1
|
Singh J, Valdés‐López O. Discovering the genetic modules controlling root nodule symbiosis under abiotic stresses: salinity as a case study. THE NEW PHYTOLOGIST 2023; 237:1082-1085. [PMID: 36401792 PMCID: PMC10107258 DOI: 10.1111/nph.18627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Legumes form a symbiotic association with rhizobia and fix atmospheric nitrogen in specialized root organs known as nodules. It is well known that salt stress inhibits root nodule symbiosis by decreasing rhizobial growth, rhizobial infection, nodule number, and nitrogenase activity in diverse legumes. Despite this knowledge, the genetic and molecular mechanisms governing salt stress's inhibition of nodulation and nitrogen fixation are still elusive. In this Viewpoint, we summarize the most recent knowledge of the genetic mechanisms that shape this symbiosis according to the salt levels in the soil. We emphasize the relevance of modulating the activity of the transcription factor Nodule Inception to properly shape the symbiosis with rhizobia accordingly. We also highlight the knowledge gaps that are critical for gaining a deeper understanding of the molecular mechanisms underlying the adaptation of the root nodule symbiosis to salt-stress conditions. We consider that filling these gaps can help to improve legume nodulation and harness its ecological benefits even under salt-stress conditions.
Collapse
Affiliation(s)
- Jawahar Singh
- Facultad de Estudios Superiores Iztacala, Laboratorio de Genómica Funcional de LeguminosasUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de México54090Mexico
| | - Oswaldo Valdés‐López
- Facultad de Estudios Superiores Iztacala, Laboratorio de Genómica Funcional de LeguminosasUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de México54090Mexico
| |
Collapse
|
2
|
Fan K, Sze CC, Li MW, Lam HM. Roles of non-coding RNAs in the hormonal and nutritional regulation in nodulation and nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2022; 13:997037. [PMID: 36330261 PMCID: PMC9623164 DOI: 10.3389/fpls.2022.997037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important component in the nitrogen cycle and is a potential solution for sustainable agriculture. It is the result of the interactions between the plant host, mostly restricted to legume species, and the rhizobial symbiont. From the first encounter between the host and the symbiont to eventual successful nitrogen fixation, there are delicate processes involved, such as nodule organogenesis, rhizobial infection thread progression, differentiation of the bacteroid, deregulation of the host defense systems, and reallocation of resources. All these processes are tightly regulated at different levels. Recent evidence revealed that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in these processes by controlling the transcription and translation of effector genes. In general, ncRNAs are functional transcripts without translation potential and are important gene regulators. MiRNAs, negative gene regulators, bind to the target mRNAs and repress protein production by causing the cleavage of mRNA and translational silencing. LncRNAs affect the formation of chromosomal loops, DNA methylation, histone modification, and alternative splicing to modulate gene expression. Both lncRNAs and circRNAs could serve as target mimics of miRNA to inhibit miRNA functions. In this review, we summarized and discussed the current understanding of the roles of ncRNAs in legume nodulation and nitrogen fixation in the root nodule, mainly focusing on their regulation of hormone signal transduction, the autoregulation of nodulation (AON) pathway and nutrient homeostasis in nodules. Unraveling the mediation of legume nodulation by ncRNAs will give us new insights into designing higher-performance leguminous crops for sustainable agriculture.
Collapse
|
3
|
Yang Z, Du H, Sun J, Xing X, Kong Y, Li W, Li X, Zhang C. A Nodule-Localized Small Heat Shock Protein GmHSP17.1 Confers Nodule Development and Nitrogen Fixation in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:838718. [PMID: 35356122 PMCID: PMC8959767 DOI: 10.3389/fpls.2022.838718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Small heat shock proteins (sHSPs) are ubiquitous proteins present in all organisms. The sHSPs are not only upregulated under heat shock as well as other stresses but also are expressed in unstressed cells, indicating quite diverse functions of sHSPs. However, there is little known about the role of sHSPs in nodulation and nitrogen fixation in soybean. In this study, we cloned a candidate protein of sHSP, GmHSP17.1, from proteome of nodule and analyzed its function in soybean nodulation. We found that GmHSP17.1 was a cytosolic protein and preferentially expressed during nodule development. An overexpression of GmHSP17.1 in composite transgenic plants showed increases in nodule number, fresh weight, nodule size, area of infection cells, and nitrogenase activity, and subsequently promoted the content of nitrogen and growth of soybean plants. While GmHSP17.1 RNA interference (RNAi) lines showed significantly impaired nodule development and nitrogen fixation efficiency. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS), GmRIP1 was identified as the first potential target of GmHSP17.1, and was shown to be specifically expressed in soybean nodules. The interaction between GmHSP17.1 and GmRIP1 was further confirmed by yeast-two hybrid (Y2H), bimolecular fluorescence complementation (BiFC) in vivo and pull-down assay in vitro. Furthermore, peroxidase activity was markedly increased in GmHSP17.1 overexpressed nodules and decreased in RNAi lines. As a result, the reactive oxygen species (ROS) content greatly decreased in GmHSP17.1 overexpression lines and increased in suppression lines. Taken together, we conclude that GmHSP17.1 plays an important role in soybean nodulation through interacting with GmRIP1. Our results provide foundation for studying the mechanism of nitrogen fixation and for the genetics improvement of legume plants.
