1
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
2
|
Hu Z, Jiao L, Xie X, Xu L, Yan J, Yang M, Yan Y. Characterization of a New Thermostable and Organic Solution-Tolerant Lipase from Pseudomonas fluorescens and Its Application in the Enrichment of Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24108924. [PMID: 37240270 DOI: 10.3390/ijms24108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The search for and characterization of new lipases with excellent properties has always been urgent and is of great importance to meet industrial needs. In this study, a new lipase, lipB, from Pseudomonas fluorescens SBW25, belonging to the lipase subfamily I.3, was cloned and expressed in Bacillus subtilis WB800N. Enzymatic properties studies of recombinant LipB found that it exhibited the highest activity towards p-nitrophenyl caprylate at 40 °C and pH 8.0, retaining 73% of its original activity after incubation at 70 °C for 6 h. In addition, Ca2+, Mg2+, and Ba2+ strongly enhanced the activity of LipB, while Cu2+, Zn2+, Mn2+, and CTAB showed an inhibiting effect. The LipB also displayed noticeable tolerance to organic solvents, especially acetonitrile, isopropanol, acetone, and DMSO. Moreover, LipB was applied to the enrichment of polyunsaturated fatty acids from fish oil. After hydrolyzing for 24 h, it could increase the contents of polyunsaturated fatty acids from 43.16% to 72.18%, consisting of 5.75% eicosapentaenoic acid, 19.57% docosapentaenoic acid, and 46.86% docosahexaenoic acid, respectively. The properties of LipB render it great potential in industrial applications, especially in health food production.
Collapse
Affiliation(s)
- Zhiming Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liangcheng Jiao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoman Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Xu K, Tong Y, Li Y, Tao J, Rao S, Li J, Zhou J, Liu S. Autoinduction Expression Modules for Regulating Gene Expression in Bacillus subtilis. ACS Synth Biol 2022; 11:4220-4225. [PMID: 36468943 DOI: 10.1021/acssynbio.2c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although quorum sensing (QS) promoters that can autonomously activate gene expression have been identified and engineered in Bacillus subtilis, researchers focus on quantifying individual promoters while ignoring the interaction between other genetic regulatory elements. Here, we constructed the autoinduction expression modules consisting of promoters responsive to QS ComQXPA, ribosome binding sites (RBSs), and terminators. Using superfolder green fluorescent protein (sfGFP) as a reporter gene, three individual element libraries were generated from 945 promoters, 12,000 RBSs, and 425 terminators by random mutation, de novo design, and database mining strategies, respectively. Then, the efficiency of three libraries in regulating gene expression was further enhanced by engineering the core region of each optimal element. After hybridizing the element libraries, the generated expression modules exhibited a 627-fold range in regulating gene expression without significantly affecting the autoinduction initiation. Here, the hybrid modules with broad expression strength may benefit the application of QS-based autoinduction systems in B. subtilis.
Collapse
Affiliation(s)
- Kuidong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Ye J, Li Y, Bai Y, Zhang T, Jiang W, Shi T, Wu Z, Zhang YHPJ. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis. BIORESOUR BIOPROCESS 2022; 9:56. [PMID: 38647747 PMCID: PMC10991129 DOI: 10.1186/s40643-022-00540-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
To mimic the Escherichia coli T7 protein expression system, we developed a facile T7 promoter-based protein expression system in an industrial microorganism Bacillus subtilis. This system has two parts: a new B. subtilis strain SCK22 and a plasmid pHT7. To construct strain SCK22, the T7 RNA polymerase gene was inserted into the chromosome, and several genes, such as two major protease genes, a spore generation-related gene, and a fermentation foam generation-related gene, were knocked out to facilitate good expression in high-density cell fermentation. The gene of a target protein can be subcloned into plasmid pHT7, where the gene of the target protein was under tight control of the T7 promoter with a ribosome binding site (RBS) sequence of B. subtilis (i.e., AAGGAGG). A few recombinant proteins (i.e., green fluorescent protein, α-glucan phosphorylase, inositol monophosphatase, phosphoglucomutase, and 4-α-glucanotransferase) were expressed with approximately 25-40% expression levels relative to the cellular total proteins estimated by SDS-PAGE by using B. subtilis SCK22/pHT7-derived plasmid. A fed-batch high-cell density fermentation was conducted in a 5-L fermenter, producing up to 4.78 g/L inositol monophosphatase. This expression system has a few advantageous features, such as, wide applicability for recombinant proteins, high protein expression level, easy genetic operation, high transformation efficiency, good genetic stability, and suitability for high-cell density fermentation.
