1
|
Li PW, Lu YB, Antonelli A, Zhu ZJ, Wang W, Qin XM, Yang XR, Zhang Q. Sliding-window phylogenetic analyses uncover complex interplastomic recombination in the tropical Asian-American disjunct plant genus Hedyosmum (Chloranthaceae). THE NEW PHYTOLOGIST 2025. [PMID: 40165720 DOI: 10.1111/nph.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Peng-Wei Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Yong-Bin Lu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Göteborg, Sweden
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan, 430074, Hubei, China
| | - Zheng-Juan Zhu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin-Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Xue-Rong Yang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
2
|
Першина ЛА, Трубачеева НВ, Шумный ВК. The effect of T. aestivum chromosomes 1A and 1D on fertility of alloplasmic recombinant (H. vulgare)-T. aestivum lines depending on cytonuclear compatibility. Vavilovskii Zhurnal Genet Selektsii 2024; 28:610-618. [PMID: 39440307 PMCID: PMC11491484 DOI: 10.18699/vjgb-24-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 10/25/2024] Open
Abstract
The effect of T. aestivum L. chromosomes 1A and 1D on fertility of recombinant bread wheat allolines of the same origin carrying the cytoplasm of barley H. vulgare L. and different levels of cytonuclear compatibility was studied. Alloline L-56 included mainly fully sterile (FS) and partially sterile (PS) plants, alloline L-57 included partially fertile (PF) plants and line L-58 included fertile (F) ones. Analysis of morphobiological traits and pollen painting indicated complete or partial male sterility in plants of allolines L-56 and L-57. To differentiate genotypes with cytonuclear coadaptation and genotypes with cytonuclear incompatibility, PCR analysis of the 18S/5S mitochondrial (mt) repeat was performed. Heteroplasmy (simultaneous presence of barley and wheat mtDNA copies) was found in FS, PS, PF and some F plants, which was associated with a violation of cytonuclear compatibility. Wheat-type homoplasmy (hm) was detected in the majority of the fertile plants, which was associated with cytonuclear coadaptation. The allolines used as maternal genotypes were crossed with wheat-rye substitution lines 1R(1A) and 1R(1D). In F1, all plants of PF×1R(1A) and PF×1R(1D) combinations were fertile, and in F2, a segregation close to 3 (fertile) : 1 (sterile) was observed. These results showed for the first time that chromosomes 1A and 1D carry one dominant Rf gene, which controls the restoration of male fertility of bread wheat carrying the cytoplasm of H. vulgare. All plants of F1 combinations FS×1R(1A), FS×1R(1D), PS×1R(1A), PS×1R(1D) were sterile, which indicates that a single dose of genes localized on wheat chromosomes 1A or 1D is not enough to restore male fertility in FS and PS plants. All plants of hybrid combinations F(hm)×1R(1A) and F(hm)×1R(1D) in both F1 and F2 were fertile, that is, fertility of allolines with cytonuclear coadaptation does not depend on wheat chromosomes 1A and 1D.
Collapse
Affiliation(s)
- Л А Першина
- Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Курчатовский геномный центр ИЦиГ СО РАН, Новосибирск, Россия
| | - Н В Трубачеева
- Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Курчатовский геномный центр ИЦиГ СО РАН, Новосибирск, Россия
| | - В К Шумный
- Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия
| |
Collapse
|
3
|
Sakamoto W, Takami T. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms. PLANT & CELL PHYSIOLOGY 2024; 65:484-492. [PMID: 37702423 DOI: 10.1093/pcp/pcad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows the transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (∼10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance from a mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DEFECTIVE IN POLLEN ORGANELLE DNA DEGRADATION1 (DPD1) influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
4
|
Zhao R, He Q, Chu X, He A, Zhang Y, Zhu Z. Regional environmental differences significantly affect the genetic structure and genetic differentiation of Carpinus tientaiensis Cheng, an endemic and extremely endangered species from China. FRONTIERS IN PLANT SCIENCE 2024; 15:1277173. [PMID: 38405582 PMCID: PMC10885731 DOI: 10.3389/fpls.2024.1277173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Differences in topography and environment greatly affect the genetic structure and genetic differentiation of species, and endemic or endangered species with limited geographic ranges seem to be more sensitive to changes in climate and other environmental factors. The complex topography of eastern China is likely to affect genetic differentiation of plants there. Carpinus tientaiensis Cheng is a native and endangered plants from China, and exploring its genetic diversity has profound significance for protection and the collection of germplasm resources. Based on AFLP markers, this study found that C. tientaiensis has low genetic diversity, which mainly came from within populations, while Shangshantou and Tiantai Mountain populations have relatively high genetic diversity. The Nei genetic distance was closely related to geographical distance, and temperature and precipitation notablely affected the genetic variation and genetic differentiation of C. tientaiensis. Based on cpDNA, this study indicated that C. tientaiensis exhibits a moderate level of genetic diversity, and which mainly came from among populations, while Tiantai Mountain population have the highest genetic diversity. It demonstrated that there was genetic differentiation between populations, which can be divided into two independent geographical groups, but there was no significant phylogeographic structure between them. The MaxEnt model showed that climate change significantly affects its distribution, and the suitable distribution areas in Zhejiang were primarily divided into two regions, eastern Zhejiang and southern Zhejiang, and there was niche differentiation in its suitable distribution areas. Therefore, this study speculated that the climate and the terrain of mountains and hills in East China jointly shape the genetic structure of C. tientaiensis, which gived rise to an obvious north-south differentiation trend of these species, and the populations located in the hilly areas of eastern Zhejiang and the mountainous areas of southern Zhejiang formed two genetic branches respectively.
Collapse
Affiliation(s)
- Runan Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qianqian He
- Research Center for Urban and Rural Living Environment, Zhijiang College of Zhejiang University of Technology, Shaoxing, China
| | - Xiaojie Chu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Anguo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Pan’an, China
| | - Yuanlan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo-Cytoplasmic Interaction. Genes (Basel) 2023; 14:1411. [PMID: 37510315 PMCID: PMC10379430 DOI: 10.3390/genes14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518036, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
7
|
D’Andrea L, Sierro N, Ouadi S, Hasing T, Rinaldi E, Ivanov NV, Bombarely A. Polyploid Nicotiana section Suaveolentes originated by hybridization of two ancestral Nicotiana clades. FRONTIERS IN PLANT SCIENCE 2023; 14:999887. [PMID: 37223799 PMCID: PMC10200995 DOI: 10.3389/fpls.2023.999887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/30/2023] [Indexed: 05/25/2023]
Abstract
Introduction Nicotiana section Suaveolentes is an almost all-Australian clade of allopolyploid tobacco species that emerged through hybridization between diploid relatives of the genus. In this study, we aimed to assess the phylogenetic relationship of the Suaveolentes section with several Nicotiana diploid species based on both plastidial and nuclear genes. Methods The Nicotiana plastome-based phylogenetic analysis representing 47 newly re-built plastid genomes suggested that an ancestor of N. section Noctiflorae is the most likely maternal donor of the Suaveolentes clade. Nevertheless, we found clear evidence of plastid recombination with an ancestor from the Sylvestres clade. We analyzed 411 maximum likelihood-based phylogenetic trees from a set of conserved nuclear diploid single copy gene families following an approach that assessed the genomic origin of each homeolog. Results We found that Nicotiana section Suaveolentes is monophyletic with contributions from the sections Alatae, Sylvestres, Petunioides and Noctiflorae. The dating of the divergence between these sections indicates that the Suaveolentes hybridization predates the split between Alatae/Sylvestres, and Noctiflorae/Petunioides. Discussion We propose that Nicotiana section Suaveolentes arose from the hybridization of two ancestral species from which the Noctiflorae/Petunioides and Alatae/Sylvestres sections are derived, with Noctiflorae the maternal parent. This study is a good example in which the use of genome wide data provided additional evidence about the origin of a complex polyploid clade.
