1
|
Li ZY, Cui YW, Liang HK, Yan HJ, Yang RC. Tetracycline degradation by a mixed culture of halotolerant fungi-bacteria under static magnetic field: Mechanism and antibiotic resistance genes transfer. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138181. [PMID: 40199074 DOI: 10.1016/j.jhazmat.2025.138181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Efficient antibiotics removal lowers the transmission risk of antibiotic resistance genes (ARGs). However, low efficiency limits the application of biological methods for antibiotics removal. Herein, a mixed culture of halotolerant fungi-bacteria was used for treatment of saline wastewater containing tetracycline (TC). Furthermore, static magnetic field (SMF) was used to increase TC removal. The study examined the effectiveness of SMF in removing antibiotics from saline wastewater and the associated risk of ARGs transmission. The results demonstrated that the application of a 40 mT SMF significantly improved the TC removal efficiency by 37.09 %, compared to the control (SMF=0) The TC was mainly removed through biodegradation and adsorption. In biodegradation, SMF enhanced electron transport system activity, and activities of lignin-degrading enzymes which led to higher TC biodegradation. The activity of lactate dehydrogenase and malondialdehyde decreased, lowering the damage of microbial cell membranes by TC. During the adsorption process, higher generation of extracellular polymeric substances was observed under SMF, which caused an increase in TC removal via adsorption. Microbial community analysis revealed that SMF facilitated the enrichment of TC-degrading microorganisms. Under SMF, vertical gene transfer of ARGs increased, while horizontal gene transfer risk decreased due to a reduction in mobile genetic elements (intl1) abundance. This study demonstrates that SMF is a promising strategy for enhancing TC removal efficiency, providing a basis for improved antibiotic wastewater management.
Collapse
Affiliation(s)
- Zhen-Ying Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Hui-Kai Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Hui-Juan Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Rui-Chun Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Retter A, Griebler C, Nilsson RH, Haas J, Birk S, Breyer E, Baltar F, Karwautz C. Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient. FEMS Microbiol Ecol 2024; 100:fiae139. [PMID: 39390678 PMCID: PMC11523079 DOI: 10.1093/femsec/fiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.
Collapse
Affiliation(s)
- Alice Retter
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Zur alten Fischerhuette 2, 16775 Neuglobsow, Germany
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden
| | - Johannes Haas
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Steffen Birk
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- College of Oceanography and Ecological Science, Shanghai Ocean University, 1104 Pingliang Rd, Yangpu District, 200082 Shanghai, China
| | - Clemens Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
3
|
Shrestha S, Goswami S, Banerjee D, Garcia V, Zhou E, Olmsted CN, Majumder ELW, Kumar D, Awasthi D, Mukhopadhyay A, Singer SW, Gladden JM, Simmons BA, Choudhary H. Perspective on Lignin Conversion Strategies That Enable Next Generation Biorefineries. CHEMSUSCHEM 2024; 17:e202301460. [PMID: 38669480 DOI: 10.1002/cssc.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.
Collapse
Affiliation(s)
- Shilva Shrestha
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shubhasish Goswami
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Valentina Garcia
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Elizabeth Zhou
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
| | - Charles N Olmsted
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Deepika Awasthi
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA 94550, United States
| |
Collapse
|
4
|
Stellner NI, Rerop ZS, Mehlmer N, Masri M, Ringel M, Brück TB. Expanding the genetic toolbox for Cutaneotrichosporon oleaginosus employing newly identified promoters and a novel antibiotic resistance marker. BMC Biotechnol 2023; 23:40. [PMID: 37723521 PMCID: PMC10506223 DOI: 10.1186/s12896-023-00812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Cutaneotrichosporon oleaginosus is an oleaginous yeast that can produce up to 80% lipid per dry weight. Its high capacity for the biosynthesis of single cell oil makes it highly interesting for the production of engineered lipids or oleochemicals for industrial applications. However, the genetic toolbox for metabolic engineering of this non-conventional yeast has not yet been systematically expanded. Only three long endogenous promoter sequences have been used for heterologous gene expression, further three dominant and one auxotrophic marker have been established. RESULTS In this study, the structure of putative endogenous promoter sequences was analyzed based on more than 280 highly expressed genes. The identified motifs of regulatory elements and translational initiation sites were used to annotate the four endogenous putative promoter sequences D9FADp, UBIp, PPIp, and 60Sp. The promoter sequences were tested in a construct regulating the known dominant marker hygromycin B phosphotransferase. The four newly described promoters and the previously established GAPDHp successfully initiated expression of the resistance gene and PPIp was selected for further marker development. The geneticin G418 resistance (aminoglycoside 3'-phosphotransferase, APH) and the nourseothricin resistance gene N-acetyl transferase (NAT) were tested for applicability in C. oleaginosus. Both markers showed high transformation efficiency, positive rate, and were compatible for combined use in a successive and simultaneous manner. CONCLUSIONS The implementation of four endogenous promoters and one novel dominant resistance markers for C. oleaginosus opens up new opportunities for genetic engineering and strain development. In combination with recently developed methods for targeted genomic integration, the established toolbox allows a wide spectrum of new strategies for genetic and metabolic engineering of the industrially highly relevant yeast.