Collapse
Affiliation(s)
- Jing Ye
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yunjie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yuqing Bai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ting Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Wei Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
5
|
Elemosho R, Suwanto A, Thenawidjaja M. Extracellular expression in Bacillus subtilis of a thermostable Geobacillus stearothermophilus lipase. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Heterologous expression of the novel α-helical hybrid peptide PR-FO in Bacillus subtilis. Bioprocess Biosyst Eng 2020; 43:1619-1627. [PMID: 32350599 DOI: 10.1007/s00449-020-02353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022]
Abstract
PR-FO is a novel α-helical hybrid antimicrobial peptide (AMP) with strong antimicrobial activities and high stability, and the potential to develop into a new generation of antimicrobial agents. In this study, the encoded gene sequence of SMT3-PR-FO was designed and transformed into B. subtilis WB800N. Fusion proteins with concentrations of 16 mg L-1 (SPamyQ) and 23 mg L-1 (SPsacB) were obtained after purification by a Ni-NTA resin column. A total of 3 mg (SPamyQ) and 4 mg (SPsacB) of PR-FO with a purity of 90% was obtained from 1 L fermentation cultures. Recombinant PR-FO exhibited high inhibition activities against both gram-negative bacteria and gram-positive bacteria, and low haemolytic activity against human red blood cells. These results indicated that the rSMT3-PR-FO could be expressed under the guidance of SPamyQ and SPsacB, and the maltose-induced expression strategy might be a safe and efficient method for the soluble peptides production in B. subtilis.
Collapse
|
7
|
Wu Y, Chen X, Wang L, Wu L, Lin L, Ding W, Che Z, Wang J, Li J, Liu Y, Sun W. Safe preparation of beefy meaty peptide with
Bacillus subtilis. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuanming Wu
- College of Life Science and Environment Hengyang Normal University Hengyang421008 China
| | - Xiaohua Chen
- School of Food and Biotechnology Xihua University Chengdu610039 China
| | - Li Wang
- College of Life Science and Environment Hengyang Normal University Hengyang421008 China
| | - Lunjie Wu
- College of Life Science and Environment Hengyang Normal University Hengyang421008 China
| | - Lu Lin
- College of Life Science and Environment Hengyang Normal University Hengyang421008 China
| | - Wenwu Ding
- College of Life Science and Environment Hengyang Normal University Hengyang421008 China
| | - Zhenming Che
- College of Life Science and Environment Hengyang Normal University Hengyang421008 China
| | - Jianfeng Wang
- Faculty of Biology East China University of Technology Nanchang 330013 China
| | - Jianzhou Li
- School of Food and Biotechnology Xihua University Chengdu610039 China
| | - Yi Liu
- College of Life Science and Environment Hengyang Normal University Hengyang421008 China
| | - Weifeng Sun
- College of Life Science and Environment Hengyang Normal University Hengyang421008 China
| |
Collapse
|
8
|
Sun W, Wu Y, Ding W, Wang L, Wu L, Lin L, Che Z, Zhu L, Liu Y, Chen X. An auto-inducible expression and high cell density fermentation of Beefy Meaty Peptide with Bacillus subtilis. Bioprocess Biosyst Eng 2019; 43:701-710. [PMID: 31844973 DOI: 10.1007/s00449-019-02268-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
Currently, some cases about the expression of flavor peptides with microorganisms were reported owing to the obvious advantages of biological expression over traditional methods. However, beefy meaty peptide (BMP), the focus of umami peptides, has neither been concerned in its safe expression nor its overproduction in fermenter. In this study, multi-copy BMP (8BMP) was successfully auto-inducibly expressed and efficiently produced in Bacillus subtilis 168. First, 8BMP was successfully auto-inducibly expressed with srfA promoter in B. subtilis 168. Further, the efficient production of 8BMP was researched in a 5-L fermenter: the fermentation optimized by Pontryagin's maximum principle obtained the highest 8BMP yield (3.16 g/L), which was 1.2 times and 1.8 times than that of two-stage feeding cultivation (2.67 g/L) and constant-rate feeding cultivation (1.75 g/L), respectively. Overall, the auto-inducible expression of 8BMP in B. subtilis and fermentation with Pontryagin's maximum principle are conductive for overproduction of BMP and other peptides.