Collapse
Affiliation(s)
- Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jingyi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Kafle A, Frank HER, Rose BD, Garcia K. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1288-1300. [PMID: 34791191 DOI: 10.1093/jxb/erab489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Most land plants symbiotically interact with soil-borne fungi to ensure nutrient acquisition and tolerance to various environmental stressors. Among these symbioses, arbuscular mycorrhizal and ectomycorrhizal associations can be found in a large proportion of plants, including many crops. Split-root assays are widely used in plant research to study local and systemic signaling responses triggered by local treatments, including nutrient availability, interaction with soil microbes, or abiotic stresses. However, split-root approaches have only been occasionally used to tackle these questions with regard to mycorrhizal symbioses. This review compiles and discusses split-root assays developed to study arbuscular mycorrhizal and ectomycorrhizal symbioses, with a particular emphasis on colonization by multiple beneficial symbionts, systemic resistance induced by mycorrhizal fungi, water and nutrient transport from fungi to colonized plants, and host photosynthate allocation from the host to fungal symbionts. In addition, we highlight how the use of split-root assays could result in a better understanding of mycorrhizal symbioses, particularly for a broader range of essential nutrients, and for multipartite interactions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hannah E R Frank
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Thilakarathna MS, Cope KR. Split-root assays for studying legume-rhizobia symbioses, rhizodeposition, and belowground nitrogen transfer in legumes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5285-5299. [PMID: 33954584 DOI: 10.1093/jxb/erab198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Split-root assays have been used widely in studies focused on understanding the complex regulatory mechanisms in legume-rhizobia symbioses, root nitrogen rhizodeposition, and belowground nitrogen transfer, and the effects of different biotic/abiotic factors on this symbiotic interaction. This assay allows a plant to have a root system that is physically divided into two distinct sections that are both still attached to a common shoot. Thus, each root section can be treated separately to monitor local and systemic plant responses. Different techniques are used to establish split-root assemblies, including double-pot systems, divided growth pouches, elbow root assembly, twin-tube systems, a single pot or chamber with a partition in the center, and divided agar plates. This review is focused on discussing the various types of split-root assays currently used in legume-based studies, and their associated advantages and limitations. Furthermore, this review also focuses on how split-root assays have been used for studies on nitrogen rhizodeposition, belowground nitrogen transfer, systemic regulation of nodulation, and biotic and abiotic factors affecting legume-rhizobia symbioses.
Collapse
Affiliation(s)
- Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kevin R Cope
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
6
|
Saiz-Fernández I, Černý M, Skalák J, Brzobohatý B. Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level. PLANT METHODS 2021; 17:7. [PMID: 33422104 PMCID: PMC7797125 DOI: 10.1186/s13007-020-00706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Split-root systems (SRS) have many applications in plant sciences, but their implementation, depending on the experimental design, can be difficult and time-consuming. Additionally, the system is not exempt from limitations, since the time required for the establishment of the SRS imposes a limit to how early in plant development experiments can be performed. Here, we optimized and explained in detail a method for establishing a SRS in young Arabidopsis thaliana seedlings, both in vitro and in soil. RESULTS We found that the partial de-rooting minimized the recovery time compared to total de-rooting, thus allowing the establishment of the split-root system in younger plants. Analysis of changes in the Arabidopsis leaf proteome following the de-rooting procedure highlighted the distinct metabolic alterations that totally and partially de-rooted plants undergo during the healing process. This system was also validated for its use in drought experiments, as it offers a way to apply water-soluble compounds to plants subjected to drought stress. By growing plants in a split-root system with both halves being water-deprived, it is possible to apply the required compound to one half of the root system, which can be cut from the main plant once the compound has been absorbed, thus minimizing rehydration and maintaining drought conditions. CONCLUSIONS Partial de-rooting is the suggested method for obtaining split-root systems in small plants like Arabidopsis thaliana, as growth parameters, survival rate, and proteomic analysis suggest that is a less stressful procedure than total de-rooting, leading to a final rosette area much closer to that of uncut plants. Additionally, we provide evidence that split root-systems can be used in drought experiments where water-soluble compounds are applied with minimal effects of rehydration.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- Functional Genomics & Proteomics of Plants, CEITEC MU, Central European Institute of Technology, Kamenice 5, 625 00, Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
7
|
Isidra-Arellano MC, Pozas-Rodríguez EA, Del Rocío Reyero-Saavedra M, Arroyo-Canales J, Ferrer-Orgaz S, Del Socorro Sánchez-Correa M, Cardenas L, Covarrubias AA, Valdés-López O. Inhibition of legume nodulation by Pi deficiency is dependent on the autoregulation of nodulation (AON) pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1125-1139. [PMID: 32344464 DOI: 10.1111/tpj.14789] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 05/26/2023]
Abstract
Inhibition of nodule development is one of the main adverse effects of phosphate (Pi) deficiency in legumes. Despite all of the efforts made over the last decades to understand how root nodules cope with Pi deficiency, the molecular mechanisms leading to the reduction in nodule number under Pi deficiency remain elusive. In the present study, we provide experimental evidence indicating that Pi deficiency activates the autoregulation of nodulation (AON) pathway, leading to a reduction in nodule numbers in both common bean and soybean. A transcriptional profile analysis revealed that the expression of the AON-related genes PvNIN, PvRIC1, PvRIC2, and PvTML is upregulated under Pi deficiency conditions. The downregulation of the MYB transcription factor PvPHR1 in common bean roots significantly reduced the expression of these four AON-related genes. Physiological analyses indicated that Pi deficiency does not affect the establishment of the root nodule symbiosis in the supernodulation mutant lines Pvnark and Gmnark. Reciprocal grafting and split-roots analyses determined that the activation of the AON pathway was required for the inhibitory effect of Pi deficiency. Altogether, these data improve our understanding of the genetic mechanisms controlling the establishment of the root nodule symbiosis under Pi deficiency.