Collapse
Affiliation(s)
- Nikolaus I Stellner
- TUM School of Natural Sciences, Department of Chemistry, Werner Siemens-Chair for Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- TUM CREATE Ltd, 1 Create Way, #10-02 CREATE Tower, Singapore, 138602, Singapore
| | - Zora S Rerop
- TUM School of Natural Sciences, Department of Chemistry, Werner Siemens-Chair for Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Norbert Mehlmer
- TUM School of Natural Sciences, Department of Chemistry, Werner Siemens-Chair for Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Mahmoud Masri
- TUM School of Natural Sciences, Department of Chemistry, Werner Siemens-Chair for Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Marion Ringel
- TUM School of Natural Sciences, Department of Chemistry, Werner Siemens-Chair for Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Thomas B Brück
- TUM School of Natural Sciences, Department of Chemistry, Werner Siemens-Chair for Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
5
|
Oleaginous yeasts: Biodiversity and cultivation. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
7
|
Bioconversion of a Lignocellulosic Hydrolysate to Single Cell Oil for Biofuel Production in a Cost-Efficient Fermentation Process. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Cutaneotrichosporon oleaginosus is a highly efficient single cell oil producer, which in addition to hexoses and pentoses can metabolize organic acids. In this study, fed-batch cultivation with consumption-based acetic acid feeding was further developed to integrate the transformation of an industrial paper mill lignocellulosic hydrolysate (LCH) into yeast oil. Employing pentose-rich LCH as a carbon source instead of glucose significantly improved both biomass formation and lipid titer, reaching 55.73 ± 5.20 g/L and 42.1 ± 1.7 g/L (75.5% lipid per biomass), respectively. This hybrid approach of using acetic acid and LCH in one process was further optimized to increase the share of bioavailable carbon from LCH using a combination of consumption-based and continuous feeding. Finally, the techno-economic analysis revealed a 26% cost reduction when using LCH instead of commercial glucose. In summary, we developed a process leading to a holistic approach to valorizing a pentose-rich industrial waste by converting it into oleochemicals.
Collapse
|
8
|
Lopes DD, Dien BS, Hector RE, Singh V, Thompson SR, Slininger PJ, Boundy-Mills K, Jagtap SS, Rao CV. Determining mating type and ploidy in Rhodotorula toruloides and its effect on growth on sugars from lignocellulosic biomass. J Ind Microbiol Biotechnol 2023; 50:kuad040. [PMID: 37989723 PMCID: PMC10690854 DOI: 10.1093/jimb/kuad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH). Mating type was determined using a novel polymerase chain reaction (PCR)-based assay, which was validated using the classical microscopic test. Three of the strains were heterozygous for mating type (A1/A2). Ploidy analysis revealed a complex pattern. Two strains were triploid, eight haploid, and eight either diploid or aneuploid. Two of the A1/A2 strains were compared to their parents for growth on 75%v/v concentrated SGH. The A1/A2 strains were much more robust than the parental strains, which either did not grow or had extended lag times. The entire set was evaluated in 60%v/v SGH batch cultures for growth kinetics and biomass and lipid production. Lipid titers were 2.33-9.40 g/L with a median of 6.12 g/L, excluding the two strains that did not grow. Lipid yields were 0.032-0.131 (g/g) and lipid contents were 13.5-53.7% (g/g). Four strains had significantly higher lipid yields and contents. One of these strains, which had among the highest lipid yield in this study (0.131 ± 0.007 g/g), has not been previously described in the literature. SUMMARY The yeast Rhodotorula toruloides was used to produce oil using sugars extracted from a bioenergy grass.