Collapse
Affiliation(s)
- Lucio D’Andrea
- Department of Bioscience, Universita degli Studi di Milano, Milan, Italy
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Sonia Ouadi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | | | - Elijah Rinaldi
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nikolai V. Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Aureliano Bombarely
- Department of Bioscience, Universita degli Studi di Milano, Milan, Italy
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), Valencia, Spain
| |
Collapse
|
8
|
Zhang L, Ma J, Shen Z, Wang B, Jiang Q, Ma F, Ju Y, Duan G, Zhang Q, Su X. Low copy numbers for mitochondrial DNA moderates the strength of nuclear-cytoplasmic incompatibility in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:739-754. [PMID: 36308719 DOI: 10.1111/jipb.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Plant cells contain only small amounts of mitochondrial DNA (mtDNA), with the genomic information shared among multiple mitochondria. The biological relevance and molecular mechanism underlying this hallmark of plant cells has been unclear. Here, we report that Arabidopsis thaliana plants exhibited significantly reduced growth and mitochondrial dysfunction when the mtDNA copy number was increased to the degree that each mitochondrion possessed DNA. The amounts of mitochondrion-encoded transcripts increased several fold in the presence of elevated mtDNA levels. However, the efficiency of RNA editing decreased with this excess of mitochondrion-encoded transcripts, resulting in impaired assembly of mitochondrial complexes containing mtDNA-encoded subunits, such as respiratory complexes I and IV. These observations indicate the occurrence of nuclear-mitochondrial incompatibility in the cells with increased amounts of mtDNA and provide an initial answer to the fundamental question of why plant cells have much lower mtDNA levels than animal cells. We propose that keeping mtDNA levels low moderates nuclear-mitochondrial incompatibility and that this may be a crucial factor driving plant cells to restrict the copy numbers of mtDNA.
Collapse
Affiliation(s)
- Liguang Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jin Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhaorui Shen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Bo Wang
- State Key Laboratory of Protein and Plant Gene Research and Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingling Jiang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Guangxing Duan
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene Research and Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Analysis of the chloroplast genome and phylogenetic evolution of three species of Syringa. Mol Biol Rep 2023; 50:665-677. [PMID: 36370298 PMCID: PMC9884260 DOI: 10.1007/s11033-022-08004-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND By the time our study was completed, the chloroplast genomes of Syringa oblata, S. pubescents subsp. Microphylla, and S. reticulate subsp. Amurensis had not been sequenced, and their genetic background was not clear. THE RESEARCH CONTENT In this study, the chloroplast genomes of Syringa oblata, S. pubescents subsp. Microphylla, S. reticulate subsp. Amurensis, and five other species of Syringa were sequenced for a comparative genomics analysis, inverted repeat (IR) boundary analysis, collinearity analysis, codon preference analysis and a nucleotide variability analysis. Differences in the complete chloroplast genomes of 30 species of Oleaceae were compared with that of S. oblata as the reference species, and Ginkgo biloba was used as the out group to construct the phylogenetic tree. RESULTS The results showed that the chloroplast genomes of S. oblata, S. pubescents subsp. Microphylla, and S. reticulate subsp. Amurensis were similar to those of other angiosperms and showed a typical four-segment structure, with full lengths of 155,569, 160,491, 155,419, and protein codes of 88, 95, and 87, respectively. Because the IR boundary of S. pubescents subsp. Microphylla was significantly expanded to the large single copy (LSC) region, resulting in complete replication of some genes in the IR region, the LSC region of S. pubescents subsp. Microphylla was significantly shorter than those of S. oblate and S. reticulate subsp. Amurensis. Similar to most higher plants, these three species have a preference for their codons ending with A/T. CONCLUSIONS We consider the genus Syringa to be a synphyletic group. The nucleotide variability and phylogenetic analyses showed that Syringa differentiated before Ligustrum and Ligustrum developed from Syringa. We propose removing the existing section division and directly dividing Syringa into five series.
Collapse
|
10
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
11
|
Zhou T, Ning K, Mo Z, Zhang F, Zhou Y, Chong X, Zhang D, El-Kassaby YA, Bian J, Chen H. Complete chloroplast genome of Ilex dabieshanensis: Genome structure, comparative analyses with three traditional Ilex tea species, and its phylogenetic relationships within the family Aquifoliaceae. PLoS One 2022; 17:e0268679. [PMID: 35588136 PMCID: PMC9119449 DOI: 10.1371/journal.pone.0268679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ilex dabieshanensis K. Yao & M. B. Deng is not only a highly valued tree species for landscaping, it is also a good material for making kuding tea due to its anti-inflammatory and lipid-lowering medicinal properties. Utilizing next-generation and long-read sequencing technologies, we assembled the whole chloroplast genome of I. dabieshanensis. The genome was 157,218 bp in length, exhibiting a typical quadripartite structure with a large single copy (LSC: 86,607 bp), a small single copy (SSC: 18,427 bp) and a pair of inverted repeat regions (IRA and IRB: each of 26,092 bp). A total of 121 predicted genes were encoded, including 113 distinctive (79 protein-coding genes, 30 tRNAs, and 4 rRNAs) and 8 duplicated (8 protein-coding genes) located in the IR regions. Overall, 132 SSRs and 43 long repeats were detected and could be used as potential molecular markers. Comparative analyses of four traditional Ilex tea species (I. dabieshanensis, I. paraguariensis, I. latifolia and I. cornuta) revealed seven divergent regions: matK-rps16, trnS-psbZ, trnT-trnL, atpB-rbcL, petB-petD, rpl14-rpl16, and rpl32-trnL. These variations might be applicable for distinguishing different species within the genus Ilex. Phylogenetic reconstruction strongly suggested that I. dabieshanensis formed a sister clade to I. cornuta and also showed a close relationship to I. latifolia. The generated chloroplast genome information in our study is significant for Ilex tea germplasm identification, phylogeny and genetic improvement.
