1
|
Flores-Gonzalez J, Urbán-Solano A, Ramón-Luing LA, Cancino-Diaz JC, Contreras-Rodriguez A, Curiel-Quesada E, Hernández-Pando R, Chavez-Galan L. Active tuberculosis patients have high systemic IgG levels and B-cell fingerprinting, characterized by a reduced capacity to produce IFN-γ or IL-10 as a response to M.tb antigens. Front Immunol 2023; 14:1263458. [PMID: 38022616 PMCID: PMC10643169 DOI: 10.3389/fimmu.2023.1263458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Tuberculosis (TB) is a bacterial infection caused by Mycobacterium tuberculosis (M.tb). B cells are the central mediator of the humoral response; they are responsible for producing antibodies in addition to mediating other functions. The role of the cellular response during the TB spectrum by B cells is still controversial. Methods In this study, we evaluated the distribution of the circulating B cell subsets in patients with active and latent TB (ATB and LTB, respectively) and how they respond to stimuli of protein or lipid from M.tb. Results Here, we show that ATB patients show an immune fingerprinting. However, patients with drug-sensitive- (DS-TB) or drug-resistant- (DR-TB) TB have altered frequencies of circulating B cells. DS-TB and DR-TB display a unique profile characterized by high systemic levels of IFN-γ, IL-10, IgG, IgG/IgM ratio, and total B cells. Moreover, B cells from DR-TB are less efficient in producing IL-10, and both DS-TB and DR-TB produce less IFN-γ in response to M.tb antigens. Conclusion These results provide new insights into the population dynamics of the cellular immune response by B cells against M.tb and suggest a fingerprinting to characterize the B-cell response on DR-TB.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Araceli Contreras-Rodriguez
- Department of Microbiology, Laboratory of Immunomicrobiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Department of Pathology, Section of Experimental Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
2
|
Flores-Gonzalez J, Ramón-Luing LA, Romero-Tendilla J, Urbán-Solano A, Cruz-Lagunas A, Chavez-Galan L. Latent Tuberculosis Patients Have an Increased Frequency of IFN-γ-Producing CD5+ B Cells, Which Respond Efficiently to Mycobacterial Proteins. Pathogens 2023; 12:818. [PMID: 37375508 DOI: 10.3390/pathogens12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Tuberculosis (TB) remains a public health problem worldwide and is one of the deadliest infectious diseases, only after the current COVID-19 pandemic. Despite significant advances in the TB field, there needs to be more immune response comprehension; for instance, the role played by humoral immunity is still controversial. This study aimed to identify the frequency and function of B1 and immature/transitional B cells in patients with active and latent TB (ATB and LTB, respectively). Here we show that LTB patients have an increased frequency of CD5+ B cells and decreased CD10+ B cells. Furthermore, LTB patients stimulated with mycobacteria's antigens increase the frequency of IFN-γ-producing B cells, whereas cells from ATB do not respond. Moreover, under the mycobacterial protein stimulus, LTB promotes a pro-inflammatory environment characterized by a high level of IFN-γ but also can produce IL-10. Regarding the ATB group, they cannot produce IFN-γ, and mycobacterial lipids and proteins stimulate only the IL-10 production. Finally, our data showed that in ATB, but not in LTB, B cell subsets correlate with clinical and laboratory parameters, suggesting that these CD5+ and CD10+ B cell subpopulations have the potential to be biomarkers to differentiate between LTB and ATB. In conclusion, LTB has increased CD5+ B cells, and these cells can maintain a rich microenvironment of IFN-γ, IL-10, and IL-4. In contrast, ATB only maintains an anti-inflammatory environment when stimulated with mycobacterial proteins or lipids.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Lucero A Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Jesus Romero-Tendilla