Collapse
Affiliation(s)
- Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autonoma de Mexico, Coyoacan, Mexico City, 04510, Mexico
| | - Eithan A Pozas-Rodríguez
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - María Del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - Jazmin Arroyo-Canales
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - Susana Ferrer-Orgaz
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - María Del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| | - Luis Cardenas
- Departamento de Biologia Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biologia Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, 62210, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, 54090, México
| |
Collapse
|
8
|
Wang L, Sun Z, Su C, Wang Y, Yan Q, Chen J, Ott T, Li X. A GmNINa-miR172c-NNC1 Regulatory Network Coordinates the Nodulation and Autoregulation of Nodulation Pathways in Soybean. MOLECULAR PLANT 2019; 12:1211-1226. [PMID: 31201867 DOI: 10.1016/j.molp.2019.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 05/25/2023]
Abstract
Symbiotic root nodules are root lateral organs of plants in which nitrogen-fixing bacteria (rhizobia) convert atmospheric nitrogen to ammonia. The formation and number of nodules in legumes are precisely controlled by a rhizobia-induced signal cascade and host-controlled autoregulation of nodulation (AON). However, how these pathways are integrated and their underlying mechanisms are unclear. Here, we report that microRNA172c (miR172c) activates soybean (Glycine max) Rhizobia-Induced CLE1 (GmRIC1) and GmRIC2 by removing the transcriptional repression of these genes by Nodule Number Control 1 (NNC1), leading to the activation of the AON pathway. NNC1 interacts with GmNINa, the soybean ortholog of Lotus NODULE INCEPTION (NIN), and hampers its transcriptional activation of GmRIC1 and GmRIC2. Importantly, GmNINa acts as a transcriptional activator of miR172c. Intriguingly, NNC1 can transcriptionally repress miR172c expression, adding a negative feedback loop into the NNC1 regulatory network. Moreover, GmNINa interacts with NNC1 and can relieve the NNC1-mediated repression of miR172c transcription. Thus, the GmNINa-miR172c-NNC1 network is a master switch that coordinately regulates and optimizes NF and AON signaling, supporting the balance between nodulation and AON in soybean.
Collapse
Affiliation(s)
- Lixiang Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China; College of Biological Science and Engineering, Panzhihua University, No. 10 Airport Road, Eastern District, Panzhihua, Sichuan, China
| | - Zhengxi Sun
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China
| | - Chao Su
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China; University of Freiburg, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yongliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China
| | - Qiqi Yan
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China
| | - Jiahuan Chen
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, Hubei 430070, P.R. China.
| |
Collapse
|
9
|
Miri M, Janakirama P, Huebert T, Ross L, McDowell T, Orosz K, Markmann K, Szczyglowski K. Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti. THE NEW PHYTOLOGIST 2019; 222:1523-1537. [PMID: 30636324 DOI: 10.1111/nph.15683] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/03/2019] [Indexed: 05/27/2023]
Abstract
During Lotus japonicus-Mesorhizobium loti symbiosis, the LOTUS HISTIDINE KINASE1 (LHK1) cytokinin receptor regulates both the initiation of nodule formation and the scope of root infection. However, the exact spatiotemporal mechanism by which this receptor exerts its symbiotic functions has remained elusive. In this study, we performed cell type-specific complementation experiments in the hyperinfected lhk1-1 mutant background, targeting LHK1 to either the root epidermis or the root cortex. We also utilized various genetic backgrounds to characterize expression of several genes regulating symbiotic infection. We show here that expression of LHK1 in the root cortex is required and sufficient to regulate both nodule formation and epidermal infections. The LHK1-dependent signalling that restricts subsequent infection events is triggered before initial cell divisions for nodule primordium formation. We also demonstrate that AHK4, the Arabidopsis orthologue of LHK1, is able to regulate M. loti infection in L. japonicus, suggesting that an endogenous cytokinin receptor could be sufficient for engineering nitrogen-fixing root nodule symbiosis in nonlegumes. Our data provide experimental evidence for the existence of an LHK1-dependent root cortex-to-epidermis feedback mechanism regulating rhizobial infection. This root-localized regulatory module functionally links with the systemic autoregulation of nodulation (AON) to maintain the homeostasis of symbiotic infection.
Collapse
Affiliation(s)
- Mandana Miri
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5BF, Canada
| | - Preetam Janakirama
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Terry Huebert
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Loretta Ross
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Tim McDowell
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Kathleen Orosz
- Fanshawe College, 1001 Fanshawe College Boulevard, London, ON, N5Y 5R6, Canada
| | - Katharina Markmann
- The Center for Plant Molecular Biology, Tübingen University, 72076, Tübingen, Germany
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5BF, Canada
| |
Collapse
|
10
|
Nishida H, Suzaki T. Two Negative Regulatory Systems of Root Nodule Symbiosis: How Are Symbiotic Benefits and Costs Balanced? PLANT & CELL PHYSIOLOGY 2018; 59:1733-1738. [PMID: 29860446 DOI: 10.1093/pcp/pcy102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/16/2018] [Indexed: 05/21/2023]
Abstract
Root nodule symbiosis is one of the best characterized mutualistic relationships of plant-microbe symbiosis, where mainly leguminous species can obtain nitrogen sources fixed by nitrogen-fixing rhizobia through the formation of symbiotic organ root nodules. In order to drive this symbiotic process, plants need to provide carbon sources that should be used for their growth. Therefore, a balance between the benefits of obtaining nitrogen sources and the costs of losing carbon sources needs to be maintained during root nodule symbiosis. Plants have developed at least two negative regulatory systems of root nodule symbiosis. One strategy involves the regulation of nodule number in response to rhizobial infection. For this regulation, a systemic long-range signaling between roots and shoots called autoregulation of nodulation has a pivotal role. Another strategy involves the regulation of root nodule symbiosis in response to nitrate, the most abundant form of nitrogen nutrients in the soil. Recent studies indicate that long-distance signaling is shared between the two strategies, where NIN and NRSYM1, two paralogous RWP-RK transcription factors, can activate the production of nodulation-related CLE peptides in response to different inputs. Here, we provide an overview of such progress in our understanding of molecular mechanisms relevant to the control of the symbiotic balance, including their biological significance.
