1
|
Bechtel GN, Sugerman GP, Eades T, Parast L, Saber H, Chang A, Bush AM, Rausch MK. Biomechanical profiling of in vitro blood clots: sensitivity to sex, age, and blood composition in a healthy adult population. Biomech Model Mechanobiol 2025:10.1007/s10237-025-01954-7. [PMID: 40301287 DOI: 10.1007/s10237-025-01954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/20/2025] [Indexed: 05/01/2025]
Abstract
Blood clots' mechanical properties are important in both their physiological role and in the initiation and progression of thromboembolic diseases. Because studying blood clot properties in vivo is difficult, many prior studies have investigated the properties of in vitro clots instead. However, much remains to be understood about in vitro clots, especially those derived from human blood. For example, the association between subject-specific factors and clot mechanical properties is currently unknown. Our objective is to fill this knowledge gap and study the sensitivity of in vitro blood clots to subject-specific factors, including sex, age, and blood composition. We drew blood from healthy adults aged 19-46, coagulated clots into mechanical test specimens, and characterized their properties. Specifically, we quantified clot stiffness, fracture toughness, contractility, and hysteresis. We then quantified the relative dependence of those properties on subject-specific factors, including sex, age, and blood composition. We found that there is significant variation in clot properties within healthy subjects. Clots from female subjects' blood are stiffer, more resistant to fracture, and show more hysteresis compared to clots from male subjects. However, we found no association between clot properties and age and only a weak association with clot composition, e.g., hematocrit. Finally, even together, sex, age, and blood composition only moderately explain the observed variability in clot mechanical properties. Our work therefore suggests that in vitro clots may capture relevant information not reflected in standard clinical data. Future studies should investigate in vitro clots' potential as biomarkers for thrombotic risk and treatment response.
Collapse
Affiliation(s)
- Grace N Bechtel
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St, Austin, TX, 78712, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, San José State University, 1 Washington Sq, San José, CA, 95112, USA
| | - Tatum Eades
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St, Austin, TX, 78712, USA
| | - Layla Parast
- Department of Statistics and Data Science, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Hamidreza Saber
- Department of Neurology and Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St, Austin, TX, 78712, USA
| | - Alicia Chang
- Department of Pediatrics, Children's Blood and Cancer Center, Dell Children's Medical Center, 4900 Mueller Blvd, Austin, TX, 78723, USA
| | - Adam M Bush
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St, Austin, TX, 78712, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St, Austin, TX, 78712, USA.
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, 2617 Wichita St, Austin, TX, 78712, USA.
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E Dean Keeton St, Austin, TX, 78712, USA.
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E 24th St, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Gu B, Hou J, Filla N, Li H, Wang X. Rupture mechanics of blood clot fibrin fibers: A coarse-grained model study. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2025; 196:105998. [PMID: 39734807 PMCID: PMC11674026 DOI: 10.1016/j.jmps.2024.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Thrombosis, when occurring undesirably, disrupts normal blood flow and poses significant medical challenges. As the skeleton of blood clots, fibrin fibers play a vital role in the formation and fragmentation of blood clots. Thus, studying the deformation and fracture characteristics of fibrin fiber networks is the key factor to solve a series of health problems caused by thrombosis. This study employs a coarse-grained model of fibrin fibers to investigate the rupture dynamics of fibrin fiber networks. We propose a new method for generating biomimetic fibrin fiber networks to simulate their spatial geometry in blood clots. We examine the mechanical characteristics and rupture behaviors of fibrin fiber networks under various conditions, including fiber junction density, fiber tortuosity, fiber strength, and the strain limit of single fiber rupture in both tension and simple shear cases. Our findings indicate that the stress-strain relationship of the fibrin fiber network follows a similar pattern to that of individual fibers, characterized by a shortened entropy stretching phase and an extended transition phase. Fiber junction density, fiber strength, and single fiber rupture limit predominantly influence the stress of the network, while fiber tortuosity governs the strain behavior. The availability of more fibers in shear cases to bear the load results in delayed rupture compared to tension cases. With consideration of different factors of fibrin fibers in networks, this work provides a more realistic description of the mechanical deformation process in fibrin fiber networks, offering new insights into their rupture and failure mechanisms. These findings could inspire novel approaches and methodologies for understanding the fracture of fibrin networks during a surgical thrombectomy.