Collapse
Affiliation(s)
- Ting Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Kun Ning
- College of Horticulture, Jinling Institute of Technology, Nanjing City, Jiangsu Province, P.R. China
| | - Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Yanwei Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xinran Chong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jian Bian
- Jiangsu Yufeng Tourism Development Co. Ltd., Yancheng, China
| | - Hong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- * E-mail:
| |
Collapse
|
12
|
Nunes VV, Silva-Mann R, Souza JL, Calazans CC. Pharmaceutical, food potential, and molecular data of Hancornia speciosa Gomes: a systematic review. GENETIC RESOURCES AND CROP EVOLUTION 2022; 69:525-543. [PMID: 35068695 PMCID: PMC8764503 DOI: 10.1007/s10722-021-01319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Hancornia speciosa Gomes is a fruit and medicinal tree species native to South America, which in Brazil is considered of potential economic value and priority for research and development. We present a map of the state-of-art, including articles, patents, and molecular data of the species to identify perspectives for future research. The annual scientific production, intellectual, social, and conceptual structure were evaluated, along with the number of patent deposits, components of the plant used, countries of deposit, international classification and assignees, and the accessibility of available molecular data. Brazil has the most significant publications (306) between 1992 and 2020. Technological products (29) have been developed from different tissues of the plant. Most of the articles and patents were developed by researchers from public universities from different regions of Brazil. The molecular data are sequences of nucleotides (164) and proteins (236) of the chloroplast genome and are described to identify the species as DNA barcodes and proteins involved in photosynthesis. The compilation and report of scientific, technological, and molecular information in the present review allowed the identification of new perspectives of research to be developed based on the gaps in knowledge regarding the species and perspectives for the definition of future research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10722-021-01319-w.
Collapse
Affiliation(s)
- Valdinete Vieira Nunes
- Post-Graduation Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Renata Silva-Mann
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Juliana Lopes Souza
- Post-Graduation Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Crislaine Costa Calazans
- Post-Graduation Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| |
Collapse
|
13
|
Luo Y, He J, Lyu R, Xiao J, Li W, Yao M, Pei L, Cheng J, Li J, Xie L. Comparative Analysis of Complete Chloroplast Genomes of 13 Species in Epilobium, Circaea, and Chamaenerion and Insights Into Phylogenetic Relationships of Onagraceae. Front Genet 2021; 12:730495. [PMID: 34804117 PMCID: PMC8600051 DOI: 10.3389/fgene.2021.730495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/20/2021] [Indexed: 02/01/2023] Open
Abstract
The evening primrose family, Onagraceae, is a well defined family of the order Myrtales, comprising 22 genera widely distributed from boreal to tropical areas. In this study, we report and characterize the complete chloroplast genome sequences of 13 species in Circaea, Chamaenerion, and Epilobium using a next-generation sequencing method. We also retrieved chloroplast sequences from two other Onagraceae genera to characterize the chloroplast genome of the family. The complete chloroplast genomes of Onagraceae encoded an identical set of 112 genes (with exclusion of duplication), including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The chloroplast genomes are basically conserved in gene arrangement across the family. However, a large segment of inversion was detected in the large single copy region of all the samples of Oenothera subsect. Oenothera. Two kinds of inverted repeat (IR) region expansion were found in Oenothera, Chamaenerion, and Epilobium samples. We also compared chloroplast genomes across the Onagraceae samples in some features, including nucleotide content, codon usage, RNA editing sites, and simple sequence repeats (SSRs). Phylogeny was inferred by the chloroplast genome data using maximum-likelihood (ML) and Bayesian inference methods. The generic relationship of Onagraceae was well resolved by the complete chloroplast genome sequences, showing potential value in inferring phylogeny within the family. Phylogenetic relationship in Oenothera was better resolved than other densely sampled genera, such as Circaea and Epilobium. Chloroplast genomes of Oenothera subsect. Oenothera, which are biparental inheritated, share a syndrome of characteristics that deviate from primitive pattern of the family, including slightly expanded inverted repeat region, intron loss in clpP, and presence of the inversion.
Collapse
Affiliation(s)
- Yike Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Rudan Lyu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jiamin Xiao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wenhe Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Min Yao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Linying Pei
- Beijing Engineering Research Center for Landscape Plant, Beijing Forestry University Forest Science Co. Ltd., Beijing, China
| | - Jin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinyu Li
- Beijing Institute of Landscape Architecture, Beijing, China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Turudić A, Liber Z, Grdiša M, Jakše J, Varga F, Šatović Z. Towards the Well-Tempered Chloroplast DNA Sequences. PLANTS 2021; 10:plants10071360. [PMID: 34371563 PMCID: PMC8309291 DOI: 10.3390/plants10071360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
With the development of next-generation sequencing technology and bioinformatics tools, the process of assembling DNA sequences has become cheaper and easier, especially in the case of much shorter organelle genomes. The number of available DNA sequences of complete chloroplast genomes in public genetic databases is constantly increasing and the data are widely used in plant phylogenetic and biotechnological research. In this work, we investigated possible inconsistencies in the stored form of publicly available chloroplast genome sequence data. The impact of these inconsistencies on the results of the phylogenetic analysis was investigated and the bioinformatic solution to identify and correct inconsistencies was implemented. The whole procedure was demonstrated using five plant families (Apiaceae, Asteraceae, Campanulaceae, Lamiaceae and Rosaceae) as examples.
Collapse
Affiliation(s)
- Ante Turudić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-91-3141592
| | - Zlatko Liber
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
- Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
| | - Martina Grdiša
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Filip Varga
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia; (M.G.); (F.V.); (Z.Š.)
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| |
Collapse
|
15
|
Clade-Specific Plastid Inheritance Patterns Including Frequent Biparental Inheritance in Passiflora Interspecific Crosses. Int J Mol Sci 2021; 22:ijms22052278. [PMID: 33668897 PMCID: PMC7975985 DOI: 10.3390/ijms22052278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Plastid inheritance in angiosperms is presumed to be largely maternal, with the potential to inherit plastids biparentally estimated for about 20% of species. In Passiflora, maternal, paternal and biparental inheritance has been reported; however, these studies were limited in the number of crosses and progeny examined. To improve the understanding of plastid transmission in Passiflora, the progeny of 45 interspecific crosses were analyzed in the three subgenera: Passiflora, Decaloba and Astrophea. Plastid types were assessed following restriction digestion of PCR amplified plastid DNA in hybrid embryos, cotyledons and leaves at different developmental stages. Clade-specific patterns of inheritance were detected such that hybrid progeny from subgenera Passiflora and Astrophea predominantly inherited paternal plastids with occasional incidences of maternal inheritance, whereas subgenus Decaloba showed predominantly maternal and biparental inheritance. Biparental plastid inheritance was also detected in some hybrids from subgenus Passiflora. Heteroplasmy due to biparental inheritance was restricted to hybrid cotyledons and first leaves with a single parental plastid type detectable in mature plants. This indicates that in Passiflora, plastid retention at later stages of plant development may not reflect the plastid inheritance patterns in embryos. Passiflora exhibits diverse patterns of plastid inheritance, providing an excellent system to investigate underlying mechanisms in angiosperms.