Collapse
Affiliation(s)
- Hanna Nishida
- National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Azarakhsh M, Lebedeva MA, Lutova LA. Identification and Expression Analysis of Medicago truncatula Isopentenyl Transferase Genes ( IPTs) Involved in Local and Systemic Control of Nodulation. FRONTIERS IN PLANT SCIENCE 2018; 9:304. [PMID: 29593763 PMCID: PMC5855100 DOI: 10.3389/fpls.2018.00304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/22/2018] [Indexed: 05/26/2023]
Abstract
Cytokinins are essential for legume plants to establish a nitrogen-fixing symbiosis with rhizobia. Recently, the expression level of cytokinin biosynthesis IPTs (ISOPENTENYLTRANSFERASES) genes was shown to be increased in response to rhizobial inoculation in Lotus japonicus, Medicago truncatula and Pisum sativum. In addition to its well-established positive role in nodule primordium initiation in root cortex, cytokinin negatively regulates infection processes in the epidermis. Moreover, it was reported that shoot-derived cytokinin inhibits the subsequent nodule formation through AON (autoregulation of nodulation) pathway. In L. japonicus, LjIPT3 gene was shown to be activated in the shoot phloem via the components of AON system, negatively affecting nodulation. However, in M. truncatula, the detailed analysis of MtIPTs expression, both in roots and shoots, in response to nodulation has not been performed yet, and the link between IPTs and AON has not been studied so far. In this study, we performed an extensive analysis of MtIPTs expression levels in different organs, focusing on the possible role of MtIPTs in nodule development. MtIPTs expression dynamics in inoculated roots suggest that besides its early established role in the nodule primordia development, cytokinin may be also important for later stages of nodulation. According to expression analysis, MtIPT3, MtIPT4, and MtIPT5 are activated in the shoots in response to inoculation. Among these genes, MtIPT3 is the only one the induction of which was not observed in leaves of the sunn-3 mutant defective in CLV1-like kinase, the key component of AON, suggesting that MtIPT3 is activated in the shoots in an AON-dependent manner. Taken together, our findings suggest that MtIPTs are involved in the nodule development at different stages, both locally in inoculated roots and systemically in shoots, where their expression can be activated in an AON-dependent manner.
Collapse
|
12
|
Batstone RT, Dutton EM, Wang D, Yang M, Frederickson ME. The evolution of symbiont preference traits in the model legume Medicago truncatula. THE NEW PHYTOLOGIST 2017; 213:1850-1861. [PMID: 27864973 DOI: 10.1111/nph.14308] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/23/2016] [Indexed: 05/25/2023]
Abstract
Many hosts preferentially associate with or reward better symbionts, but how these symbiont preference traits evolve is an open question. Legumes often form more nodules with or provide more resources to rhizobia that fix more nitrogen (N), but they also acquire N from soil via root foraging. It is unclear whether root responses to abiotically and symbiotically derived N evolve independently. Here, we measured root foraging and both preferential allocation of root resources to and preferential association with an effective vs an ineffective N-fixing Ensifer meliloti strain in 35 inbred lines of the model legume Medicago truncatula. We found that M. truncatula is an efficient root forager and forms more nodules with the effective rhizobium; root biomass increases with the number of effective, but not ineffective, nodules, indicating preferential allocation to roots harbouring effective rhizobia; root foraging is not genetically correlated with either preferential allocation or association; and selection favours plant genotypes that form more effective nodules. Root foraging and symbiont preference traits appear to be genetically uncoupled in M. truncatula. Rather than evolving to exclude ineffective partners, our results suggest that preference traits probably evolve to take better advantage of effective symbionts.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Emily M Dutton
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Donglin Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Molly Yang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
13
|
Nishida H, Handa Y, Tanaka S, Suzaki T, Kawaguchi M. Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus. JOURNAL OF PLANT RESEARCH 2016; 129:909-919. [PMID: 27294965 DOI: 10.1007/s10265-016-0842-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/12/2016] [Indexed: 05/21/2023]
Abstract
Cell-to-cell communication, principally mediated by short- or long-range mobile signals, is involved in many plant developmental processes. In root nodule symbiosis, a mutual relationship between leguminous plants and nitrogen-fixing rhizobia, the mechanism for the autoregulation of nodulation (AON) plays a key role in preventing the production of an excess number of nodules. AON is based on long-distance cell-to-cell communication between roots and shoots. In Lotus japonicus, two CLAVATA3/ESR-related (CLE) peptides, encoded by CLE-ROOT SIGNAL 1 (CLE-RS1) and -RS2, act as putative root-derived signals that transmit signals inhibiting further nodule development through interaction with a shoot-acting receptor-like kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1). Here, an in silico search and subsequent expression analyses enabled us to identify two new L. japonicus CLE genes that are potentially involved in nodulation, designated as CLE-RS3 and LjCLE40. Time-course expression patterns showed that CLE-RS1/2/3 and LjCLE40 expression is induced during nodulation with different activation patterns. Furthermore, constitutive expression of CLE-RS3 significantly suppressed nodule formation in a HAR1-dependent manner. TOO MUCH LOVE, a root-acting regulator of AON, is also required for the CLE-RS3 action. These results suggest that CLE-RS3 is a new component of AON in L. japonicus that may act as a potential root-derived signal through interaction with HAR1. Because CLE-RS2, CLE-RS3 and LjCLE40 are located in tandem in the genome and their expression is induced not only by rhizobial infection but also by nitrate, these genes may have duplicated from a common gene.
Collapse
Affiliation(s)
- Hanna Nishida
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Yoshihiro Handa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Sachiko Tanaka
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan.