Collapse
Affiliation(s)
- Weifeng Sun
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China.
| | - Yuanming Wu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Wenwu Ding
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Li Wang
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Lunjie Wu
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Lu Lin
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Zhenming Che
- Key Laboratory of Food and Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
| | - Longbao Zhu
- School of Biochemical Engineering, Anhui Polytechnic University, Anhui, 241000, China
| | - Yi Liu
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China
| | - Xiaohua Chen
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421008, China
| |
Collapse
|
9
|
Shao H, Hu X, Sun L, Zhou W. Gene cloning, expression in E. coli, and in vitro refolding of a lipase from Proteus sp. NH 2-2 and its application for biodiesel production. Biotechnol Lett 2018; 41:159-169. [PMID: 30446859 DOI: 10.1007/s10529-018-2625-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To obtain active lipases for biodiesel production by refolding Proteus sp. lipase inclusion bodies expressed in E. coli. RESULTS A lipase gene lipPN1 was cloned from Proteus sp. NH 2-2 and expressed in E. coli BL21(DE3). Non-reducing SDS-PAGE revealed that recombinant LipPN1(rLipPN1) were prone to form inclusion bodies as disulfide-linked dimers in E. coli. Site-directed mutagenesis confirmed that Cys85 in LipPN1 was involved in the dimer formation. After optimizing the inclusion body refolding conditions, the maximum lipase activity reached 1662 U/L. The refolded rLipPN1 exhibited highest activity toward p-nitrophenyl butyrate at pH 9.0 and 40 °C. It could be activated by Ca2+ with moderate tolerance to organic solvents. It could also convert soybean oil into biodiesel at a conversion ratio of 91.5%. CONCLUSION Preventing the formation of disulfide bond could enhance the refolding efficiency of rLipPN1 inclusion bodies.
Collapse
Affiliation(s)
- Hua Shao
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| | - Xianmei Hu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Liping Sun
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Wenshan Zhou
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
10
|
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 2018; 34:145. [DOI: 10.1007/s11274-018-2531-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
|
11
|
Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 2017; 63:179-192. [DOI: 10.1139/cjm-2016-0447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the pulp and paper industry, during the manufacturing process, the agglomeration of pitch particles (composed of triglycerides, fatty acids, and esters) leads to the formation of black pitch deposits in the pulp and on machinery, which impacts on the process and pulp quality. Traditional methods of pitch prevention and treatment are no longer feasible due to environmental impact and cost. Consequently, there is a need for more efficient and environmentally friendly approaches. The application of lipolytic enzymes, such as lipases and esterases, could be the sustainable solution to this problem. Therefore, an understanding of their structure, mechanism, and sources are essential. In this report, we review the microbial sources for the different groups of lipolytic enzymes, the differences between lipases and esterases, and their potential applications in the pulping industry.