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| |
Collapse
|
3
|
The safety and immunogenicity of inactivated COVID-19 vaccine in old pulmonary tuberculosis patients. Eur J Clin Microbiol Infect Dis 2023; 42:503-512. [PMID: 36849838 PMCID: PMC9970849 DOI: 10.1007/s10096-023-04566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
The immunogenicity and safety of vaccines against coronavirus disease 2019 (COVID-19) remain unknown in patients with a history of pulmonary tuberculosis (OPTB). Therefore, the safety and effectiveness of inactivated vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were assessed in patients with a history of PTB. The study cohort included 106 healthy controls and 93 adult patients with OPTB who received a two-dose vaccination. The study period was 21 to 105 days. Concentrations of antibodies (Abs) against receptor-binding domain (RBD) IgG and SARS-CoV-2 neutralizing Abs (NAbs) were measured, in addition to the frequencies of SARS-CoV-2-specific B and a portion T cells. The incidence of adverse events was similar between the OPTB patients and healthy controls. No severe adverse events occurred. Concentrations of Abs against RBD-IgG and CoV-2 neutralizing Abs in addition to the frequencies of RBD-specific memory B cells proportions were lower in OPTB patients than the healthy controls (all, p < 0.05), while the frequencies of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4+) cells were higher (p = 0.023). There was no obvious correlation between age and blood concentrations of Abs against RBD-IgG and CoV-2 neutralizing Abs, while immune responses were similar in the fibrosis and calcification groups. The period of time following full-course vaccination and lymphocyte counts were associated to anti-RBD-IgG responses. Inactivated COVID-19 vaccinations were well tolerated in OPTB patients, although immunogenicity was limited in this population. This study has been registered at ClinicalTrials.gov (NCT05043246).
Collapse
|
4
|
Chen L, Liu C, Liang T, Ye Z, Huang S, Chen J, Sun X, Yi M, Zhou C, Jiang J, Chen T, Li H, Chen W, Guo H, Chen W, Yao Y, Liao S, Yu C, Wu S, Fan B, Gan Z, Zhan X. Mechanism of COVID-19-Related Proteins in Spinal Tuberculosis: Immune Dysregulation. Front Immunol 2022; 13:882651. [PMID: 35720320 PMCID: PMC9202521 DOI: 10.3389/fimmu.2022.882651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this article was to investigate the mechanism of immune dysregulation of COVID-19-related proteins in spinal tuberculosis (STB). Methods Clinical data were collected to construct a nomogram model. C-index, calibration curve, ROC curve, and DCA curve were used to assess the predictive ability and accuracy of the model. Additionally, 10 intervertebral disc samples were collected for protein identification. Bioinformatics was used to analyze differentially expressed proteins (DEPs), including immune cells analysis, Gene Ontology (GO) and KEGG pathway enrichment analysis, and protein-protein interaction networks (PPI). Results The nomogram predicted risk of STB ranging from 0.01 to 0.994. The C-index and AUC in the training set were 0.872 and 0.862, respectively. The results in the external validation set were consistent with the training set. Immune cells scores indicated that B cells naive in STB tissues were significantly lower than non-TB spinal tissues. Hub proteins were calculated by Degree, Closeness, and MCC methods. The main KEGG pathway included Coronavirus disease-COVID-19. There were 9 key proteins in the intersection of COVID-19-related proteins and hub proteins. There was a negative correlation between B cells naive and RPL19. COVID-19-related proteins were associated with immune genes. Conclusion Lymphocytes were predictive factors for the diagnosis of STB. Immune cells showed low expression in STB. Nine COVID-19-related proteins were involved in STB mechanisms. These nine key proteins may suppress the immune mechanism of STB by regulating the expression of immune genes.