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan.
| |
Collapse
|
14
|
Osuki KI, Hashimoto S, Suzuki A, Araragi M, Takahara A, Kurosawa M, Kucho KI, Higashi S, Abe M, Uchiumi T. Gene expression and localization of a β-1,3-glucanase of Lotus japonicus. JOURNAL OF PLANT RESEARCH 2016; 129:749-758. [PMID: 26951113 DOI: 10.1007/s10265-016-0811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Phytohormone abscisic acid (ABA) inhibits root nodule formation of leguminous plants. LjGlu1, a β-1,3-glucanase gene of Lotus japonicus, has been identified as an ABA responsive gene. RNA interference of LjGlu1 increased nodule number. This suggests that LjGlu1 is involved in the regulation of nodule formation. Host legumes control nodule number by autoregulation of nodulation (AON), in which the presence of existing root nodules inhibits further nodulation. For further characterization of LjGlu1, we focused on the expression of LjGlu1 in relation to AON. In a split-root system, LjGlu1 expression peaked when AON was fully induced. Hairy roots transformed with LjCLE-RS1, a gene that induces AON, were generated. Expression of LjGlu1 was greater in the transgenic roots than in untransformed roots. LjGlu1 was not induced in a hypernodulating mutant inoculated with Mesorhizobium loti. These results suggest that the expression of LjGlu1 is involved in the system of AON. However, neither hypernodulation nor enlarged nodulation zone was observed on the transgenic hairy roots carrying LjGlu1-RNAi, suggesting that LjGlu1 is not a key player of AON. Recombinant LjGlu1 showed endo-β-1,3-glucanase activity. LjGlu1-mOrange fusion protein suggested that LjGlu1 associated with M. loti on the root hairs. Exogenous β-1,3-glucanase inhibited infection thread formation by both the wild type and the mutant, and nodule numbers were reduced. These results suggest that LjGlu1 is expressed in response to M. loti infection and functions outside root tissues, resulting in the inhibition of infection.
Collapse
Affiliation(s)
- Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Shun Hashimoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Akihiro Suzuki
- Department of Environmental Science, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan
| | - Masato Araragi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Akihito Takahara
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Makiko Kurosawa
- Department of Chemistry and Bioscience, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Shiro Higashi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Mikiko Abe
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
15
|
Multiple Autoregulation of Nodulation (AON) Signals Identified through Split Root Analysis of Medicago truncatula sunn and rdn1 Mutants. PLANTS 2015; 4:209-24. [PMID: 27135324 PMCID: PMC4844323 DOI: 10.3390/plants4020209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/09/2015] [Accepted: 04/16/2015] [Indexed: 12/14/2022]
Abstract
Nodulation is energetically costly to the host: legumes balance the nitrogen demand with the energy expense by limiting the number of nodules through long-distance signaling. A split root system was used to investigate systemic autoregulation of nodulation (AON) in Medicago truncatula and the role of the AON genes RDN1 and SUNN in the regulatory circuit. Developing nodule primordia did not trigger AON in plants carrying mutations in RDN1 and SUNN genes, while wild type plants had fully induced AON within three days. However, despite lacking an early suppression response, AON mutants suppressed nodulation when roots were inoculated 10 days or more apart, correlated with the maturation of nitrogen fixing nodules. In addition to correlation between nitrogen fixation and suppression of nodulation, suppression by extreme nutrient stress was also observed in all genotypes and may be a component of the observed response due to the conditions of the assay. These results suggest there is more than one systemic regulatory circuit controlling nodulation in M. truncatula. While both signals are present in wild type plants, the second signal can only be observed in plants lacking the early repression (AON mutants). RDN1 and SUNN are not essential for response to the later signal.
Collapse
|
16
|
Soyano T, Shimoda Y, Hayashi M. NODULE INCEPTION antagonistically regulates gene expression with nitrate in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2015; 56:368-76. [PMID: 25416287 DOI: 10.1093/pcp/pcu168] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Legumes produce root nodules as symbiotic organs where nitrogen-fixing bacteria are accommodated. Lotus japonicus NODULE INCEPTION (NIN) is an essential factor that specifically and positively regulates nodulation processes, and has evolved from a member of the NIN-like proteins, of which Arabidopsis homologs target nitrate-responsive elements (NREs), and activate gene expression in response to nitrate. It is therefore assumed that the NIN-mediated transcriptional network overlaps with those regulated by NLPs, because of their common DNA-binding RWP-RK domains. However, nodulation is inhibited in the presence of nitrate, and involvement of NIN in nitrate responses has remained largely unknown. Here we determined a consensus of NIN-binding nucleotide sequences (NBSs) by in vitro experiments, and revealed that the sequence pattern was very similar to those of NREs. Chromatin immunoprecitiation (ChIP)-PCR analyses showed that NIN targeted NREs in L. japonicus nitrate-inducible gene promoters, including LjNIR1, LjNRT2.1 and LjNRT2.2. Affinities of NIN binding to the NREs were comparable with that to NBS-yB1a, an NBS on the symbiotic LjNF-YB1 promoter, indicating that NREs are potential targets of NIN. However, rhizobial infection did not activate LjNIR1, LjNRT2.1 and LjNRT2.2. NIN ectopic expression interfered with nitrate-dependent activation of these genes. Nitrate treatment followed by NIN activation down-regulated expression of symbiotic NIN target genes. Our results showed that NIN and nitrate antagonistically regulate expression of genes that are activated by nitrate and NIN, respectively. We propose that this antagonistic relationship prevents inappropriate activation of genes in response to nitrate and rhizobial infection.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan. Present address: National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | - Yoshikazu Shimoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Makoto Hayashi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan. Present address: RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan.