Collapse
Affiliation(s)
- Daiane Dias Lopes
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bruce S Dien
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ronald E Hector
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Vijay Singh
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie R Thompson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Patricia J Slininger
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL 61604, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sujit S Jagtap
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Christopher V Rao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
9
|
Wu F, Wang H, Chen Q, Pang X, Jing H, Yin L, Zhang X. Lignin Promotes Mycelial Growth and Accumulation of Polyphenols and Ergosterol in Lentinula edodes. J Fungi (Basel) 2023; 9:jof9020237. [PMID: 36836351 PMCID: PMC9960748 DOI: 10.3390/jof9020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
It has been demonstrated that lignin was efficiently degraded by Lentinula edodes (L. edodes). However, the process of lignin degradation and utilization by L. edodes has not been discussed in detail. Therefore, the effects of lignin on L. edodes mycelium growth, chemical compositions, and phenolic profiles were investigated herein. It has been revealed that 0.10% lignin acted as the most effective concentration to accelerate mycelia growth, which yielded the highest biomass of 5.32 ± 0.07 g/L. Furthermore, a 0.10% concentration of lignin promoted the accumulation of phenolic compounds, especially protocatechuic acid, with peak value of 48.5 ± 1.2 μg/g. In contrast, the higher concentration of lignin (0.20%) exerted an inhibitory effect on the growth of L. edodes. Overall, the application of lignin at the optimal concentration of 0.10% could not only enhance the mycelial growth but also accumulate the phenolic acids and raise the nutritional and medical values of L. edodes.
Collapse
Affiliation(s)
- Feifei Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Heqin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiufeng Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Pang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hao Jing
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiuqing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
10
|
Vilela N, Tomazetto G, Gonçalves TA, Sodré V, Persinoti GF, Moraes EC, de Oliveira AHC, da Silva SN, Fill TP, Damasio A, Squina FM. Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:5. [PMID: 36624471 PMCID: PMC9830802 DOI: 10.1186/s13068-022-02251-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds. RESULTS Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2. CONCLUSIONS The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.
Collapse
Affiliation(s)
- Nathália Vilela
- grid.442238.b0000 0001 1882 0259Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil ,grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Geizecler Tomazetto
- grid.7048.b0000 0001 1956 2722Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200 Aarhus, Denmark
| | - Thiago Augusto Gonçalves
- grid.4989.c0000 0001 2348 0746Photobiocatalysis Unit—CPBL, and Biomass Transformation Lab—BTL, École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Brussels, Belgium
| | - Victoria Sodré
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, UK
| | - Gabriela Felix Persinoti
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Eduardo Cruz Moraes
- grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- grid.11899.380000 0004 1937 0722Department of Chemistry, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Stephanie Nemesio da Silva
- grid.411087.b0000 0001 0723 2494Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Taícia Pacheco Fill
- grid.411087.b0000 0001 0723 2494Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Damasio
- grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabio Marcio Squina
- grid.442238.b0000 0001 1882 0259Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil
| |
Collapse
|
11
|
Lin CY, Geiselman GM, Liu D, Magurudeniya HD, Rodriguez A, Chen YC, Pidatala V, Unda F, Amer B, Baidoo EEK, Mansfield SD, Simmons BA, Singh S, Scheller HV, Gladden JM, Eudes A. Evaluation of engineered low-lignin poplar for conversion into advanced bioproducts. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:145. [PMID: 36567331 PMCID: PMC9790118 DOI: 10.1186/s13068-022-02245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/10/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lignocellulosic resources are promising feedstocks for the manufacture of bio-based products and bioenergy. However, the inherent recalcitrance of biomass to conversion into simple sugars currently hinders the deployment of advanced bioproducts at large scale. Lignin is a primary contributor to biomass recalcitrance as it protects cell wall polysaccharides from degradation and can inhibit hydrolytic enzymes via non-productive adsorption. Several engineering strategies have been designed to reduce lignin or modify its monomeric composition. For example, expression of bacterial 3-dehydroshikimate dehydratase (QsuB) in poplar trees resulted in a reduction in lignin due to redirection of metabolic flux toward 3,4-dihydroxybenzoate at the expense of lignin. This reduction was accompanied with remarkable changes in the pools of aromatic compounds that accumulate in the biomass. RESULTS The impact of these modifications on downstream biomass deconstruction and conversion into advanced bioproducts was evaluated in the current study. Using ionic liquid pretreatment followed by enzymatic saccharification, biomass from engineered trees released more glucose and xylose compared to wild-type control trees under optimum conditions. Fermentation of the resulting hydrolysates using Rhodosporidium toruloides strains engineered to produce α-bisabolene, epi-isozizaene, and fatty alcohols showed no negative impact on cell growth and yielded higher titers of bioproducts (as much as + 58%) in the case of QsuB transgenics trees. CONCLUSION Our data show that low-recalcitrant poplar biomass obtained with the QsuB technology has the potential to improve the production of advanced bioproducts.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Gina M. Geiselman