Collapse
Affiliation(s)
- L. Ramnath
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| | - B. Sithole
- Forestry and Forest Products Research Centre, Council for Scientific and Industrial Research, Durban 4000, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
| | - R. Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
12
|
A food-grade expression system for d-psicose 3-epimerase production in Bacillus subtilis using an alanine racemase-encoding selection marker. BIORESOUR BIOPROCESS 2017; 4:9. [PMID: 28191448 PMCID: PMC5274643 DOI: 10.1186/s40643-017-0139-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Background Food-grade expression systems require that the resultant strains should only contain materials from food-safe microorganisms, and no antibiotic resistance marker can be utilized. To develop a food-grade expression system for d-psicose 3-epimerase production, we use an alanine racemase-encoding gene as selection marker in Bacillus subtilis. Results In this study, the d-alanine racemase-encoding gene dal was deleted from the chromosome of B. subtilis 1A751 using Cre/lox system to generate the food-grade host. Subsequently, the plasmid-coded selection marker dal was complemented in the food-grade host, and RDPE was thus successfully expressed in dal deletion strain without addition of d-alanine. The selection appeared highly stringent, and the plasmid was stably maintained during culturing. The highest RDPE activity in medium reached 46 U/ml at 72 h which was comparable to RDPE production in kanamycin-based system. Finally, the capacity of the food-grade B. subtilis 1A751D2R was evaluated in a 7.5 l fermentor with a fed-batch fermentation. Conclusion The alanine racemase-encoding gene can be used as a selection marker, and the food-grade expression system was suitable for heterologous proteins production in B. subtilis. Electronic supplementary material The online version of this article (doi:10.1186/s40643-017-0139-7) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Drzewiecka D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. MICROBIAL ECOLOGY 2016; 72:741-758. [PMID: 26748500 PMCID: PMC5080321 DOI: 10.1007/s00248-015-0720-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/13/2015] [Indexed: 05/04/2023]
Abstract
Proteus spp. bacteria were first described in 1885 by Gustav Hauser, who had revealed their feature of intensive swarming growth. Currently, the genus is divided into Proteus mirabilis, Proteus vulgaris, Proteus penneri, Proteus hauseri, and three unnamed genomospecies 4, 5, and 6 and consists of 80 O-antigenic serogroups. The bacteria are known to be human opportunistic pathogens, isolated from urine, wounds, and other clinical sources. It is postulated that intestines are a reservoir of these proteolytic organisms. Many wild and domestic animals may be hosts of Proteus spp. bacteria, which are commonly known to play a role of parasites or commensals. However, interesting examples of their symbiotic relationships with higher organisms have also been described. Proteus spp. bacteria present in soil or water habitats are often regarded as indicators of fecal pollution, posing a threat of poisoning when the contaminated water or seafood is consumed. The health risk may also be connected with drug-resistant strains sourcing from intestines. Positive aspects of the bacteria presence in water and soil are connected with exceptional features displayed by autochthonic Proteus spp. strains detected in these environments. These rods acquire various metabolic abilities allowing their adaptation to different environmental conditions, such as high concentrations of heavy metals or toxic substances, which may be exploited as sources of energy and nutrition by the bacteria. The Proteus spp. abilities to tolerate or utilize polluting compounds as well as promote plant growth provide a possibility of employing these microorganisms in bioremediation and environmental protection.
Collapse
Affiliation(s)
- Dominika Drzewiecka
- Department of General Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, 90-237, Łódź, Poland.
| |
Collapse
|
14
|
Cheng J, Guan C, Cui W, Zhou L, Liu Z, Li W, Zhou Z. Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering. Protein Expr Purif 2016; 127:81-87. [PMID: 27426133 DOI: 10.1016/j.pep.2016.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Quorum-sensing related promoter srfA (PsrfA) was used to construct autoinducible expression system for production of recombinant proteins in Bacillus subtilis. PsrfA was prominent in the unique property of inducer-free activity that is closely correlated with cell density. Here, using green fluorescent protein (GFP) as the reporter protein, PsrfA was optimized by shortening its sequences and changing the nucleotides at the conserved regions of -35 -15 and -10 regions, obtaining a library of PsrfA derivatives varied in the strength of GFP production. Among all the promoter mutants, the strongest promoter P10 was selected and the strength in GFP expression was 150% higher than that of PsrfA. Heterologous protein of aminopeptidase and nattokinase could be overexpressed by P10, the activities of which were 360% and 50% higher than that of PsrfA, respectively. These results suggested that the enhanced promoter P10 could be used to develop autoinducible expression system for overexpression of heterologous proteins in B. subtilis.