| |
Collapse
|
17
|
Larrainzar E, Gil-Quintana E, Arrese-Igor C, González EM, Marino D. Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1118-24. [PMID: 24975457 DOI: 10.1111/jipb.12231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/22/2014] [Indexed: 05/28/2023]
Abstract
Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Department of Environmental Sciences, Public University of Navarra, Pamplona, E-31006, Spain
| | | | | | | | | |
Collapse
|
18
|
Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proc Natl Acad Sci U S A 2014; 111:14607-12. [PMID: 25246578 DOI: 10.1073/pnas.1412716111] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autoregulatory negative-feedback loops play important roles in fine-balancing tissue and organ development. Such loops are composed of short-range intercellular signaling pathways via cell-cell communications. On the other hand, leguminous plants use a long-distance negative-feedback system involving root-shoot communication to control the number of root nodules, root lateral organs that harbor symbiotic nitrogen-fixing bacteria known as rhizobia. This feedback system, known as autoregulation of nodulation (AON), consists of two long-distance mobile signals: root-derived and shoot-derived signals. Two Lotus japonicus CLAVATA3/endosperm surrounding region (CLE)-related small peptides, CLE root signal1 (CLE-RS1) and CLE-RS2, function as root-derived signals and are perceived by a shoot-acting AON factor, the hypernodulation aberrant root formation1 (HAR1) receptor protein, an ortholog of Arabidopsis CLAVATA1, which is responsible for shoot apical meristem homeostasis. This peptide-receptor interaction is necessary for systemic suppression of nodulation. How the onset of nodulation activates AON and how optimal nodule numbers are maintained remain unknown, however. Here we show that an RWP-RK-containing transcription factor, nodule inception (NIN), which induces nodule-like structures without rhizobial infection when expressed ectopically, directly targets CLE-RS1 and CLE-RS2. Roots constitutively expressing NIN systemically repress activation of endogenous NIN expression in untransformed roots of the same plant in a HAR1-dependent manner, leading to systemic suppression of nodulation and down-regulation of CLE expression. Our findings provide, to our knowledge, the first molecular evidence of a long-distance autoregulatory negative-feedback loop that homeostatically regulates nodule organ formation.
Collapse
|
19
|
Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun 2014; 5:4983. [PMID: 25236855 DOI: 10.1038/ncomms5983] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022] Open
Abstract
Legumes establish symbiotic associations with nitrogen-fixing bacteria (rhizobia) in root nodules to obtain nitrogen. Legumes control nodule number through long-distance communication between roots and shoots, maintaining the proper symbiotic balance. Rhizobial infection triggers the production of mobile CLE-RS1/2 peptides in Lotus japonicus roots; the perception of the signal by receptor kinase HAR1 in shoots presumably induces the production of an unidentified shoot-derived inhibitor (SDI) that translocates to roots and blocks further nodule development. Here we show that, CLE-RS1/2-HAR1 signalling activates the production of shoot-derived cytokinins, which have an SDI-like capacity to systemically suppress nodulation. In addition, we show that LjIPT3 is involved in nodulation-related cytokinin production in shoots. The expression of LjIPT3 is activated in an HAR1-dependent manner. We further demonstrate shoot-to-root long-distance transport of cytokinin in L. japonicus seedlings. These findings add essential components to our understanding of how legumes control nodulation to balance nutritional requirements and energy status.
Collapse
|
20
|
Murakami Y, Yokoyama H, Fukui R, Kawaguchi M. Down-regulation of NSP2 expression in developmentally young regions of Lotus japonicus roots in response to rhizobial inoculation. PLANT & CELL PHYSIOLOGY 2013; 54:518-27. [PMID: 23335614 DOI: 10.1093/pcp/pct008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During the early 1980s, Bauer and associates reported that nodulation potential in primary roots of soybean seedlings following inoculation with rhizobia was significantly reduced in developmentally younger regions. They suggested that this phenomenon might be due to a fast-acting regulatory mechanism in the host that prevented excessive nodulation. However, the molecular mechanism of this fast-acting regulatory response remains uncertain. Here, we sought to elucidate components of this regulatory mechanism by investigating the expression of the NSP1 and NSP2 genes that encode a GRAS transcription factor required for nodule initiation. First, we confirmed that younger regions of Lotus japonicus roots also show a reduction in nodule numbers in response to Mesorhizobium loti. Then, we compared the expression levels of NSP1 and NSP2 in developmentally younger regions of primary roots. After inoculation with M. loti, expression of NSP1 was transiently induced whereas that of NSP2 was significantly down-regulated 1 d after inoculation. This result implicates that down-regulation of NSP2 might cause a fast-acting regulatory mechanism to prevent further nodulation. Next we overexpressed NSP2 in wild-type plants. Overexpression resulted in the clustering of nodules in the upper region of the root but strong suppression of nodulation in the lower region. In contrast, overexpression of NSP2 in har1 hypernodulating mutants resulted in an increased number of nodule primordia even in the root tip region. These results indicate that HAR1 negatively regulates NSP2-induced excessive nodule formation in the developmentally younger regions of roots.
Collapse
Affiliation(s)
- Yasuhiro Murakami
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | | | | | | |
Collapse
|
21
|
Takahara M, Magori S, Soyano T, Okamoto S, Yoshida C, Yano K, Sato S, Tabata S, Yamaguchi K, Shigenobu S, Takeda N, Suzaki T, Kawaguchi M. Too much love, a novel Kelch repeat-containing F-box protein, functions in the long-distance regulation of the legume-Rhizobium symbiosis. PLANT & CELL PHYSIOLOGY 2013; 54:433-47. [PMID: 23390201 DOI: 10.1093/pcp/pct022] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The interaction of legumes with N2-fixing bacteria collectively called rhizobia results in root nodule development. The number of nodules formed is tightly restricted through the systemic negative feedback control by the host called autoregulation of nodulation (AON). Here, we report the characterization and gene identification of TOO MUCH LOVE (TML), a root factor that acts during AON in a model legume Lotus japonicus. In our genetic analyses using another root-regulated hypernodulation mutant, plenty, the tml-1 plenty double mutant showed additive effects on the nodule number, whereas the tml-1 har1-7 double mutant did not, suggesting that TML and PLENTY act in different genetic pathways and that TML and HAR1 act in the same genetic pathway. The systemic suppression of nodule formation by CLE-RS1/RS2 overexpression was not observed in the tml mutant background, indicating that TML acts downstream of CLE-RS1/RS2. The tml-1 Snf2 double mutant developed an excessive number of spontaneous nodules, indicating that TML inhibits nodule organogenesis. Together with the determination of the deleted regions in tml-1/-2/-3, the fine mapping of tml-4 and the next-generation sequencing analysis, we identified a nonsense mutation in the Kelch repeat-containing F-box protein. As the gene knockdown of the candidate drastically increased the number of nodules, we concluded that it should be the causative gene. An expression analysis revealed that TML is a root-specific gene. In addition, the activity of ProTML-GUS was constitutively detected in the root tip and in the nodules/nodule primordia upon rhizobial infection. In conclusion, TML is a root factor acting at the final stage of AON.