Collapse
Affiliation(s)
- Beikang Gu
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Jixin Hou
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Nicholas Filla
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
3
|
Fregona V, Luraghi G, Fereidoonnezhad B, Gijsen FJH, Majoie CBLM, Rodríguez Matas JF, Migliavacca F. Impact of thrombus composition on virtual thrombectomy procedures using human clot analogues mechanical data. J Mech Behav Biomed Mater 2025; 163:106886. [PMID: 39754893 DOI: 10.1016/j.jmbbm.2025.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Endovascular thrombectomy (EVT) aims at restoring blood flow in case of acute ischemic stroke by removing the thrombus occluding a large cerebral artery. During the procedure with stent-retriever, the thrombus is captured within the device, which is then retrieved, subjecting the thrombus to several forces, potentially leading to its fragmentation. In silico studies, along with mechanical characterisation of thrombi, can enhance our understanding of the EVT, helping the development of new devices and interventional strategies. Our group previously validated a numerical approach to study EVT able to account for thrombus fragmentation. In this study, the same methodology was employed to explore the applicability of the chosen failure criterion to EVT simulations and the impact of thrombus composition on the outcome of the in silico procedure. For the first time, human clot analogues experimental data were applied to this methodology. Clot analogues of three different compositions were tested, and a material model incorporating failure was calibrated, followed by a verification analysis. Finally, the calibrated material model was used to perform EVT simulations, combining the three tested thrombus compositions with three different stent retriever models. The experimental tests confirmed a compression-tension asymmetry in the stress-strain curves, showing decreasing stiffness with increasing the red blood cell (RBC) content. Applying the resulting material models to EVT simulations demonstrated: (i) the dependency of the failure criterion on the thrombus mesh size, (ii) a greater tendency for RBC-rich thrombi to fragment, and (iii) increased difficulty in retrieving RBC-poor thrombi compared to RBC-rich thrombi.
Collapse
Affiliation(s)
- Virginia Fregona
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Italy
| | - Giulia Luraghi
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Italy; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands.
| | - Behrooz Fereidoonnezhad
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Frank J H Gijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Jose Felix Rodríguez Matas
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Italy
| | - Francesco Migliavacca
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Italy
| |
Collapse
|
4
|
Filla N, Gu B, Hou J, Song K, Li H, Liu N, Wang X. Hyperelasticity of blood clots: Bridging the gap between microscopic and continuum scales. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2024; 190:105750. [DOI: 10.1016/j.jmps.2024.105750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Luisi CA, Nikoubashman O, Steinseifer U, Wiesmann M, Neidlin M. Collateral flow and pulsatility during large vessel occlusions: insights from a quantitative in vitro study. Front Bioeng Biotechnol 2024; 12:1421714. [PMID: 39086499 PMCID: PMC11288949 DOI: 10.3389/fbioe.2024.1421714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Acute ischemic stroke caused by large vessel occlusions is being increasingly treated with neurovascular interventions. The hemodynamics within the collateral system of the circle of Willis (CoW) hemodynamics play a fundamental role in therapy success. However, transient in vivo data on pathological collateral flow during large vessel occlusions are not available. Moreover, there are no flow models that accurately simulate the hemodynamic conditions in the CoW during large vessel occlusions. We used a circulatory loop to generate highly reproducible cerebrovascular-like flows and pressures and used non-invasive flow visualization and high-resolution flow and pressure measurements to acquire detailed, time-dependent hemodynamics inside an anatomical phantom of the CoW. After calibrating a physiological reference case, we induced occlusions in the 1. middle cerebral artery, 2. terminal carotid artery, and 3. basilar artery; and measured the left posterior communicating artery flow. Mean arterial pressure and pulse pressure remained unchanged in the different occlusion cases compared to the physiological reference case, while total cerebral flow decreased by up to 19%. In all three occlusion cases, reversed flow was found in the left posterior communicating artery compared to the reference case with different flow magnitudes and pulsatility index values. The experimental results were compared with clinical findings, demonstrating the capability of this realistic cerebrovascular flow setup. This novel cerebrovascular flow setup opens the possibility for investigating different topics of neurovascular interventions under various clinical conditions in controlled preclinical laboratory studies.
