1
|
Wang C, Bi J, Zhang Y, Zhang Y, Liu X. Metals Transfer in Mushroom Tricholoma matsutake from Regional High Geochemical Background Areas: Environmental Influences and Human Health Risk. J Fungi (Basel) 2024; 10:608. [PMID: 39330368 PMCID: PMC11433318 DOI: 10.3390/jof10090608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Wild-grown edible mushrooms are important in world diets and are also efficient metal accumulators. Yunnan, Southwest China, is the main producing region, with typically high levels of geochemical metals. The environmental factors, bioaccumulation, distribution and human health risks of metals were examined in paired soil and Tricholoma matsutake (n = 54). T. matsutake grows on acidified soils (pH = 3.95-6.56), and metals show a strong heterogeneity, with Fe, Mn, Zn and Cu in the ranges of 16-201, 0.046-8.58 g kg-1, and 22.6-215, 3.7-155 mg kg-1. High soil Fe content led to great accumulation in T. matsutake (0.24-18.8 g kg-1). However, though the soil Mn content was higher than that of Zn and Cu, their concentrations in T. matsutake were comparable (21.1-487 vs. 38.7-329 and 24.9-217 mg kg-1). This suggested that T. matsutake prefers to accumulate Zn and Cu compared to Mn, and this is supported by the bioaccumulation factors (BAFs = 0.32-17.1 vs. 0.006-1.69). Fe was mainly stored in stipes, while Mn, Zn and Cu were stored in caps, and the translocation factors (TFs) were 0.58 vs. 1.28-1.94. Therefore, stipe Fe showed the highest health risk index (HRI) at 1.28-26.9, followed by cap Cu (1.01-2.33), while 98-100% of the Mn and Zn were risk-free. The higher concentration and greater risk of Fe was attributed to the significant effect of soil Fe content (R = 0.34) and soil pH (R = -0.57). This study suggested that Fe, as an essential mineral, may exert toxic effects via the consumption of T. matsutake from high geochemical background areas.
Collapse
Affiliation(s)
- Cuiting Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China; (C.W.); (Y.Z.); (Y.Z.)
| | - Jue Bi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China;
| | - Yukang Zhang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China; (C.W.); (Y.Z.); (Y.Z.)
| | - Yixuan Zhang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China; (C.W.); (Y.Z.); (Y.Z.)
| | - Xue Liu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China; (C.W.); (Y.Z.); (Y.Z.)
| |
Collapse
|
2
|
Guo Q, Adelina NM, Hu J, Zhang L, Zhao Y. Comparative analysis of volatile profiles in four pine-mushrooms using HS-SPME/GC-MS and E-nose. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108711] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Zhang S, Bai X, Ren LY, Sun HH, Tang HP, Vaario LM, Xu J, Zhang YJ. Dynamic evolution of eukaryotic mitochondrial and nuclear genomes: a case study in the gourmet pine mushroom Tricholoma matsutake. Environ Microbiol 2021; 23:7214-7230. [PMID: 34587365 DOI: 10.1111/1462-2920.15792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/25/2021] [Indexed: 01/26/2023]
Abstract
Fungi, as eukaryotic organisms, contain two genomes, the mitochondrial genome and the nuclear genome, in their cells. How the two genomes evolve and correlate to each other is debated. Herein, taking the gourmet pine mushroom Tricholoma matsutake as an example, we performed comparative mitogenomic analysis using samples collected from diverse locations and compared the evolution of the two genomes. The T. matsutake mitogenome encodes 49 genes and is rich of repetitive and non-coding DNAs. Six genes were invaded by up to 11 group I introns, with one cox1 intron cox1P372 showing presence/absence dynamics among different samples. Bioinformatic analyses suggested limited or no evidence of mitochondrial heteroplasmy. Interestingly, hundreds of mitochondrial DNA fragments were found in the nuclear genome, with several larger than 500 nt confirmed by PCR assays and read count comparisons, indicating clear evidence of transfer of mitochondrial DNA into the nuclear genome. Nuclear DNA of T. matsutake showed a higher mutation rate than mitochondrial DNA. Furthermore, we found evidence of incongruence between phylogenetic trees derived from mitogenome and nuclear DNA sequences. Together, our results reveal the dynamic genome evolution of the gourmet pine mushroom.