Collapse
Affiliation(s)
- Masahiro Takahara
- Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kassaw TK, Frugoli JA. Simple and efficient methods to generate split roots and grafted plants useful for long-distance signaling studies in Medicago truncatula and other small plants. PLANT METHODS 2012; 8:38. [PMID: 22971438 PMCID: PMC3493353 DOI: 10.1186/1746-4811-8-38] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/22/2012] [Indexed: 05/03/2023]
Abstract
UNLABELLED BACKGROUND Long distance signaling is a common phenomenon in animal and plant development. In plants, lateral organs such as nodules and lateral roots are developmentally regulated by root-to-shoot and shoot-to-root long distance signaling. Grafting and split root experiments have been used in the past to study the systemic long distance effect of endogenous and environmental factors, however the potential of these techniques has not been fully realized because data replicates are often limited due to cumbersome and difficult approaches and many plant species with soft tissue are difficult to work with. Hence, developing simple and efficient methods for grafting and split root inoculation in these plants is of great importance. RESULTS We report a split root inoculation system for the small legume M. truncatula as well as robust and reliable techniques of inverted-Y grafting and reciprocal grafting. Although the split root technique has been historically used for a variety of experimental purposes, we made it simple, efficient and reproducible for M. truncatula. Using our split root experiments, we showed the systemic long distance suppression of nodulation on a second wild type root inoculated after a delay, as well as the lack of this suppression in mutants defective in autoregulation. We demonstrated inverted-Y grafting as a method to generate plants having two different root genotypes. We confirmed that our grafting method does not affect the normal growth and development of the inserted root; the composite plants maintained normal root morphology and anatomy. Shoot-to-root reciprocal grafts were efficiently made with a modification of this technique and, like standard grafts, demonstrate that the regulatory signal defective in rdn1 mutants acts in the root. CONCLUSIONS Our split root inoculation protocol shows marked improvement over existing methods in the number and quality of the roots produced. The dual functions of the inverted-Y grafting approach are demonstrated: it is a useful system to produce a plant having roots of two different genotypes and is also more efficient than published shoot-to-root reciprocal grafting techniques. Both techniques together allow dissection of long distance plant developmental regulation with very simple, efficient and reproducible approaches.
Collapse
Affiliation(s)
- Tessema K Kassaw
- Department of Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC, 29634, USA
| | - Julia A Frugoli
- Department of Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC, 29634, USA
| |
Collapse
|
23
|
Mortier V, Holsters M, Goormachtig S. Never too many? How legumes control nodule numbers. PLANT, CELL & ENVIRONMENT 2012; 35:245-58. [PMID: 21819415 DOI: 10.1111/j.1365-3040.2011.02406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | |
Collapse
|
24
|
Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM. Molecular mechanisms controlling legume autoregulation of nodulation. ANNALS OF BOTANY 2011; 108:789-95. [PMID: 21856632 PMCID: PMC3177682 DOI: 10.1093/aob/mcr205] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/17/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND High input costs and environmental pressures to reduce nitrogen use in agriculture have increased the competitive advantage of legume crops. The symbiotic relationship that legumes form with nitrogen-fixing soil bacteria in root nodules is central to this advantage. SCOPE Understanding how legume plants maintain control of nodulation to balance the nitrogen gains with their energy needs and developmental costs will assist in increasing their productivity and relative advantage. For this reason, the regulation of nodulation has been extensively studied since the first mutants exhibiting increased nodulation were isolated almost three decades ago. CONCLUSIONS Nodulation is regulated primarily via a systemic mechanism known as the autoregulation of nodulation (AON), which is controlled by a CLAVATA1-like receptor kinase. Multiple components sharing homology with the CLAVATA signalling pathway that maintains control of the shoot apical meristem in arabidopsis have now been identified in AON. This includes the recent identification of several CLE peptides capable of activating nodule inhibition responses, a low molecular weight shoot signal and a role for CLAVATA2 in AON. Efforts are now being focused on directly identifying the interactions of these components and to identify the form that long-distance transport molecules take.
Collapse
|
25
|
Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. Proc Natl Acad Sci U S A 2011; 108:16837-42. [PMID: 21930895 DOI: 10.1073/pnas.1105892108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Light is critical for supplying carbon to the energetically expensive, nitrogen-fixing symbiosis between legumes and rhizobia. Here, we show that phytochrome B (phyB) is part of the monitoring system to detect suboptimal light conditions, which normally suppress Lotus japonicus nodule development after Mesorhizobium loti inoculation. We found that the number of nodules produced by L. japonicus phyB mutants is significantly reduced compared with the number produced of WT Miyakojima MG20. To explore causes other than photoassimilate production, the possibility that local control by the root genotype occurred was investigated by grafting experiments. The results showed that the shoot and not the root genotype is responsible for root nodule formation. To explore systemic control mechanisms exclusive of photoassimilation, we moved WT MG20 plants from white light to conditions that differed in their ratios of low or high red/far red (R/FR) light. In low R/FR light, the number of MG20 root nodules dramatically decreased compared with plants grown in high R/FR, although photoassimilate content was higher for plants grown under low R/FR. Also, the expression of jasmonic acid (JA) -responsive genes decreased in both low R/FR light-grown WT and white light-grown phyB mutant plants, and it correlated with decreased jasmonoyl-isoleucine content in the phyB mutant. Moreover, both infection thread formation and root nodule formation were positively influenced by JA treatment of WT plants grown in low R/FR light and white light-grown phyB mutants. Together, these results indicate that root nodule formation is photomorphogenetically controlled by sensing the R/FR ratio through JA signaling.