Collapse
Affiliation(s)
- Claudio A. Luisi
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Omid Nikoubashman
- Clinic for Diagnostic and Interventional Neuroradiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martin Wiesmann
- Clinic for Diagnostic and Interventional Neuroradiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Sugerman GP, Bechtel GN, Malinowska Z, Parekh SH, Rausch MK. Mechanical properties of clot made from human and bovine whole blood differ significantly. J Mech Behav Biomed Mater 2024; 154:106508. [PMID: 38513312 DOI: 10.1016/j.jmbbm.2024.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Thromboembolism - that is, clot formation and the subsequent fragmentation of clot - is a leading cause of death worldwide. Clots' mechanical properties are critical determinants of both the embolization process and the pathophysiological consequences thereof. Thus, understanding and quantifying the mechanical properties of clots is important to our ability to treat and prevent thromboembolic disease. However, assessing these properties from in vivo clots is experimentally challenging. Therefore, we and others have turned to studying in vitro clot mimics instead. Unfortunately, there are significant discrepancies in the reported properties of these clot mimics, which have been hypothesized to arise from differences in experimental techniques and blood sources. The goal of our current work is therefore to compare the mechanical behavior of clots made from the two most common sources, human and bovine blood, using the same experimental techniques. To this end, we tested clots under pure shear with and without initial cracks, under cyclic loading, and under stress relaxation. Based on these data, we computed and compared stiffness, strength, work-to-rupture, fracture toughness, relaxation time constants, and prestrain. While clots from both sources behaved qualitatively similarly, they differed quantitatively in almost every metric. We also correlated each mechanical metric to measures of blood composition. Thereby, we traced this inter-species variability in clot mechanics back to significant differences in hematocrit, but not platelet count. Thus, our work suggests that the results of past studies that have used bovine blood to make in vitro mimics - without adjusting blood composition - should be interpreted carefully. Future studies about the mechanical properties of blood clots should focus on human blood alone.
Collapse
Affiliation(s)
- Gabriella P Sugerman
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712, United States of America
| | - Grace N Bechtel
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712, United States of America
| | - Zuzanna Malinowska
- University of Texas at Austin, Department of Aerospace Engineering & Engineering Mechanics, 2617 Wichita St, Austin, TX 78712, United States of America
| | - Sapun H Parekh
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712, United States of America
| | - Manuel K Rausch
- University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712, United States of America; University of Texas at Austin, Department of Aerospace Engineering & Engineering Mechanics, 2617 Wichita St, Austin, TX 78712, United States of America; University of Texas at Austin, Department of Mechanical Engineering, 204 E Dean Keeton St, Austin, TX 78712, United States of America; University of Texas at Austin, Oden Institute for Computational Engineering and Sciences, 201 E 24th St, Austin, TX 78712, United States of America.
| |
Collapse
|
7
|
Talebibarmi P, Vahidi B, Ebad M. In silico analysis of embolism in cerebral arteries using fluid-structure interaction method. Heliyon 2024; 10:e30443. [PMID: 38720729 PMCID: PMC11077041 DOI: 10.1016/j.heliyon.2024.e30443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Ischemic stroke, particularly embolic stroke, stands as a significant global contributor to mortality and long-term disabilities. This paper presents a comprehensive simulation of emboli motion through the middle cerebral artery (MCA), a prevalent site for embolic stroke. Our patient-specific computational model integrates major branches of the middle cerebral artery reconstructed from magnetic resonance angiography images, pulsatile flow dynamics, and emboli of varying geometries, sizes, and material properties. The fluid-structure interactions method is employed to simulate deformable emboli motion through the middle cerebral artery, allowing observation of hemodynamic changes in artery branches upon embolus entry. We investigated the impact of embolus presence on shear stress magnitude on artery walls, analyzed the effects of embolus material properties and geometries on embolus trajectory and motion dynamics within the middle cerebral artery. Additionally, we evaluated the non-Newtonian behavior of blood, comparing it with Newtonian blood behavior. Our findings highlight that embolus geometry significantly influences trajectory, motion patterns, and hemodynamics within middle cerebral artery branches. Emboli with visco-hyperelastic material properties experienced higher stresses upon collision with artery walls compared to those with hyperelastic properties. Furthermore, considering blood as a non-Newtonian fluid had notable effects on emboli stresses and trajectories within the artery, particularly during collisions. Notably, the maximum von Mises stress experienced in our study was 21.83 kPa, suggesting a very low probability of emboli breaking during movement, impact, and after coming to a stop. However, in certain situations, the magnitude of shear stress on them exceeded 1 kPa, increasing the likelihood of cracking and disintegration. These results serve as an initial step in anticipating critical clinical conditions arising from arterial embolism in the middle cerebral artery. They provide insights into the biomechanical parameters influencing embolism, contributing to improved clinical decision-making for stroke management.