Collapse
Affiliation(s)
- Jintao Cheng
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chengran Guan
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhongmei Liu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Weijiang Li
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Chen J, Zhao L, Fu G, Zhou W, Sun Y, Zheng P, Sun J, Zhang D. A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis. Microb Cell Fact 2016; 15:69. [PMID: 27125780 PMCID: PMC4850722 DOI: 10.1186/s12934-016-0469-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/21/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Gram-positive bacterium Bacillus subtilis has been widely used as a cell factory for the production of proteins due to its generally regarded as safe (GRAS) nature and secretion capability. Of the known secretory pathways in B. subtilis, the majority of proteins are exported from the cytoplasm by Sec pathway, Tat pathway and ABC transporters, etc. However, the production of heterologous proteins by B. subtilis is unfortunately not that straight forward because of the bottlenecks in classical secretion pathways. The aim of this work is to explore a new method for protein production based on non-classical secretion pathway. RESULTS One D-psicose 3-epimerase (RDPE) which converts D-fructose into D-psicose from Ruminococcus sp. 5_1_39BFAA was successfully and substantially secreted into the extracellular milieu without the direction of signal peptide. Subsequently, we demonstrated that RDPE contained no native signal peptide, and the secretion of RDPE was not dependent on Sec or Tat pathway or due to cell lysis, which indicated that RDPE is a non-classically secreted protein. Then, we attempted to evaluate the possibility of using RDPE as a signal to export eighteen reporter proteins into the culture medium. Five of eleven homologous proteins, two of five heterologous proteins from other bacterium and two heterologous proteins of eukaryotic source were successfully secreted into the extracellular milieu at different secretion levels when they were fused to RDPE mediated by a flexible 21-bp linker to keep a distance between two single proteins. Furthermore, the secretion rates of two fusion proteins (RDPE-DnaK and RDPE-RFP) reached more than 50 %. In addition, most of the fusion proteins retained enzyme or biological activity of their corresponding target proteins, and all of the fusions still had the activity of RDPE. CONCLUSIONS We found and identified a heterologous non-classically secreted protein RDPE, and showed that RDPE could direct proteins of various types into the culture medium, and thus non-classical protein secretion pathway can be used as a novel secretion pathway for recombinant proteins. This novel strategy for recombinant protein production is helpful to make B. subtilis as a more ideal cell factory for protein production.
Collapse
Affiliation(s)
- Jingqi Chen
- />Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Liuqun Zhao
- />Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Gang Fu
- />Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />National Engineering Laboratory for Industrial Enzymes, Tianjin, 300308 People’s Republic of China
| | - Wenjuan Zhou
- />Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Yuanxia Sun
- />Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />National Engineering Laboratory for Industrial Enzymes, Tianjin, 300308 People’s Republic of China
| | - Ping Zheng
- />Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Jibin Sun
- />Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Dawei Zhang
- />Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- />National Engineering Laboratory for Industrial Enzymes, Tianjin, 300308 People’s Republic of China
| |
Collapse
|
16
|
Guan C, Cui W, Cheng J, Zhou L, Guo J, Hu X, Xiao G, Zhou Z. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis. Microb Cell Fact 2015; 14:150. [PMID: 26392346 PMCID: PMC4578258 DOI: 10.1186/s12934-015-0341-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/12/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Bacillus subtilis is an all-important Gram-positive bacterium of valuable biotechnological utility that has been widely used to over-produce industrially and pharmaceutically relevant proteins. There are a variety of expression systems in terms of types of transcriptional patterns, among which the auto-inducible and growth-phase-dependent promoters are gaining increasing favor due to their inducer-independent feature, allowing for the potential to industrially scale-up. To expand the applicability of the auto-inducible expression system, a novel auto-regulatory expression system coupled with cell density was constructed and developed in B. subtilis using the quorum-sensing related promoter srfA (PsrfA). RESULTS The promoter of the srf operon was used to construct an expression plasmid with the green fluorescent protein (GFP) downstream of PsrfA. The expression displayed a cell-density-dependent pattern in that GFP had a fairly low expression level at the early exponential stage and was highly expressed at the late exponential as well as the stationary stages. Moreover, the recombinant system had a similar expression pattern in wild-type B. subtilis 168, WB600, and WB800, as well as in B. subtilis 168 derivative strain 1681, with the complete deletion of PsrfA, indicating the excellent compatibility of this system. Noticeably, the expression strength of PsrfA was enhanced by optimizing the -10 and -35 core sequence by substituting both sequences with consensus sequences. Importantly, the expression pattern was successfully developed in an auto-regulatory cell-density coupling system by the simple addition of glucose in which GFP could not be strongly expressed until glucose was depleted, resulting in a greater amount of the GFP product and increased cell density. The expression system was eventually tested by the successful over-production of aminopeptidase to a desired level. CONCLUSION The auto-regulatory cell density coupling system that is mediated by PsrfA is a novel expression system that has an expression pattern that is split between cell-growth and over-expression, leading to an increase in cell density and elevating the overall expression levels of heterologously expressed proteins. The broad applicability of this system and inducer-free expression property in B. subtilis facilitate the industrial scale-up and medical applications for the over-production of a variety of desired proteins.