Collapse
Affiliation(s)
- Liyi Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chong Liu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Tuo Liang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Zhen Ye
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shengsheng Huang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jiarui Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Xuhua Sun
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Ming Yi
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chenxing Zhou
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jie Jiang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Tianyou Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Hao Li
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Wuhua Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Hao Guo
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Wenkang Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yuanlin Yao
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shian Liao
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chaojie Yu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shaofeng Wu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Binguang Fan
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Zhaoping Gan
- Department of Hematology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Xinli Zhan
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| |
Collapse
|
5
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
6
|
Rijnink WF, Ottenhoff THM, Joosten SA. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front Immunol 2021; 12:640168. [PMID: 33679802 PMCID: PMC7930078 DOI: 10.3389/fimmu.2021.640168] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is still a major threat to mankind, urgently requiring improved vaccination and therapeutic strategies to reduce TB-disease burden. Most present vaccination strategies mainly aim to induce cell-mediated immunity (CMI), yet a series of independent studies has shown that B-cells and antibodies (Abs) may contribute significantly to reduce the mycobacterial burden. Although early studies using B-cell knock out animals did not support a major role for B-cells, more recent studies have provided new evidence that B-cells and Abs can contribute significantly to host defense against Mtb. B-cells and Abs exist in many different functional subsets, each equipped with unique functional properties. In this review, we will summarize current evidence on the contribution of B-cells and Abs to immunity toward Mtb, their potential utility as biomarkers, and their functional contribution to Mtb control.
Collapse
Affiliation(s)
- Willemijn F Rijnink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Choreño-Parra JA, Weinstein LI, Yunis EJ, Zúñiga J, Hernández-Pando R. Thinking Outside the Box: Innate- and B Cell-Memory Responses as Novel Protective Mechanisms Against Tuberculosis. Front Immunol 2020; 11:226. [PMID: 32117325 PMCID: PMC7034257 DOI: 10.3389/fimmu.2020.00226] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/28/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is currently the deadliest infectious disease worldwide. Failure to create a highly effective vaccine has limited the control of the TB epidemic. Historically, the vaccine field has relied on the paradigm that IFN-γ-mediated CD4+ T cell memory responses are the principal correlate of protection in TB. Nonetheless, the demonstration that other cellular subsets offer protective memory responses against Mycobacterium tuberculosis (Mtb) is emerging. Among these are memory-like features of macrophages, myeloid cell precursors, natural killer (NK) cells, and innate lymphoid cells (ILCs). Additionally, the dynamics of B cell memory responses have been recently characterized at different stages of the clinical spectrum of Mtb infection, suggesting a role for B cells in human TB. A better understanding of the immune mechanisms underlying such responses is crucial to better comprehend protective immunity in TB. Furthermore, targeting immune compartments other than CD4+ T cells in TB vaccine strategies may benefit a significant proportion of patients co-infected with Mtb and the human immunodeficiency virus (HIV). Here, we summarize the memory responses of innate immune cells and B cells against Mtb and propose them as novel correlates of protection that could be harnessed in future vaccine development programs.
Collapse
Affiliation(s)
- José Alberto Choreño-Parra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - León Islas Weinstein
- Section of Experimental Pathology, Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Edmond J Yunis
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Section of Experimental Pathology, Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
8
|
Lyashchenko KP, Vordermeier HM, Waters WR. Memory B cells and tuberculosis. Vet Immunol Immunopathol 2020; 221:110016. [PMID: 32050091 DOI: 10.1016/j.vetimm.2020.110016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/30/2019] [Accepted: 01/29/2020] [Indexed: 02/09/2023]
Abstract
Immunological memory is a central feature of adaptive immunity. Memory B cells are generated upon stimulation with antigen presented by follicular dendritic cells in the peripheral lymphoid tissues. This process typically involves class-switch recombination and somatic hypermutation and it can be dependent or independent on germinal centers or T cell help. The mature B cell memory pool is generally characterized by remarkable heterogeneity of functionally and phenotypically distinct sub-populations supporting multi-layer immune plasticity. Memory B cells found in human patients infected with Mycobacterium tuberculosis include IgD+ CD27+ and IgM+ CD27+ subsets. In addition, expansion of atypical memory B cells characterized by the lack of CD27 expression and by inability to respond to antigen-induced re-activation is documented in human tuberculosis. These functionally impaired memory B cells are believed to have adverse effects on host immunity. Human and animal studies demonstrate recruitment of antigen-activated B cells to the infection sites and their presence in lung granulomas where proliferating B cells are organized into discrete clusters resembling germinal centers of secondary lymphoid organs. Cattle studies show development of IgM+, IgG+, and IgA+ memory B cells in M. bovis infection with the ability to rapidly differentiate into antibody-producing plasma cells upon antigen re-exposure. This review discusses recent advances in research on generation, re-activation, heterogeneity, and immunobiological functions of memory B cells in tuberculosis. The role of memory B cells in post-skin test recall antibody responses in bovine tuberculosis and implications for development of improved immunodiagnostics are also reviewed.