Collapse
Affiliation(s)
- Pouria Talebibarmi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mahtab Ebad
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Cheng L, Chen Z, Yang F, Zheng R, He W, Shi F, Liu C, Wang F, Wang L, Xie Y, Lu H. Coronary hemodynamic simulation study. Proc Inst Mech Eng H 2024; 238:444-454. [PMID: 38503717 DOI: 10.1177/09544119241231028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this paper, a two-way fluid-structure coupling model is developed to simulate and analyze the hemodynamic process based on dynamic coronary angiography, and examine the influence of different hemodynamic parameters on coronary arteries in typical coronary stenosis lesions. Using the measured FFR pressure data of a patient, the pressure-time function curve is fitted to ensure the accuracy of the boundary conditions. The average error of the simulation pressure results compared to the test data is 6.74%. In addition, the results related to blood flow, pressure contour and wall shear stress contour in a typical cardiac cycle are obtained by simulation analysis. These results are found to be in good agreement with the laws of the real cardiac cycle, which verifies the rationality of the simulation. In conclusion, based on the modeling and hemodynamic simulation analysis process of dynamic coronary angiography, this paper proposes a method to assist the analysis and evaluation of coronary hemodynamic and functional parameters, which has certain practical significance.
Collapse
Affiliation(s)
| | | | | | | | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Fan Shi
- Ningbo University, Ningbo, Zhejiang, China
| | - Chang Liu
- Ningbo University, Ningbo, Zhejiang, China
| | | | - Li Wang
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Yanqing Xie
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Haoxuan Lu
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Paz C, Suárez E, Cabarcos A, Pinto SIS. Numerical Study of a Thrombus Migration Risk in Aneurysm After Coil Embolization in Patient Cases: FSI Modelling. Cardiovasc Eng Technol 2023; 14:544-559. [PMID: 37468797 PMCID: PMC10465652 DOI: 10.1007/s13239-023-00672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE There are still many challenges for modelling a thrombus migration process in aneurysms. The main novelty of the present research lies in the modelling of aneurysm clot migration process in a realistic cerebral aneurysm, and the analysis of forces suffered by clots inside an aneurysm, through transient FSI simulations. METHODS The blood flow has been modelled using a Womersley velocity profile, and following the Carreau viscosity model. Hyperelastic Ogden model has been used for clot and isotropic linear elastic model for the artery walls. The FSI coupled model was implemented in ANSYS® software. The hemodynamic forces suffered by the clot have been quantified using eight different clot sizes and positions inside a real aneurysm. RESULTS The obtained results have shown that it is almost impossible for clots adjacent to aneurysm walls, to leave the aneurysm. Nevertheless, in clots positioned in the centre of the aneurysm, there is a real risk of clot migration. The risk of migration of a typical post-coiling intervention clot in an aneurysm, in contact with the wall and occupying a significant percentage of its volume is very low in the case studied, even in the presence of abnormally intense events, associated with sneezes or impacts. CONCLUSIONS The proposed methodology allows evaluating the clot migration risk, vital for evaluating the progress after endovascular interventions, it is a step forward in the personalized medicine, patient follow-up, and helping the medical team deciding the optimal treatment.