Collapse
Affiliation(s)
- Chengran Guan
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Jintao Cheng
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Li Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Xu Hu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Guoping Xiao
- Wuxi Biortus Bioscience Co., Ltd, Wuxi, Jiangsu, 214122, China.
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
17
|
Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. ACTA ACUST UNITED AC 2014; 41:1599-607. [DOI: 10.1007/s10295-014-1506-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/27/2014] [Indexed: 12/19/2022]
Abstract
Abstract
Secretory expression of valuable enzymes by Bacillus subtilis and its related species has attracted intensive work over the past three decades. Although many proteins have been expressed and secreted, the titers of some recombinant enzymes are still low to meet the needs of practical applications. Signal peptides that located at the N-terminal of nascent peptide chains play crucial roles in the secretion process. In this mini-review, we summarize recent progress in secretory expression of recombinant proteins in Bacillus species. In particular, we highlighted and discussed the advances in molecular engineering of secretory machinery components, construction of signal sequence libraries and identification of functional signal peptides with high-throughput screening strategy. The prospects of future research are also proposed.
Collapse
|
18
|
Hwang HT, Qi F, Yuan C, Zhao X, Ramkrishna D, Liu D, Varma A. Lipase-catalyzed process for biodiesel production: Protein engineering and lipase production. Biotechnol Bioeng 2013; 111:639-53. [PMID: 24284881 DOI: 10.1002/bit.25162] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 11/20/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Hyun Tae Hwang
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Feng Qi
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Chongli Yuan
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Xuebing Zhao
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Doraiswami Ramkrishna
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Dehua Liu
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Arvind Varma
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| |
Collapse
|
19
|
Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 2013; 97:6113-27. [DOI: 10.1007/s00253-013-4960-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/29/2023]
|
20
|
Phuong ND, Jeong YS, Selvaraj T, Kim SK, Kim YH, Jung KH, Kim J, Yun HD, Wong SL, Lee JK, Kim H. Production of XynX, a large multimodular protein of thermoanaerobacterium sp., by protease-deficient Bacillus subtilis strains [corrected]. Appl Biochem Biotechnol 2012; 168:375-82. [PMID: 22729758 DOI: 10.1007/s12010-012-9781-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022]
Abstract
XynX of Thermoanaerobacterium sp. [corrected] is a large, multimodular xylanase of 116 kDa. An Escherichia coli transformant carrying the entire xynX produced three active truncated xylanase species of 105, 85, and 64 kDa intracellularly. The Bacillus subtilis WB700 transformant with the xynX, a strain deficient in seven proteases including Vpr, secreted two active truncated xylanase species of 65 and 44 kDa. The B. subtilis WB800 transformant with xynX, a strain deficient in eight proteases including Vpr and WprA, secreted more active enzymes, 8.46 U ml(-1), mostly in the form of 105 and 85 kDa, than the WB700 transformant, 6.93 U ml(-1). This indicates that the additional deletion of wprA enabled the WB800 to secrete XynX in its intact form. B. subtilis WB800 produced more total enzyme activity than E. coli (1,692 ± 274 U vs. 141.9 ± 27.1 U), and, more importantly, secreted almost all the enzyme activity. The results suggest the potential use of B. subtilis WB800 as a host system for the production of large multimodular proteins.
Collapse
Affiliation(s)
- Nguyen Dinh Phuong
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 540-742, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lu YP, Zhang C, Lv F, Bie X, Lu ZX. Study on the electro-transformation conditions of improving transformation efficiency for Bacillus subtilis. Lett Appl Microbiol 2012; 55:9-14. [DOI: 10.1111/j.1472-765x.2012.03249.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|