Collapse
Affiliation(s)
| | - H Martin Vordermeier
- Tuberculosis Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom; Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - W Ray Waters
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA
| |
Collapse
|
9
|
Abstract
Tuberculosis (TB) is a major issue in global health and affects millions of people each year. Multidrug-resistant tuberculosis (MDR-TB) annually causes many deaths worldwide. Development of a way to diagnose and treat patients with MDR-TB can potentially reduce the incidence of the disease. The current study reviews the risk factors, pattern of progression, mechanism of resistance, and interaction between bacteria and the host immune system, which disrupts the immune response. It also targets the components of Mycobacterium tuberculosis (Mtb) and diagnosis and treatment options that could be available for clinical use in the near future. Mutations play an important role in development of MDR-TB and the selection of appropriate mutations can help to understand the type of resistance in patients to anti-TB drugs. In this way, they can be initially treated with proper and effective therapeutic choices, which can accelerate the course of treatment and improve patient health. Targeting the components and enzymes of Mtb is necessary for understanding bacterial survival and finding a way to destroy the pathogen and allow patients to recover faster and prevent the spread of disease, especially resistant strains.
Collapse
Affiliation(s)
- Majid Faridgohar
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Dyatlov AV, Apt AS, Linge IA. B lymphocytes in anti-mycobacterial immune responses: Pathogenesis or protection? Tuberculosis (Edinb) 2018; 114:1-8. [PMID: 30711147 DOI: 10.1016/j.tube.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
The role of B cells and antibodies in tuberculosis (TB) immunity, protection and pathogenesis remain contradictory. The presence of organized B cell follicles close to active TB lesions in the lung tissue raises the question about the role of these cells in local host-pathogen interactions. In this short review, we summarize the state of our knowledge concerning phenotypes of B cells populating tuberculous lungs, their secretory activity, interactions with other immune cells and possible involvement in protective vs. pathogenic TB immunity.
Collapse
Affiliation(s)
- Alexander V Dyatlov
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander S Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia; Department of Immunology, School of Biology, M. V. Lomonosov Moscow State University, Russia.