Collapse
Affiliation(s)
- C. Paz
- CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - E. Suárez
- CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - A. Cabarcos
- CINTECX, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - S. I. S. Pinto
- Engineering Faculty of University of Porto, Institute of Science and Innovation in Mechanical and Industrial Engineering (LAETA-INEGI), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Good BC. The influence of blood composition and loading frequency on the behavior of embolus analogs. J Mech Behav Biomed Mater 2023; 140:105738. [PMID: 36821909 DOI: 10.1016/j.jmbbm.2023.105738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
In cases of acute ischemic stroke (AIS), mechanical thrombectomy (MT) can be used to directly remove lodged thromboemboli. Despite improvements in patient outcomes, one of the key factors affecting MT success is the mechanical properties of the occlusive thrombus. Therefore, the goal of this study was to investigate the viscoelastic properties of embolus analogs (EAs) and determine the influence of EA hematocrit and loading frequency. Bovine blood EAs were created over a range of physiological hematocrits (0-60%) and cyclic uniaxial compression testing was performed at three loading frequencies to mimic in vivo loading conditions, followed by stress-relaxation testing. It was found that EAs exhibited behaviors typical of hyper-viscoelastic materials and that EA hematocrit played a large role in both EA stiffness and relaxation, with both parameters decreasing as hematocrit increased from 0 to 60%. The viscoelastic behavior of the EAs was also affected by the frequency at which they were loaded, with significant increases in peak stresses between the 0.5 and 2 Hz loaded EAs. Lower hematocrit EAs had very dense fibrin networks while the higher hematocrit EAs consisted of closely packed RBCs with little fibrin present. These results suggest that fibrin contributes to EA stiffness and relaxation behaviors while RBCs play a role in decreasing the overall viscous response and strain-rate dependency. An Ogden hyperelastic model was found to best reproduce the EA loading data while a 3-term Prony series was fit to the stress relaxation data. A hyper-viscoelastic modeling framework was then implemented combining the loading and stress-relaxation fits and the results could match the full cyclic loading data for EAs of varying hematocrit and loading frequency. The results of the experimental mechanical characterization and hyper-viscoelastic curve fitting can be incorporated in future modeling efforts to optimize mechanical thrombectomy for AIS patients.
Collapse
Affiliation(s)
- Bryan C Good
- Mechanical, Aerospace, And Biomedical Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
11
|
Jia J, Chong S, Yu L, Yao Y. Cell membrane tensile strain under cyclic compression: A viscoelastic myoblast finite element model. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Lohr MJ, Sugerman GP, Kakaletsis S, Lejeune E, Rausch MK. An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022. [PMID: 36031838 DOI: 10.6084/m9.figshare.c.6098644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.
Collapse
Affiliation(s)
- Matthew J Lohr
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sotirios Kakaletsis
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Lohr MJ, Sugerman GP, Kakaletsis S, Lejeune E, Rausch MK. An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210365. [PMID: 36031838 PMCID: PMC9784101 DOI: 10.1098/rsta.2021.0365] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/14/2022] [Indexed: 05/04/2023]
Abstract
Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.
Collapse
Affiliation(s)
- Matthew J. Lohr
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Gabriella P. Sugerman
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sotirios Kakaletsis
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Manuel K. Rausch
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Luraghi G, Bridio S, Lissoni V, Dubini G, Dwivedi A, McCarthy R, Fereidoonnezhad B, McGarry P, Gijsen FJH, Rodriguez Matas JF, Migliavacca F. Combined stent-retriever and aspiration intra-arterial thrombectomy performance for fragmentable blood clots: A proof-of-concept computational study. J Mech Behav Biomed Mater 2022; 135:105462. [PMID: 36116343 DOI: 10.1016/j.jmbbm.2022.105462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
Abstract
Mechanical thrombectomy (MT) treatment of acute ischemic stroke (AIS) patients typically involves use of stent retrievers or aspiration catheters alone or in combination. For in silico trials of AIS patients, it is crucial to incorporate the possibility of thrombus fragmentation during the intervention. This study focuses on two aspects of the thrombectomy simulation: i) Thrombus fragmentation on the basis of a failure model calibrated with experimental tests on clot analogs; ii) the combined stent-retriever and aspiration catheter MT procedure is modeled by adding both the proximal balloon guide catheter and the distal access catheter. The adopted failure criterion is based on maximum principal stress threshold value. If elements of the thrombus exceed this criterion during the retrieval simulation, then they are deleted from the calculation. Comparison with in-vitro tests indicates that the simulation correctly reproduces the procedures predicting thrombus fragmentation in the case of red blood cells rich thrombi, whereas non-fragmentation is predicted for fibrin-rich thrombi. Modeling of balloon guide catheter prevents clot fragments' embolization to further distal territories during MT procedure.