Collapse
Affiliation(s)
- Shu Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xue Bai
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Li-Yuan Ren
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hui-Hui Sun
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hui-Ping Tang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lu-Min Vaario
- Department of Forest Science, University of Helsinki, Helsinki, FI-00014, Finland
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
4
|
Zhang Y, Mo M, Yang L, Mi F, Cao Y, Liu C, Tang X, Wang P, Xu J. Exploring the Species Diversity of Edible Mushrooms in Yunnan, Southwestern China, by DNA Barcoding. J Fungi (Basel) 2021; 7:310. [PMID: 33920593 PMCID: PMC8074183 DOI: 10.3390/jof7040310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Yunnan Province, China, is famous for its abundant wild edible mushroom diversity and a rich source of the world's wild mushroom trade markets. However, much remains unknown about the diversity of edible mushrooms, including the number of wild edible mushroom species and their distributions. In this study, we collected and analyzed 3585 mushroom samples from wild mushroom markets in 35 counties across Yunnan Province from 2010 to 2019. Among these samples, we successfully obtained the DNA barcode sequences from 2198 samples. Sequence comparisons revealed that these 2198 samples likely belonged to 159 known species in 56 different genera, 31 families, 11 orders, 2 classes, and 2 phyla. Significantly, 51.13% of these samples had sequence similarities to known species at lower than 97%, likely representing new taxa. Further phylogenetic analyses on several common mushroom groups including 1536 internal transcribed spacer (ITS) sequences suggested the existence of 20 new (cryptic) species in these groups. The extensive new and cryptic species diversity in wild mushroom markets in Yunnan calls for greater attention for the conservation and utilization of these resources. Our results on both the distinct barcode sequences and the distributions of these sequences should facilitate new mushroom species discovery and forensic authentication of high-valued mushrooms and contribute to the scientific inventory for the management of wild mushroom markets.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Meizi Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Liu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Fei Mi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Yang Cao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Chunli Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Xiaozhao Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Pengfei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (M.M.); (L.Y.); (F.M.); (Y.C.); (C.L.); (X.T.); (P.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
Tang X, Ding X, Hou YL. Comparative analysis of transcriptomes revealed the molecular mechanism of development of Tricholoma matsutake at different stages of fruiting bodies. Food Sci Biotechnol 2020; 29:939-951. [PMID: 32582456 DOI: 10.1007/s10068-020-00732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022] Open
Abstract
The purpose of the study is to investigate the molecular mechanisms of development of Tricholoma matsutake fruiting body at the primordial stage (TM-1), the intermediate stage (TM-2) and the mature stage (TM-3) using RNA-Seq sequencing technology. The analysis of gene expression level revealed that the Spn2 and Eef1a1 gene were the key genes in the primordial stage of T. matsutake by regulating cytokinesis, protein synthesis, and cell growth. And the Ubc, Atp6, Cytb, and Pth2 gene were the key genes in the mature stage of T. matsutake by regulating energy metabolism and protein synthesis. Differential expression genes (DEGs) analysis results showed that Cdc28, Rad53, Dun1, Pho85 and Pho81 were the key DEGs regulating cell cycle genes of T. matsutake from primordial stage to intermediate stage. And APC, Cyr1, Cdc45, Spo11 and Rec8 genes were the key DEGs for the meiosis and sporogenesis of T. matsutake from the intermediate stage to the mature stage.
Collapse
Affiliation(s)
- Xian Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| | - Yi-Ling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China
| |
Collapse
|
6
|
Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci Rep 2017; 7:46221. [PMID: 28393865 PMCID: PMC5385516 DOI: 10.1038/srep46221] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/10/2017] [Indexed: 11/08/2022] Open
Abstract
Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 106 km2, 0.14 × 106 km2, and 0.11 × 106 km2, respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species.
Collapse
|
8
|
Yamaguchi M, Narimatsu M, Fujita T, Kawai M, Kobayashi H, Ohta A, Yamada A, Matsushita N, Neda H, Shimokawa T, Murata H. A qPCR assay that specifically quantifies Tricholoma matsutake biomass in natural soil. MYCORRHIZA 2016; 26:847-861. [PMID: 27371100 DOI: 10.1007/s00572-016-0718-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Tricholoma matsutake is an ectomycorrhizal basidiomycete that produces prized, yet uncultivable, "matsutake" mushrooms along densely developed mycelia, called "shiro," in the rhizosphere of coniferous forests. Pinus densiflora is a major host of this fungus in Japan. Measuring T. matsutake biomass in soil allows us to determine the kinetics of fungal growth before and after fruiting, which is useful for analyzing the conditions of the shiro and its surrounding mycorrhizosphere, predicting fruiting timing, and managing forests to obtain better crop yields. Here, we document a novel method to quantify T. matsutake mycelia in soil by quantifying a single-copy DNA element that is uniquely conserved within T. matsutake but is absent from other fungal species, including close relatives and a wide range of ectomycorrhizal associates of P. densiflora. The targeted DNA region was amplified quantitatively in cultured mycelia that were mixed with other fungal species and soil, as well as in an in vitro co-culture system with P. densiflora seedlings. Using this method, we quantified T. matsutake mycelia not only from shiro in natural environments but also from the surrounding soil in which T. matsutake mycelia could not be observed by visual examination or distinguished by other means. It was demonstrated that the core of the shiro and its underlying area in the B horizon are predominantly composed of fungal mycelia. The fungal mass in the A or A0 horizon was much lower, although many white mycelia were observed at the A horizon. Additionally, the rhizospheric fungal biomass peaked during the fruiting season.
Collapse
Affiliation(s)
- Muneyoshi Yamaguchi
- Department of Applied Microbiology and Mushroom Science, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Maki Narimatsu
- Iwate Prefectural Forestry Technology Center, Kemuyama, Yahaba, Iwate, 028-3623, Japan
| | - Toru Fujita
- Kyoto Prefectural Forestry Technology Center, 1 Tsuchiya Honjo, Kyotanba, Kyoto, 629-1121, Japan
| | - Masataka Kawai
- Nara Forest Research Institute, Takatori, Nara, 635-0133, Japan
| | - Hisayasu Kobayashi
- Ibaraki Prefectural Forestry Research Institute, Naka, Ibaraki, 311-0122, Japan
| | - Akira Ohta
- Shiga Forest Research Center, Yasu, Shiga, 520-2321, Japan
| | - Akiyoshi Yamada
- Faculty of Agriculture, Shinshu University, Minami-minowa, Nagano, 399-4598, Japan
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hitoshi Neda
- Department of Applied Microbiology and Mushroom Science, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Tomoko Shimokawa
- Department of Applied Microbiology and Mushroom Science, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Hitoshi Murata
- Department of Applied Microbiology and Mushroom Science, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
9
|
Cultivation of Basidiomycete Edible Ectomycorrhizal Mushrooms: Tricholoma, Lactarius, and Rhizopogon. SOIL BIOLOGY 2012. [DOI: 10.1007/978-3-642-33823-6_16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|