Collapse
|
16
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Villanueva-Corrales S, García-Botero C, Garcés-Cardona F, Ramírez-Ríos V, Villanueva-Mejía DF, Álvarez JC. The Complete Chloroplast Genome of Plukenetia volubilis Provides Insights Into the Organelle Inheritance. FRONTIERS IN PLANT SCIENCE 2021; 12:667060. [PMID: 33968119 PMCID: PMC8103035 DOI: 10.3389/fpls.2021.667060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 05/04/2023]
Abstract
Plukenetia volubilis L. (Malpighiales: Euphorbiaceae), also known as Sacha inchi, is considered a promising crop due to its high seed content of unsaturated fatty acids (UFAs), all of them highly valuable for food and cosmetic industries, but the genetic basis of oil biosynthesis of this non-model plant is still insufficient. Here, we sequenced the total DNA of Sacha inchi by using Illumina and Nanopore technologies and approached a de novo reconstruction of the whole nucleotide sequence and the organization of its 164,111 bp length of the chloroplast genome, displaying two copies of an inverted repeat sequence [inverted repeat A (IRA) and inverted repeat B (IRB)] of 28,209 bp, each one separating a small single copy (SSC) region of 17,860 bp and a large single copy (LSC) region of 89,833 bp. We detected two large inversions on the chloroplast genome that were not presented in the previously reported sequence and studied a promising cpDNA marker, useful in phylogenetic approaches. This chloroplast DNA (cpDNA) marker was used on a set of five distinct Colombian cultivars of P. volubilis from different geographical locations to reveal their phylogenetic relationships. Thus, we evaluated if it has enough resolution to genotype cultivars, intending to crossbreed parents and following marker's trace down to the F1 generation. We finally elucidated, by using molecular and cytological methods on cut flower buds, that the inheritance mode of P. volubilis cpDNA is maternally transmitted and proposed that it occurs as long as it is physically excluded during pollen development. This de novo chloroplast genome will provide a valuable resource for studying this promising crop, allowing the determination of the organellar inheritance mechanism of some critical phenotypic traits and enabling the use of genetic engineering in breeding programs to develop new varieties.
Collapse
Affiliation(s)
| | - Camilo García-Botero
- CIBIOP Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
| | - Froilán Garcés-Cardona
- CIBIOP Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
| | - Viviana Ramírez-Ríos
- CIBIOP Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
| | | | - Javier C. Álvarez
- BEC Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
- CIBIOP Research Group, Biological Sciences Department, EAFIT University, Medellín, Colombia
- *Correspondence: Javier C. Álvarez,
| |
Collapse
|
18
|
Shen Y, Iwao T, Motomura T, Nagasato C. Cytoplasmic inheritance of mitochondria and chloroplasts in the anisogamous brown alga Mutimo cylindricus (Phaeophyceae). PROTOPLASMA 2021; 258:19-32. [PMID: 32862312 DOI: 10.1007/s00709-020-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Based on the morphology of gametes, sexual reproduction in brown algae is usually classified into three types: isogamy, anisogamy, and oogamy. In isogamy, chloroplasts and chloroplast DNA (chlDNA) in the sporophyte cells are inherited biparentally, while mitochondria (or mitochondrial DNA, mtDNA) is inherited maternally. In oogamy, chloroplasts and mitochondria are inherited maternally. However, the patterns of mitochondrial and chloroplast inheritance in anisogamy have not been clarified. Here, we examined derivation of mtDNA and chlDNA in the zygotes through strain-specific PCR analysis using primers based on single nucleotide polymorphism in the anisogamous brown alga Mutimo cylindricus. In 20-day-old sporophytes after fertilization, mtDNA and chlDNA derived from female gametes were detected, thus confirming the maternal inheritance of both organelles. Additionally, the behavior of mitochondria and chloroplasts in the zygotes was analyzed by examining the consecutive serial sections using transmission electron microscopy. Male mitochondria were isolated or compartmentalized by a double-membrane and then completely digested into a multivesicular structure 2 h after fertilization. Meanwhile, male chloroplasts with eyespots were observed even in 4-day-old, seven-celled sporophytes. The final fate of male chloroplasts could not be traced. Organelle DNA copy number was also examined in female and male gametes. The DNA copy number per chloroplast and mitochondria in male gametes was lower compared with female organelles. The degree of difference is bigger in mtDNA. Thus, changes in different morphology and DNA amount indicate that maternal inheritance of mitochondria and chloroplasts in this species may be based on different processes and timing after fertilization.
Collapse
Affiliation(s)
- Yuan Shen
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toyoki Iwao
- Toba Fisheries Science Center, Toba, 517-0005, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan.
| |
Collapse
|
19
|
Xiong B, Zhang L, Dong S, Zhang Z. Population genetic structure and variability in Lindera glauca (Lauraceae) indicates low levels of genetic diversity and skewed sex ratios in natural populations in mainland China. PeerJ 2020; 8:e8304. [PMID: 31915585 PMCID: PMC6944114 DOI: 10.7717/peerj.8304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 11/27/2019] [Indexed: 11/20/2022] Open
Abstract
Lindera glauca (Lauraceae) is a tree of economic and ecological significance that reproduces sexually and asexually via apomictic seeds. It is widely distributed in the low-altitude montane forests of East Asia. Despite the potential implications of a mixed reproductive system in terms of genetic diversity, few studies have focused on this aspect. In this study, the genetic structure of wild populations of L. glauca was investigated via genetic analyses. Overall, 13 nuclear microsatellites (nSSRs) and five chloroplast microsatellites (cpSSRs) were used to genotype 300 individual plants, taken from 20 wild populations (a small sample size in some wild populations is due to the limitation of its specific reproduction, leading to certain limitations in the results of this study) and two cultivated populations ranging across nearly the entire natural distribution of mainland China. The populations exhibited low levels of genetic diversity (nSSR: AR = 1.75, Ho = 0.32, He = 0.36; cpSSR: Nb = 2.01, Hrs = 0.40), and no significant effect of isolation by distance between populations existed, regardless of marker type (nSSR: R2 = 0.0401, P = 0.068; cpSSR: R2 = 0.033, P = 0.091). Haplotype networks showed complex relationships among populations, and the H12 haplotype was predominant in most populations. Analyses of molecular variance obtained with nuclear markers (Fsc = 0.293, FST = 0.362) and chloroplast markers (Fsc = 0.299, FST = 0.312) were similar. The migration ratio of pollen flow versus seed flow in this study was negative (r = −1.149). Results suggest that weak barriers of dispersal between populations and/or the similarity of founders shared between neighbors and distant populations are indicative of the gene flow between populations more likely involving seeds. Wild L. glauca in mainland China was inferred to have highly skewed sex ratios with predominant females. In addition, some populations experienced a recent bottleneck effect, especially in Gujianshan, Chongqing, and southwest China (population GJS). It is suggested that few wild male individuals should be conserved in order to maintain overall genetic diversity in the wild populations of this species. These findings provide important information for the sustainable utilization and preservation of the overall genetic diversity of L. glauca.
Collapse
Affiliation(s)
- Biao Xiong
- College of Tea Science, Guizhou University, Guiyang, China
| | | | | | | |
Collapse
|
20
|
Sun SS, Zhou XJ, Li ZZ, Song HY, Long ZC, Fu PC. Intra-individual heteroplasmy in the Gentiana tongolensis plastid genome (Gentianaceae). PeerJ 2019; 7:e8025. [PMID: 31799070 PMCID: PMC6884991 DOI: 10.7717/peerj.8025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022] Open
Abstract
Chloroplasts are typically inherited from the female parent and are haploid in most angiosperms, but rare intra-individual heteroplasmy in plastid genomes has been reported in plants. Here, we report an example of plastome heteroplasmy and its characteristics in Gentiana tongolensis (Gentianaceae). The plastid genome of G. tongolensis is 145,757 bp in size and is missing parts of petD gene when compared with other Gentiana species. A total of 112 single nucleotide polymorphisms (SNPs) and 31 indels with frequencies of more than 2% were detected in the plastid genome, and most were located in protein coding regions. Most sites with SNP frequencies of more than 10% were located in six genes in the LSC region. After verification via cloning and Sanger sequencing at three loci, heteroplasmy was identified in different individuals. The cause of heteroplasmy at the nucleotide level in plastome of G. tongolensis is unclear from the present data, although biparental plastid inheritance and transfer of plastid DNA seem to be most likely. This study implies that botanists should reconsider the heredity and evolution of chloroplasts and be cautious with using chloroplasts as genetic markers, especially in Gentiana.