Collapse
Affiliation(s)
- Giulia Luraghi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands.
| | - Sara Bridio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Vittorio Lissoni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Gabriele Dubini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | | | - Ray McCarthy
- Cerenovus, Neuro Technology Center, Galway, Ireland
| | - Behrooz Fereidoonnezhad
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Patrick McGarry
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Frank J H Gijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jose Felix Rodriguez Matas
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
15
|
Moerman KM, Konduri P, Fereidoonnezhad B, Marquering H, van der Lugt A, Luraghi G, Bridio S, Migliavacca F, Rodriguez Matas JF, McGarry P. Development of a patient-specific cerebral vasculature fluid-structure-interaction model. J Biomech 2022; 133:110896. [DOI: 10.1016/j.jbiomech.2021.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
|
16
|
Preclinical modeling of mechanical thrombectomy. J Biomech 2021; 130:110894. [PMID: 34915309 DOI: 10.1016/j.jbiomech.2021.110894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
Mechanical thrombectomy to treat large vessel occlusions (LVO) causing a stroke is one of the most effective treatments in medicine, with a number needed to treat to improve clinical outcomes as low as 2.6. As the name implies, it is a mechanical solution to a blocked artery and modeling these mechanics preclinically for device design, regulatory clearance and high-fidelity physician training made clinical applications possible. In vitro simulation of LVO is extensively used to characterize device performance in representative vascular anatomies with physiologically accurate hemodynamics. Embolus analogues, validated against clots extracted from patients, provide a realistic simulated use experience. In vitro experimentation produces quantitative results such as particle analysis of distal emboli generated during the procedure, as well as pressure and flow throughout the experiment. Animal modeling, used mostly for regulatory review, allows estimation of device safety. Other than one recent development, nearly all animal modeling does not incorporate the desired target organ, the brain, but rather is performed in the extracranial circulation. Computational modeling of the procedure remains at the earliest stages but represents an enormous opportunity to rapidly characterize and iterate new thrombectomy concepts as well as optimize procedure workflow. No preclinical model is a perfect surrogate; however, models available can answer important questions during device development and have to date been successful in delivering efficacious and safe devices producing excellent clinical outcomes. This review reflects on the developments of preclinical modeling of mechanical thrombectomy with particular focus on clinical translation, as well as articulate existing gaps requiring additional research.
Collapse
|
17
|
Mousavi J. S. SM, Faghihi D, Sommer K, Bhurwani MMS, Patel TR, Santo B, Waqas M, Ionita C, Levy EI, Siddiqui AH, Tutino VM. Realistic computer modelling of stent retriever thrombectomy: a hybrid finite-element analysis-smoothed particle hydrodynamics model. J R Soc Interface 2021; 18:20210583. [PMID: 34905967 PMCID: PMC8672072 DOI: 10.1098/rsif.2021.0583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Stent retriever thrombectomy is a pre-eminent treatment modality for large vessel ischaemic stroke. Simulation of thrombectomy could help understand stent and clot mechanics in failed cases and provide a digital testbed for the development of new, safer devices. Here, we present a novel, in silico thrombectomy method using a hybrid finite-element analysis (FEA) and smoothed particle hydrodynamics (SPH). Inspired by its biological structure and components, the blood clot was modelled with the hybrid FEA-SPH method. The Solitaire self-expanding stent was parametrically reconstructed from micro-CT imaging and was modelled as three-dimensional finite beam elements. Our simulation encompassed all steps of mechanical thrombectomy, including stent packaging, delivery and self-expansion into the clot, and clot extraction. To test the feasibility of our method, we simulated clot extraction in simple straight vessels. This was compared against in vitro thrombectomies using the same stent, vessel geometry, and clot size and composition. Comparisons with benchtop tests indicated that our model was able to accurately simulate clot deflection and penetration of stent wires into the clot, the relative movement of the clot and stent during extraction, and clot fragmentation/embolus formation. In this study, we demonstrated that coupling FEA and SPH techniques could realistically model stent retriever thrombectomy.
Collapse
Affiliation(s)
- S. Mostafa Mousavi J. S.
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Danial Faghihi
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Kelsey Sommer
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Mohammad M. S. Bhurwani
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Tatsat R. Patel
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Briana Santo
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Ciprian Ionita
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Elad I. Levy
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H. Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Vincent M. Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
18
|
Fereidoonnezhad B, McGarry P. A new constitutive model for permanent deformation of blood clots with application to simulation of aspiration thrombectomy. J Biomech 2021; 130:110865. [PMID: 34839150 DOI: 10.1016/j.jbiomech.2021.110865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
As a first line option in the treatment of acute ischemic stroke (AIS), direct aspiration is a fast and effective technique with promising outcomes. In silico models are widely used for design and preclinical assessment of new developed devices and therapeutic methods. Accurate modelling of the mechanical behaviour of blood clot is a key factor in the design and simulation of aspiration devices. In this study we develop a new constitutive model which incorporates the unrecoverable plastic deformation of clots. The model is developed based on the deformation-induced microstructural changes in fibrin network, including the formation and dissociation of the cross-links between fibrin fibres. The model is calibrated using previously reported experimentally measured permanent clot deformation following uniaxial stretching. The calibrated plasticity model is then used to simulate aspiration thrombectomy. Results reveal that inclusion of permanent plastic deformation results in ∼ 15 % increase in clot aspiration length at an applied aspiration pressure of 100 mmHg. The constitutive law developed in this study provides a basis for improved design and evaluation of novel aspiration catheters leading to increased first-pass revascularization rate.