Collapse
|
26
|
Mortier V, Fenta BA, Martens C, Rombauts S, Holsters M, Kunert K, Goormachtig S. Search for nodulation-related CLE genes in the genome of Glycine max. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2571-83. [PMID: 21273331 DOI: 10.1093/jxb/erq426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CLE peptides are potentially involved in nodule organ development and in the autoregulation of nodulation (AON), a systemic process that restricts nodule number. A genome-wide survey of CLE peptide genes in the soybean glycine max genome resulted in the identification of 39 GmCLE genes, the majority of which have not yet been annotated. qRT-PCR analysis indicated two different nodulation-related CLE expression patterns, one linked with nodule primordium development and a new one linked with nodule maturation. Moreover, two GmCLE gene pairs, encoding group-III CLE peptides that were previously shown to be involved in AON, had a transient expression pattern during nodule development, were induced by the essential nodulation hormone cytokinin, and one pair was also slightly induced by the addition of nitrate. Hence, our data support the hypothesis that group-III CLE peptides produced in the nodules are involved in primordium homeostasis and intertwined in activating AON, but not in sustaining it.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Sachs JL, Ehinger MO, Simms EL. Origins of cheating and loss of symbiosis in wild Bradyrhizobium. J Evol Biol 2010; 23:1075-89. [PMID: 20345811 DOI: 10.1111/j.1420-9101.2010.01980.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rhizobial bacteria nodulate legume roots and fix nitrogen in exchange for photosynthates. These symbionts are infectiously acquired from the environment and in such cases selection models predict evolutionary spread of uncooperative mutants. Uncooperative rhizobia - including nonfixing and non-nodulating strains - appear common in agriculture, yet their population biology and origins remain unknown in natural soils. Here, a phylogenetically broad sample of 62 wild-collected rhizobial isolates was experimentally inoculated onto Lotus strigosus to assess their nodulation ability and effects on host growth. A cheater strain was discovered that proliferated in host tissue while offering no benefit; its fitness was superior to that of beneficial strains. Phylogenetic reconstruction of Bradyrhizobium rDNA and transmissible symbiosis-island loci suggest that the cheater evolved via symbiotic gene transfer. Many strains were also identified that failed to nodulate L. strigosus, and it appears that nodulation ability on this host has been recurrently lost in the symbiont population. This is the first study to reveal the adaptive nature of rhizobial cheating and to trace the evolutionary origins of uncooperative rhizobial mutants.
Collapse
Affiliation(s)
- J L Sachs
- Integrative Biology, University of California, Berkeley, CA, USA.
| | | | | |
Collapse
|
28
|
Li D, Kinkema M, Gresshoff PM. Autoregulation of nodulation (AON) in Pisum sativum (pea) involves signalling events associated with both nodule primordia development and nitrogen fixation. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:955-67. [PMID: 19403196 DOI: 10.1016/j.jplph.2009.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 05/07/2023]
Abstract
To define the signalling events required for the activation of AON, we utilised approach grafts between wild-type pea plants and their mutants defective at successive stages of nodule formation. AON signalling strength was monitored by prior inoculation of mutant root portions (as so-called 'sensor') and quantifying nodule formation on connected roots of delayed inoculated wild type (the 'reporter'). Detectable AON sensing and associated signal exchange between root and shoot started after root hair curling but before the initiation of visible cortical and pericycle cell divisions. The strength of AON signalling was correlated with the stage of nodule development and size of nodule, with mature nitrogen-fixing nodules possessing the strongest AON-inducing signal. We demonstrated that the pea supernodulating mutant nod3 may function pre-NARK in the root. A model for the activation of AON signalling and its potential relationship with cell division, nitrogen fixation and/or cytokinin signal transduction are presented.
Collapse
Affiliation(s)
- Dongxue Li
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
29
|
Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M. Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. PLANT & CELL PHYSIOLOGY 2009; 50:67-77. [PMID: 19074184 DOI: 10.1093/pcp/pcn194] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Host legumes control root nodule numbers by sensing external and internal cues. A major external cue is soil nitrate, whereas a feedback regulatory system in which earlier formed nodules suppress further nodulation through shoot-root communication is an important internal cue. The latter is known as autoregulation of nodulation (AUT), and is believed to consist of two long-distance signals: a root-derived signal that is generated in infected roots and transmitted to the shoot; and a shoot-derived signal that systemically inhibits nodulation. In Lotus japonicus, the leucine-rich repeat receptor-like kinase, HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1), mediates AUT and nitrate inhibition of nodulation, and is hypothesized to recognize the root-derived signal. Here we identify L. japonicus CLE-Root Signal 1 (LjCLE-RS1) and LjCLE-RS2 as strong candidates for the root-derived signal. A hairy root transformation study shows that overexpressing LjCLE-RS1 and -RS2 inhibits nodulation systemically and, furthermore, that the systemic suppression depends on HAR1. Moreover, LjCLE-RS2 expression is strongly up-regulated in roots by nitrate addition. Based on these findings, we propose a simple model for AUT and nitrate inhibition of nodulation mediated by LjCLE-RS1, -RS2 peptides and the HAR1 receptor-like kinase.
Collapse
Affiliation(s)
- Satoru Okamoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|