Collapse
Affiliation(s)
- Shan-Shan Sun
- College of Life Science, Luoyang Normal University, Luoyang, Henan, People’s Republic of China
| | - Xiao-Jun Zhou
- College of Life Science, Luoyang Normal University, Luoyang, Henan, People’s Republic of China
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hong-Yang Song
- College of Life Science, Luoyang Normal University, Luoyang, Henan, People’s Republic of China
| | - Zhi-Cheng Long
- HostGene. Co. Ltd., Wuhan, Hubei, People’s Republic of China
| | - Peng-Cheng Fu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, People’s Republic of China
| |
Collapse
|
21
|
Gonçalves DJP, Simpson BB, Ortiz EM, Shimizu GH, Jansen RK. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol Phylogenet Evol 2019; 138:219-232. [PMID: 31146023 DOI: 10.1016/j.ympev.2019.05.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
The current classification of angiosperms is based primarily on concatenated plastid markers and maximum likelihood (ML) inference. This approach has been justified by the assumption that plastid DNA (ptDNA) is inherited as a single locus and that its individual genes produce congruent trees. However, structural and functional characteristics of ptDNA suggest that plastid genes may not evolve as a single locus and are experiencing different evolutionary forces. To examine this idea, we produced new complete plastid genome (plastome) sequences of 27 species and combined these data with publicly available sequences to produce a final dataset that includes 78 plastid genes for 89 species of rosids and five outgroups. We used four data matrices (i.e., gene, exon, codon-aligned, and amino acid) to infer species and gene trees using ML and multispecies coalescent (MSC) methods. Rosids include about one third of all angiosperms and their two major clades, fabids and malvids, were recovered in almost all analyses. However, we detected incongruence between species trees inferred with different matrices and methods and previously published plastid and nuclear phylogenies. We visualized and tested the significance of incongruence between gene trees and species trees. We then measured the distribution of phylogenetic signal across sites and genes supporting alternative placements of five controversial nodes at different taxonomic levels. Gene trees inferred with plastid data often disagree with species trees inferred using both ML (with unpartitioned or partitioned data) and MSC. Species trees inferred with both methods produced alternative topologies for a few taxa. Our results show that, in a phylogenetic context, plastid protein-coding genes may not be fully linked and behaving as a single locus. Furthermore, concatenated matrices may produce highly supported phylogenies that are discordant with individual gene trees. We also show that phylogenies inferred with MSC are accurate. We therefore emphasize the importance of considering variation in phylogenetic signal across plastid genes and the exploration of plastome data to increase accuracy of estimating relationships. We also support the use of MSC with plastome matrices in future phylogenomic investigations.
Collapse
Affiliation(s)
- Deise J P Gonçalves
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA.
| | - Beryl B Simpson
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA
| | - Edgardo M Ortiz
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA; Department of Ecology & Ecosystem Management, Plant Biodiversity Research, Technical University of Munich, Emil-Ramann Strasse 2, Freising D-85354, Germany
| | - Gustavo H Shimizu
- Department of Plant Biology, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Robert K Jansen
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA; Genomics and Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Nováková E, Zablatzká L, Brus J, Nesrstová V, Hanáček P, Kalendar R, Cvrčková F, Majeský Ľ, Smýkal P. Allelic Diversity of Acetyl Coenzyme A Carboxylase accD/ bccp Genes Implicated in Nuclear-Cytoplasmic Conflict in the Wild and Domesticated Pea ( Pisum sp.). Int J Mol Sci 2019; 20:E1773. [PMID: 30974846 PMCID: PMC6480052 DOI: 10.3390/ijms20071773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Reproductive isolation is an important component of species differentiation. The plastid accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse samples of both cultivated (Pisum sativum, P. abyssinicum) and wild (P. fulvum and P. elatius) peas. Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially geographically and genetically structured. The accD is highly variable due to insertions of tandem repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other hand, partial overlap was observed between P. sativum and P. elatius. Mapping of protein sequence polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map to sequence regions that could not be modeled, consistent with this part of the protein being less constrained by requirements for precise folding than the enzymatically active domains. The results of this study are important not only from an evolutionary point of view but are also relevant for pea breeding when using more distant wild relatives.
Collapse
Affiliation(s)
- Eliška Nováková
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Lenka Zablatzká
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Jan Brus
- Department of Geoinformatics, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Viktorie Nesrstová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 78371 Olomouc, Czech Republic.
| | - Pavel Hanáček
- Department of Plant Biology, Faculty of Agronomy, Mendel University, 61300 Brno, Czech Republic.
| | - Ruslan Kalendar
- National Center for Biotechnology, Astana 010000, Kazakhstan.
- Department of Agricultural Sciences, Viikki Plant Science Centre and Helsinki Sustainability Centre, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic.
| | - Ľuboš Majeský
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacký University, 78371 Olomouc, Czech Republic.
| |
Collapse
|
23
|
Sobanski J, Giavalisco P, Fischer A, Kreiner JM, Walther D, Schöttler MA, Pellizzer T, Golczyk H, Obata T, Bock R, Sears BB, Greiner S. Chloroplast competition is controlled by lipid biosynthesis in evening primroses. Proc Natl Acad Sci U S A 2019; 116:5665-5674. [PMID: 30833407 PMCID: PMC6431223 DOI: 10.1073/pnas.1811661116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In most eukaryotes, organellar genomes are transmitted preferentially by the mother, but molecular mechanisms and evolutionary forces underlying this fundamental biological principle are far from understood. It is believed that biparental inheritance promotes competition between the cytoplasmic organelles and allows the spread of so-called selfish cytoplasmic elements. Those can be, for example, fast-replicating or aggressive chloroplasts (plastids) that are incompatible with the hybrid nuclear genome and therefore maladaptive. Here we show that the ability of plastids to compete against each other is a metabolic phenotype determined by extremely rapidly evolving genes in the plastid genome of the evening primrose Oenothera Repeats in the regulatory region of accD (the plastid-encoded subunit of the acetyl-CoA carboxylase, which catalyzes the first and rate-limiting step of lipid biosynthesis), as well as in ycf2 (a giant reading frame of still unknown function), are responsible for the differences in competitive behavior of plastid genotypes. Polymorphisms in these genes influence lipid synthesis and most likely profiles of the plastid envelope membrane. These in turn determine plastid division and/or turnover rates and hence competitiveness. This work uncovers cytoplasmic drive loci controlling the outcome of biparental chloroplast transmission. Here, they define the mode of chloroplast inheritance, as plastid competitiveness can result in uniparental inheritance (through elimination of the "weak" plastid) or biparental inheritance (when two similarly "strong" plastids are transmitted).