Collapse
Affiliation(s)
- Behrooz Fereidoonnezhad
- Biomedical Engineering, School of Engineering, National University of Ireland Galway, Galway, Ireland
| | - Patrick McGarry
- Biomedical Engineering, School of Engineering, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
19
|
Luraghi G, Cahalane RME, van de Ven E, Overschie SCM, Gijsen FJH, Akyildiz AC. In vitro and in silico modeling of endovascular stroke treatments for acute ischemic stroke. J Biomech 2021; 127:110693. [PMID: 34450517 DOI: 10.1016/j.jbiomech.2021.110693] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Acute ischemic stroke occurs when a thrombus obstructs a cerebral artery, leading to sub-optimal blood perfusion to brain tissue. A recently developed, preventive treatment is the endovascular stroke treatment (EVT), which is a minimally invasive procedure, involving the use of stent-retrievers and/or aspiration catheters. Despite its increasing use, many critical factors of EVT are not well understood. In this respect, in vitro, and in silico studies have the great potential to help us deepen our understanding of the procedure, perform further device and procedural optimization, and help in clinical training. This review paper provides an overview of the previous in vitro and in silico evaluations of EVT treatments, with a special emphasis on the four main aspects of the adopted experimental and numerical set-ups: vessel, thrombus, device, and procedural settings.
Collapse
Affiliation(s)
- Giulia Luraghi
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| | - Rachel M E Cahalane
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emma van de Ven
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Serena C M Overschie
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Frank J H Gijsen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ali C Akyildiz
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Fereidoonnezhad B, Dwivedi A, Johnson S, McCarthy R, McGarry P. Blood clot fracture properties are dependent on red blood cell and fibrin content. Acta Biomater 2021; 127:213-228. [PMID: 33812070 DOI: 10.1016/j.actbio.2021.03.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Thrombus fragmentation during endovascular stroke treatment, such as mechanical thrombectomy, leads to downstream emboli, resulting in poor clinical outcomes. Clinical studies suggest that fragmentation risk is dependent on clot composition. This current study presents the first experimental characterization of the composition-dependent fracture properties of blood clots, in addition to the development of a predictive model for blood clot fragmentation. A bespoke experimental test-rig and compact tension specimen fabrication has been developed to measure fracture toughness of thrombus material. Fracture tests are performed on three physiologically relevant clot compositions: a high-fibrin clot made from a 5% haematocrit (H) blood mixture, a medium-fibrin clot made form a 20% H blood mixture, a low-fibrin clot made from a 40% H blood mixture. Fracture toughness is observed to significantly increase with increasing fibrin content, i.e. red blood cell-rich clots are more prone to tear during loading compared to the fibrin-rich clots. Results also reveal that the mechanical behaviour of clot analogues is significantly different in compression and tension. Finite element cohesive zone modelling of clot fracture experiments show that fibrin fibres become highly aligned in the direction perpendicular to crack propagation, providing a significant toughening mechanism. The results presented in this study provide the first characterization of the composition-dependent fracture behaviour of blood clots and are of key importance for development of next-generation thrombectomy devices and clinical strategies. STATEMENT OF SIGNIFICANCE: This study provides a characterisation of the composition-dependent fracture toughness of blood clots. This entails the development of novel experimental techniques for fabrication and testing of blood clot compact tension fracture specimens. The study also develops cohesive zone models of fracture initiation and propagation in blood clots. Results reveal that the fracture resistance of fibrin-rich clots is significantly higher than red blood cell rich clots. Simulations also reveal that stretching and realignment of the fibrin network should be included in blood clot material models in order to accurately replicate compression-tension asymmetry and fibrin enhanced fracture toughness. The results of this study have potentially important clinical implications in terms of clot fracture risk and secondary embolization during mechanical thrombectomy procedures.
Collapse
|