between deranged hemodynamics, AA geometry, and wall mechanical properties in ATAAs.
Collapse
Affiliation(s)
- Raja Jayendiran
- Mines Saint-Etienne, Université de Lyon, INSERM, U1059, SAINBIOSE, Saint-Etienne F-42023, France
| | | | - Salvatore Campisi
- Department of Cardiovascular Surgery, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Université de Lyon, Saint-Etienne, France
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Pierre Croisille
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Université de Lyon, Saint-Etienne, France
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, U1059, SAINBIOSE, Saint-Etienne F-42023, France
| |
Collapse
|