Collapse
Affiliation(s)
- Johanna Sobanski
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Department Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Axel Fischer
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Julia M Kreiner
- Department of Ecology & Evolutionary Biology, University of Toronto, ON M5S 3B2, Canada
| | - Dirk Walther
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Tommaso Pellizzer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynów 1I, 20-708, Poland
| | - Toshihiro Obata
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Barbara B Sears
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312
| | - Stephan Greiner
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
24
|
Kuo LY, Tang TY, Li FW, Su HJ, Chiou WL, Huang YM, Wang CN. Organelle Genome Inheritance in Deparia Ferns (Athyriaceae, Aspleniineae, Polypodiales). FRONTIERS IN PLANT SCIENCE 2018; 9:486. [PMID: 29755486 PMCID: PMC5932399 DOI: 10.3389/fpls.2018.00486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
Organelle genomes of land plants are predominately inherited maternally but in some cases can also be transmitted paternally or biparentally. Compared to seed plants (>83% genera of angiosperms and >12% genera of gymnosperms), plastid genome (plastome) inheritance has only been investigated in fewer than 2% of fern genera, and mitochondrial genome (mitogenome) from only one fern genus. We developed a new and efficient method to examine plastome and mitogenome inheritance in a fern species-Deparia lancea (Athyriaceae, Aspleniineae, Polypodiales), and found that plastid and mitochondrial DNAs were transmitted from only the maternal parentage to a next generation. To further examine whether both organelle genomes have the same manner of inheritance in other Deparia ferns, we sequenced both plastid and mitochondrial DNA regions of inter-species hybrids, and performed phylogenetic analyses to identify the origins of organellar DNA. Evidence from our experiments and phylogenetic analyses support that both organelle genomes in Deparia are uniparentally and maternally inherited. Most importantly, our study provides the first report of mitogenome inheritance in eupolypod ferns, and the second one among all ferns.
Collapse
Affiliation(s)
- Li-Yaung Kuo
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Li-Yaung Kuo, Yao-Moan Huang, Chun-Neng Wang,
| | - Te-Yen Tang
- Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, Cornell University, Ithaca, NY, United States
| | - Huei-Jiun Su
- Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
| | - Wen-Liang Chiou
- Taiwan Forestry Research Institute, Taipei, Taiwan
- Dr. Cecilia Koo Botanic Conservation Center, Pingtung, Taiwan
| | - Yao-Moan Huang
- Taiwan Forestry Research Institute, Taipei, Taiwan
- *Correspondence: Li-Yaung Kuo, Yao-Moan Huang, Chun-Neng Wang,
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Li-Yaung Kuo, Yao-Moan Huang, Chun-Neng Wang,
| |
Collapse
|
25
|
Chung HY, Lee TH, Kim YK, Kim JS. Complete chloroplast genome sequences of Wonwhang ( Pyrus pyrifolia) and its phylogenetic analysis. MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:325-326. [PMID: 33490449 PMCID: PMC7801008 DOI: 10.1080/23802359.2017.1331328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The complete chloroplast genome of Wonwhang (BioSample SAMN05196235), Pyrus pyrifolia, was assembled and analyzed by de novo assembly using whole-genome sequencing data. The accession NC_015996 was used as a reference sequence in this study. The total chloroplast genome size of the Wonwhang was 159,922 bp in length, including a pair of inverted repeat regions (IRs) of 26,392 bp that are separated by a large single-copy region of 72,023 bp and a small single-copy region of 19,235 bp. A total of 132 genes, including 93 protein-coding genes, 31 tRNA genes and eight rRNA genes, were predicted from the chloroplast genomes. Among them, 18 genes occur in IRs, containing nine protein-coding genes, five tRNA genes and four rRNA genes. The GC content of Wonwhang chloroplast genome is 36.6%. The phylogenetic analysis with nine Rosids species and three other species revealed that Wonwhang was clustered with Malus genus.
Collapse
Affiliation(s)
- Ho Yong Chung
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Tae-Ho Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Yoon-Kyeong Kim
- Pear Research Institute, National Institute of Horticultural & Herbal Science, RDA, Naju, South Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| |
Collapse
|
26
|
Ruhlman TA, Zhang J, Blazier JC, Sabir JSM, Jansen RK. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure. AMERICAN JOURNAL OF BOTANY 2017; 104:559-572. [PMID: 28400415 DOI: 10.3732/ajb.1600453] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/23/2017] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. METHODS We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. RESULTS Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. CONCLUSION We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712 USA
| | - Jin Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712 USA
| | - John C Blazier
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712 USA
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589 Saudi Arabia
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712 USA
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589 Saudi Arabia
| |
Collapse
|
27
|
Barnard-Kubow KB, McCoy MA, Galloway LF. Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility. THE NEW PHYTOLOGIST 2017; 213:1466-1476. [PMID: 27686577 DOI: 10.1111/nph.14222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Although organelle inheritance is predominantly maternal across animals and plants, biparental chloroplast inheritance has arisen multiple times in the angiosperms. Biparental inheritance has the potential to impact the evolutionary dynamics of cytonuclear incompatibility, interactions between nuclear and organelle genomes that are proposed to be among the earliest types of genetic incompatibility to arise in speciation. We examine the interplay between biparental inheritance and cytonuclear incompatibility in Campanulastrum americanum, a plant species exhibiting both traits. We first determine patterns of chloroplast inheritance in genetically similar and divergent crosses, and then associate inheritance with hybrid survival across multiple generations. There is substantial biparental inheritance in C. americanum. The frequency of biparental inheritance is greater in divergent crosses and in the presence of cytonuclear incompatibility. Biparental inheritance helps to mitigate cytonuclear incompatibility, leading to increased fitness of F1 hybrids and recovery in the F2 generation. This study demonstrates the potential for biparental chloroplast inheritance to rescue cytonuclear compatibility, reducing cytonuclear incompatibility's contribution to reproductive isolation and potentially slowing speciation. The efficacy of rescue depended upon the strength of incompatibility, with a greater persistence of weak incompatibilities in later generations. These findings suggest that incompatible plastids may lead to selection for biparental inheritance.
Collapse
Affiliation(s)
| | - Morgan A McCoy
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| |
Collapse
|
28
|
Fu J, Liu H, Hu J, Liang Y, Liang J, Wuyun T, Tan X. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis. PLoS One 2016; 11:e0159566. [PMID: 27442423 PMCID: PMC4956199 DOI: 10.1371/journal.pone.0159566] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022] Open
Abstract
Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.