| | - Irina A Linge
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
11
|
Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, Schurr E, Wallis RS, Churchyard G, Mayanja-Kizza H, Boom WH, Hawn TR. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol 2018; 18:575-589. [PMID: 29895826 PMCID: PMC6278832 DOI: 10.1038/s41577-018-0025-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis is a leading cause of mortality worldwide and establishes a long-lived latent infection in a substantial proportion of the human population. Multiple lines of evidence suggest that some individuals are resistant to latent M. tuberculosis infection despite long-term and intense exposure, and we term these individuals 'resisters'. In this Review, we discuss the epidemiological and genetic data that support the existence of resisters and propose criteria to optimally define and characterize the resister phenotype. We review recent insights into the immune mechanisms of M. tuberculosis clearance, including responses mediated by macrophages, T cells and B cells. Understanding the cellular mechanisms that underlie resistance to M. tuberculosis infection may reveal immune correlates of protection that could be utilized for improved diagnostics, vaccine development and novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Jason D Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Monica Campo
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Robert S Wallis
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Aurum Institute, Parktown, South Africa
| | | | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Morais-Papini TF, Coelho-dos-Reis JGA, Wendling APB, do Vale Antonelli LR, Wowk PF, Bonato VLD, Augusto VM, Elói-Santos S, Martins-Filho OA, Carneiro CM, Teixeira-Carvalho A. Systemic Immunological changes in patients with distinct clinical outcomes during Mycobacterium tuberculosis infection. Immunobiology 2017; 222:1014-1024. [DOI: 10.1016/j.imbio.2017.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 02/01/2023]
|
13
|
Zimmermann N, Thormann V, Hu B, Köhler AB, Imai-Matsushima A, Locht C, Arnett E, Schlesinger LS, Zoller T, Schürmann M, Kaufmann SH, Wardemann H. Human isotype-dependent inhibitory antibody responses against Mycobacterium tuberculosis. EMBO Mol Med 2016; 8:1325-1339. [PMID: 27729388 PMCID: PMC5090662 DOI: 10.15252/emmm.201606330] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence from experimental animal models suggests that antibodies play a protective role against tuberculosis (TB). However, little is known about the antibodies generated upon Mycobacterium tuberculosis (MTB) exposure in humans. Here, we performed a molecular and functional characterization of the human B‐cell response to MTB by generating recombinant monoclonal antibodies from single isolated B cells of untreated adult patients with acute pulmonary TB and from MTB‐exposed healthcare workers. The data suggest that the acute plasmablast response to MTB originates from reactivated memory B cells and indicates a mucosal origin. Through functional analyses, we identified MTB inhibitory antibodies against mycobacterial antigens including virulence factors that play important roles in host cell infection. The inhibitory activity of anti‐MTB antibodies was directly linked to their isotype. Monoclonal as well as purified serum IgA antibodies showed MTB blocking activity independently of Fc alpha receptor expression, whereas IgG antibodies promoted the host cell infection. Together, the data provide molecular insights into the human antibody response to MTB and may thereby facilitate the design of protective vaccination strategies.
Collapse
Affiliation(s)
- Natalie Zimmermann
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Verena Thormann
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bo Hu
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anne-Britta Köhler
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Camille Locht
- U1019 - UMR 8204 - CIIL - Centre for Infection and Immunity of Lille, University of Lille, Lille, France.,CNRS, UMR 8204, Lille, France.,Inserm, U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Eusondia Arnett
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Thomas Zoller
- Department of Infectious Diseases and Respiratory Medicine, Charité University Medical Center, Berlin, Germany
| | - Mariana Schürmann
- Department of Infectious Diseases and Respiratory Medicine, Charité University Medical Center, Berlin, Germany
| | - Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hedda Wardemann
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany .,B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
14
|
du Plessis WJ, Keyser A, Walzl G, Loxton AG. Phenotypic analysis of peripheral B cell populations during Mycobacterium tuberculosis infection and disease. JOURNAL OF INFLAMMATION-LONDON 2016; 13:23. [PMID: 27478412 PMCID: PMC4966581 DOI: 10.1186/s12950-016-0133-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/22/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) remains an unresolved threat resulting in great annual loss of life. The role of B cells during the protective immunity to Mtb is still unclear. B cells have been described as effector cells in addition to their role as antibody producing cells during disease. Here we aim to identify and characterize the frequency of peripheral B-cell subpopulations during active Tuberculosis and over treatment response. Analysis were done for both class switched (CS) and non-class switched (NCS) phenotypes. METHODS We recruited participants with active untreated pulmonary Tuberculosis, other lung diseases and healthy community controls. All groups were followed up for one week from recruitment and the TB cases till the end of treatment (month 6). RESULTS Peripheral blood samples were collected, stained with monoclonal antibodies to CD19(+) cells, Immunoglobulin (Ig) M, plasma cells (CD 138(+)), marker of memory (CD27(+)), immune activation (CD23(+)) and acquired on a flow cytometer. Circulating Marginal zone B cells (CD19(+)IgM(+)CD23(-)CD27(+)) and memory phenotypes are able to distinguish between TB diagnosis and end of treatment. The frequency of mature B cells from TB cases are lower than that of other-lung diseases at diagnosis. A subpopulation of activated memory B cells (CD19(+)IgM(+)CD23(+)CD27(+)) cells are present at the end of TB treatment. CONCLUSIONS This study identified distinctive B cell subpopulations present during active TB disease and other lung disease conditions. These cell populations warrants further examination in larger studies as it may be informative as cell markers or as effectors/regulators in TB disease or TB treatment response.