Collapse
Affiliation(s)
- Jianmin Fu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China
- Non-Timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Huimin Liu
- Non-Timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Jingjing Hu
- Department of Bioinformatics, Haplox Biotechnology Co., Ltd., Shenzhen, China
| | - Yuqin Liang
- Non-Timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Jinjun Liang
- Non-Timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Tana Wuyun
- Non-Timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
29
|
Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Sci Int Genet 2016; 21:110-6. [DOI: 10.1016/j.fsigen.2015.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/19/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022]
|
30
|
Simmler C, Anderson JR, Gauthier L, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals. JOURNAL OF NATURAL PRODUCTS 2015; 78:2007-22. [PMID: 26244884 PMCID: PMC4553119 DOI: 10.1021/acs.jnatprod.5b00342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Raw licorice roots represent heterogeneous materials obtained from mainly three Glycyrrhiza species. G. glabra, G. uralensis, and G. inflata exhibit marked metabolite differences in terms of flavanones (Fs), chalcones (Cs), and other phenolic constituents. The principal objective of this work was to develop complementary chemometric models for the metabolite profiling, classification, and quality control of authenticated licorice. A total of 51 commercial and macroscopically verified samples were DNA authenticated. Principal component analysis and canonical discriminant analysis were performed on (1)H NMR spectra and area under the curve values obtained from UHPLC-UV chromatograms, respectively. The developed chemometric models enable the identification and classification of Glycyrrhiza species according to their composition in major Fs, Cs, and species specific phenolic compounds. Further key outcomes demonstrated that DNA authentication combined with chemometric analyses enabled the characterization of mixtures, hybrids, and species outliers. This study provides a new foundation for the botanical and chemical authentication, classification, and metabolomic characterization of crude licorice botanicals and derived materials. Collectively, the proposed methods offer a comprehensive approach for the quality control of licorice as one of the most widely used botanical dietary supplements.
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Jeffrey R. Anderson
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Laura Gauthier
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - David C. Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - James B. McAlpine
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| |
Collapse
|
31
|
Rogalski M, do Nascimento Vieira L, Fraga HP, Guerra MP. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. FRONTIERS IN PLANT SCIENCE 2015; 6:586. [PMID: 26284102 PMCID: PMC4520007 DOI: 10.3389/fpls.2015.00586] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/15/2015] [Indexed: 05/20/2023]
Abstract
During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | - Hugo P. Fraga
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | - Miguel P. Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
- *Correspondence: Miguel P. Guerra, Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 Florianópolis, SC 88034-000, Brazil,
| |
Collapse
|
32
|
Wu Z, Gui S, Quan Z, Pan L, Wang S, Ke W, Liang D, Ding Y. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots. BMC PLANT BIOLOGY 2014; 14:289. [PMID: 25407166 PMCID: PMC4245832 DOI: 10.1186/s12870-014-0289-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/15/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND The chloroplast genome is important for plant development and plant evolution. Nelumbo nucifera is one member of relict plants surviving from the late Cretaceous. Recently, a new sequencing platform PacBio RS II, known as 'SMRT (Single Molecule, Real-Time) sequencing', has been developed. Using the SMRT sequencing to investigate the chloroplast genome of N. nucifera will help to elucidate the plastid evolution of basal eudicots. RESULTS The sizes of the de novo assembled complete chloroplast genome of N. nucifera were 163,307 bp, 163,747 bp and 163,600 bp with average depths of coverage of 7×, 712× and 105× sequenced by Sanger, Illumina MiSeq and PacBio RS II, respectively. The precise chloroplast genome of N. nucifera was obtained from PacBio RS II data proofread by Illumina MiSeq reads, with a quadripartite structure containing a large single copy region (91,846 bp) and a small single copy region (19,626 bp) separated by two inverted repeat regions (26,064 bp). The genome contains 113 different genes, including four distinct rRNAs, 30 distinct tRNAs and 79 distinct peptide-coding genes. A phylogenetic analysis of 133 taxa from 56 orders indicated that Nelumbo with an age of 177 million years is a sister clade to Platanus, which belongs to the basal eudicots. Basal eudicots began to emerge during the early Jurassic with estimated divergence times at 197 million years using MCMCTree. IR expansions/contractions within the basal eudicots seem to have occurred independently. CONCLUSIONS Because of long reads and lack of bias in coverage of AT-rich regions, PacBio RS II showed a great promise for highly accurate 'finished' genomes, especially for a de novo assembly of genomes. N. nucifera is one member of basal eudicots, however, evolutionary analyses of IR structural variations of N. nucifera and other basal eudicots suggested that IR expansions/contractions occurred independently in these basal eudicots or were caused by independent insertions and deletions. The precise chloroplast genome of N. nucifera will present new information for structural variation of chloroplast genomes and provide new insight into the evolution of basal eudicots at the primary sequence and structural level.
Collapse
Affiliation(s)
- Zhihua Wu
- />State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 Republic of China
| | - Songtao Gui
- />State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 Republic of China
| | | | - Lei Pan
- />College of Life Sciences, Jianghan University, Wuhan, 430056 China
| | - Shuzhen Wang
- />College of Life Sciences, Huanggang Normal University, Huanggang, 438000 Hubei China
| | - Weidong Ke
- />Wuhan Vegetable Scientific Research Institute, Wuhan National Field Observation & Research Station for Aquatic Vegetables, Wuhan, 430065 China
| | - Dequan Liang
- />Nextomics Biosciences Co., Ltd., Wuhan, 430075 China
| | - Yi Ding
- />State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072 Republic of China
| |
Collapse
|
33
|
Zarrei M, Stefanović S, Dickinson TA. Reticulate evolution in North American black-fruited hawthorns (Crataegus section Douglasia; Rosaceae): evidence from nuclear ITS2 and plastid sequences. ANNALS OF BOTANY 2014; 114:253-69. [PMID: 24984714 PMCID: PMC4111394 DOI: 10.1093/aob/mcu116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/07/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS The taxonomic complexity of Crataegus (hawthorn; Rosaceae, Maleae), especially in North America, has been attributed by some to hybridization in combination with gametophytic apomixis and polyploidization, whereas others have considered the roles of hybridization and apomixis to be minimal. Study of the chemical composition and therapeutic value of hawthorn extracts requires reproducible differentiation of entities that may be difficult to distinguish by morphology alone. This study sought to address this by using the nuclear ribosomal spacer region ITS2 as a supplementary DNA barcode; however, a lack of success prompted an investigation to discover why this locus gave unsatisfactory results. METHODS ITS2 was extensively cloned so as to document inter- and intraindividual variation in this locus, using hawthorns of western North America where the genus Crataegus is represented by only two widely divergent groups, the red-fruited section Coccineae and the black-fruited section Douglasia. Additional sequence data from selected loci on the plastid genome were obtained to enhance further the interpretation of the ITS2 results. KEY RESULTS In the ITS2 gene tree, ribotypes from western North American hawthorns are found in two clades. Ribotypes from diploid members of section Douglasia occur in one clade (with representatives of the east-Asian section Sanguineae). The other clade comprises those from diploid and polyploid members of section Coccineae. Both clades contribute ribotypes to polyploid Douglasia. Data from four plastid-derived intergenic spacers demonstrate the maternal parentage of these allopolyploids. CONCLUSIONS Repeated hybridization between species of section Douglasia and western North American members of section Coccineae involving the fertilization of unreduced female gametes explains the observed distribution of ribotypes and accounts for the phenetic intermediacy of many members of section Douglasia.
Collapse
Affiliation(s)
- M Zarrei
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto ON, Canada M5S 3B2 Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto ON, Canada M5S 2C6
| | - S Stefanović
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto ON, Canada M5S 3B2 Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON, Canada L5L 1C6
| | - T A Dickinson
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto ON, Canada M5S 3B2 Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto ON, Canada M5S 2C6
| |
Collapse
|
34
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
35
|
Weng ML, Blazier JC, Govindu M, Jansen RK. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol 2013; 31:645-59. [PMID: 24336877 DOI: 10.1093/molbev/mst257] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Geraniaceae plastid genomes are highly rearranged, and each of the four genera already sequenced in the family has a distinct genome organization. This study reports plastid genome sequences of six additional species, Francoa sonchifolia, Melianthus villosus, and Viviania marifolia from Geraniales, and Pelargonium alternans, California macrophylla, and Hypseocharis bilobata from Geraniaceae. These genome sequences, combined with previously published species, provide sufficient taxon sampling to reconstruct the ancestral plastid genome organization of Geraniaceae and the rearrangements unique to each genus. The ancestral plastid genome of Geraniaceae has a 4 kb inversion and a reduced, Pelargonium-like small single copy region. Our ancestral genome reconstruction suggests that a few minor rearrangements occurred in the stem branch of Geraniaceae followed by independent rearrangements in each genus. The genomic comparison demonstrates that a series of inverted repeat boundary shifts and inversions played a major role in shaping genome organization in the family. The distribution of repeats is strongly associated with breakpoints in the rearranged genomes, and the proportion and the number of large repeats (>20 bp and >60 bp) are significantly correlated with the degree of genome rearrangements. Increases in the degree of plastid genome rearrangements are correlated with the acceleration in nonsynonymous substitution rates (dN) but not with synonymous substitution rates (dS). Possible mechanisms that might contribute to this correlation, including DNA repair system and selection, are discussed.
Collapse
Affiliation(s)
- Mao-Lun Weng
- Department of Integrative Biology, University of Texas, Austin
| | | | | | | |
Collapse
|
36
|
Tsujimura M, Mori N, Yamagishi H, Terachi T. A possible breakage of linkage disequilibrium between mitochondrial and chloroplast genomes during Emmer and Dinkel wheat evolution. Genome 2013; 56:187-93. [DOI: 10.1139/gen-2012-0153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In wheat (Triticum) and Aegilops, chloroplast and mitochondrial genomes have been studied for over three decades to clarify the phylogenetic relationships among species, and most of the maternal lineages of polyploid species have been clarified. Mitochondrial genomes of Emmer (tetraploid with nuclear genome AABB) and Dinkel (hexaploid with AABBDD) wheat are classified into two different types, VIIa and VIIb, by the presence–absence of the third largest HindIII fragment (named H3) in the mitochondrial DNA. Although the mitochondrial genome in the genera often provides useful information to clarify the phylogenetic relationship among closely related species, the phylogenetic significance of this dimorphism has yet not been clarified. In this study, to facilitate analysis using a large number of accessions, a sequence characterized amplified region (SCAR) marker that distinguishes the type VIIb mitochondrial genome from type VIIa was first developed. Mitochondrial genome type was determined for each of 30 accessions of wild and cultivated Emmer wheat and 25 accessions of Dinkel wheat. The mitochondrial genome type for each accession was compared with the plastogroup that had been determined using chloroplast microsatellite markers. Unexpectedly, the distribution of mitochondrial genome type was not in accordance with that of the plastogroups, suggesting occasional paternal leakage of either the mitochondrial or chloroplast genome during speciation and differentiation of Emmer and Dinkel wheat. An alternative possibility that substoichiometric shifting is involved in the observed dimorphism of the mitochondrial genome is also discussed.
Collapse
Affiliation(s)
- Mai Tsujimura
- The 31st Laboratory, Department of Bioresources and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Naoki Mori
- Laboratory of Plant Genetics, Department of Biological and Environmental Science, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Hiroshi Yamagishi
- The 31st Laboratory, Department of Bioresources and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Toru Terachi
- The 31st Laboratory, Department of Bioresources and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
37
|
Thyssen G, Svab Z, Maliga P. Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:84-8. [PMID: 22612300 DOI: 10.1111/j.1365-313x.2012.05057.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plastids and mitochondria, the DNA-containing cytoplasmic organelles, are maternally inherited in the majority of angiosperm species. Even in plants with strict maternal inheritance, exceptional paternal transmission of plastids has been observed. Our objective was to detect rare leakage of plastids via pollen in Nicotiana sylvestris and to determine if pollen transmission of plastids results in co-transmission of paternal mitochondria. As father plants, we used N. sylvestris plants with transgenic, selectable plastids and wild-type mitochondria. As mother plants, we used N. sylvestris plants with Nicotiana undulata cytoplasm, including the CMS-92 mitochondria that cause cytoplasmic male sterility (CMS) by homeotic transformation of the stamens. We report here exceptional paternal plastid DNA in approximately 0.002% of N. sylvestris seedlings. However, we did not detect paternal mitochondrial DNA in any of the six plastid-transmission lines, suggesting independent transmission of the cytoplasmic organelles via pollen. When we used fertile N. sylvestris as mothers, we obtained eight fertile plastid transmission lines, which did not transmit their plastids via pollen at higher frequencies than their fathers. We discuss the implications for transgene containment and plant evolutionary histories inferred from cytoplasmic phylogenies.
Collapse
Affiliation(s)
- Gregory Thyssen
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
38
|
Jansen RK, Ruhlman TA. Plastid Genomes of Seed Plants. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_5] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Maternal inheritance of plastids and mitochondria in Cycas L. (Cycadaceae). Mol Genet Genomics 2011; 286:411-6. [DOI: 10.1007/s00438-011-0653-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
|
40
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 909] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
41
|
Takano H, Onoue K, Kawano S. Mitochondrial fusion and inheritance of the mitochondrial genome. JOURNAL OF PLANT RESEARCH 2010; 123:131-138. [PMID: 20196232 DOI: 10.1007/s10265-009-0268-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion.
Collapse
Affiliation(s)
- Hiroyoshi Takano
- Bioelectrics Research Center, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan.
| | | | | |
Collapse
|
42
|
Kuroiwa T. 100 years since the discovery of non-Mendelian plastid phenotypes. JOURNAL OF PLANT RESEARCH 2010; 123:125-9. [PMID: 20135191 DOI: 10.1007/s10265-009-0283-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 05/08/2023]
Affiliation(s)
- Tsuneyoshi Kuroiwa
- Research Information Center for Extremophile, Graduate School of Science, Rikkyo University, 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| |
Collapse
|
43
|
Kuroiwa T. Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids). JOURNAL OF PLANT RESEARCH 2010; 123:207-230. [PMID: 20145972 DOI: 10.1007/s10265-009-0306-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 12/07/2009] [Indexed: 05/28/2023]
Abstract
In most sexual organisms, including isogamous, anisogamous and oogamous organisms, uniparental transmission is a striking and universal characteristic of the transmission of organelle (plastid and mitochondrial) genomes (DNA). Using genetic, biochemical and molecular biological techniques, mechanisms of uniparental (maternal and parental) and biparental transmission of organelle genomes have been studied and reviewed. Although to date there has been no cytological review of the transmission of organelle genomes, cytology offers advantages in terms of direct evidence and can enhance global studies of the transmission of organelle genomes. In this review, I focus on the cytological mechanism of uniparental inheritance by "active digestion of male or female organelle nuclei (nucleoids, DNA)" which is universal among isogamous, anisogamous, and oogamous organisms. The global existence of uniparental transmission since the evolution of sexual eukaryotes may imply that the cell nuclear genome continues to inhibit quantitative evolution of organelles by organelle recombination.
Collapse
Affiliation(s)
- Tsuneyoshi Kuroiwa
- Research Information Center for Extremophile, Graduate School of Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|