Collapse
Affiliation(s)
- Willem J du Plessis
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| | - Alana Keyser
- Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gerhard Walzl
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| | - André G Loxton
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000 South Africa
| |
Collapse
|
15
|
Joosten SA, van Meijgaarden KE, del Nonno F, Baiocchini A, Petrone L, Vanini V, Smits HH, Palmieri F, Goletti D, Ottenhoff THM. Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment. PLoS Pathog 2016; 12:e1005687. [PMID: 27304615 PMCID: PMC4909319 DOI: 10.1371/journal.ppat.1005687] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 01/24/2023] Open
Abstract
B-cells not only produce immunoglobulins and present antigens to T-cells, but also additional key roles in the immune system. Current knowledge on the role of B-cells in infections caused by intracellular bacteria is fragmentary and contradictory. We therefore analysed the phenotypical and functional properties of B-cells during infection and disease caused by Mycobacterium tuberculosis (Mtb), the bacillus causing tuberculosis (TB), and included individuals with latent TB infection (LTBI), active TB, individuals treated successfully for TB, and healthy controls. Patients with active or treated TB disease had an increased proportion of antibodies reactive with mycobacteria. Patients with active TB had reduced circulating B-cell frequencies, whereas only minor increases in B-cells were detected in the lungs of individuals deceased from TB. Both active TB patients and individuals with LTBI had increased relative fractions of B-cells with an atypical phenotype. Importantly, these B-cells displayed impaired proliferation, immunoglobulin- and cytokine- production. These defects disappeared upon successful treatment. Moreover, T-cell activity was strongest in individuals successfully treated for TB, compared to active TB patients and LTBI subjects, and was dependent on the presence of functionally competent B-cells as shown by cellular depletion experiments. Thus, our results reveal that general B-cell function is impaired during active TB and LTBI, and that this B-cell dysfunction compromises cellular host immunity during Mtb infection. These new insights may provide novel strategies for correcting Mtb infection-induced immune dysfunction towards restored protective immunity. In infections with intracellular pathogens like Mycobacterium tuberculosis (Mtb), B-cells have long been ignored as their primary product, immunoglobulins, are unlikely to recognize intracellular bacteria. However, we have analysed here the frequency, phenotype and function of B-cells in tuberculosis (TB) infection and disease. Our data revealed that during active TB disease B-cell numbers are decreased and remaining B-cells are functionally impaired. Surprisingly, also individuals recently infected with Mtb suffered from poorly functional B-cells, but patients cured from the disease recovered with normal B-cell numbers and function. Thus, B-cell dysfunction contributes to impaired immune activation during Mtb infection.
Collapse
Affiliation(s)
- Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | | | - Franca del Nonno
- Pathology Service, National Institute for Infectious Diseases, Rome, Italy
| | - Andrea Baiocchini
- Pathology Service, National Institute for Infectious Diseases, Rome, Italy
| | - Linda Petrone
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | - Valentina Vanini
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabrizio Palmieri
- Clinical Department, National Institute for Infectious Diseases, Rome, Italy
| | - Delia Goletti
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|