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA 94550 USA ,DOE, Agile BioFoundry, Emeryville, CA 94608 USA
| | - Di Liu
- grid.474523.30000000403888279Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA 94550 USA ,DOE, Agile BioFoundry, Emeryville, CA 94608 USA
| | - Harsha D. Magurudeniya
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Alberto Rodriguez
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA 94550 USA ,DOE, Agile BioFoundry, Emeryville, CA 94608 USA
| | - Yi-Chun Chen
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Venkataramana Pidatala
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Faride Unda
- grid.17091.3e0000 0001 2288 9830Department of Wood Science, University of British Columbia, Vancouver, BC Canada
| | - Bashar Amer
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Edward E. K. Baidoo
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Shawn D. Mansfield
- grid.17091.3e0000 0001 2288 9830Department of Wood Science, University of British Columbia, Vancouver, BC Canada ,grid.454753.40000 0004 0520 2998DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI 53726 USA
| | - Blake A. Simmons
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Seema Singh
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Department of Bioresources and Environmental Security, Sandia National Laboratories, Livermore, CA 94550 USA
| | - Henrik V. Scheller
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - John M. Gladden
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.474523.30000000403888279Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA 94550 USA ,DOE, Agile BioFoundry, Emeryville, CA 94608 USA
| | - Aymerick Eudes
- grid.451372.60000 0004 0407 8980DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
12
|
Singh S, Bharadwaj T, Verma D, Dutta K. Valorization of phenol contaminated wastewater for lipid production by Rhodosporidium toruloides 9564 T. CHEMOSPHERE 2022; 308:136269. [PMID: 36057352 DOI: 10.1016/j.chemosphere.2022.136269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Phenol is one of the most common hazardous organic compound presents in several industrial effluents which directly affects the aquatic environment. The present study envisaged the phenol biodegradation and simultaneous lipid production along with its underlying mechanism by oleaginous yeast Rhodosporidium toruloides 9564T. Experiments were designed using simulated wastewater by varying phenol concentration in the range of 0.25-1.5 g/L and inoculum size of 1, 5, and 10% with and without glucose. The oleaginous yeast was found to completely degrade up to 0.75 g/L phenol with lipid accumulation of 26.3%. Phenol at > 0.5 g/L severely inhibited the growth of R. toruloides 9564T at 1% and 5% inoculum size. Phenol toxicity up to 0.75 g/L can be overcome by increasing inoculum size to 10%. The maximum specific growth rate (μmax) and phenol degradation rate (qmax) were found to be 0.0717 h-1 and 0.01523 h-1, respectively. The enzymatic pathway study suggested that R. toruloides 9564T follows an ortho cleavage pathway for phenol degradation and lipid accumulation. Phytotoxicty and cytotoxicity tests for treated and untreated samples clearly demonstrated a decline in toxicity of the treated wastewater. R. toruloides brought about an important paradigm shift toward a circular economy in which industrial wastewater is considered a valuable resource for bioenergy production.
Collapse
Affiliation(s)
- Sangeeta Singh
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tanmay Bharadwaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
13
|
Wang J, Xiong J, Feng Q, Wan Z, Zhou Z, Xiao B, Zhang J, Singdala O. Intimately coupled photocatalysis and functional bacterial system enhance degradation of 1,2,3- and 1,3,5-trichlorobenzene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115595. [PMID: 35772268 DOI: 10.1016/j.jenvman.2022.115595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Intimate coupling of photocatalysis and biodegradation (ICPB) is considered a promising approach for the degradation of recalcitrant organic compounds. In this work, using Trichoderma with benzene degradation ability coupled with activated sludge as a biological source and sugarcane bagasse cellulose composite as a carrier, the ICPB system showed excellent degradation and mineralization of trichlorobenzene under visible light induction. The biofilm inside the ICPB carrier can degrade and mineralize the photocatalytic products. ICPB increased the degradation efficiency of 1,2,3-TCB and 1,3,5-TCB by 12.43% and 4.67%, respectively, compared to photocatalysis alone. The biofilms inside the ICPB carriers can mineralize photocatalytic products, which increases the mineralization efficiency by 18.74%. According to the analysis of intermediates, the degradation of 1,2,3-TCB in this coupled system involved stepwise dechlorination and ring opening. The biofilm in ICPB carrier evolved to be enriched in Cutaneotrichosporon, Trichoderma, Apiotrichum, Zoogloea, Dechloromonas, Flavihumibacter and Cupriavidus, which are known for biodegradable aromatic hydrocarbon and halogenate. Novel microbial seeds supplemented with Trichoderma-based ICPB seem to provide a new potential strategy for effective degradation and mineralization of TCB.
Collapse
Affiliation(s)
- Jue Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.
| | - Qilin Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Zhou Wan
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Zhenqi Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Bing Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Outhay Singdala
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, 530007, China.
| |
Collapse
|
14
|
Wang M, Li J, Ning S, Fu X, Wang X, Tan L. Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153452. [PMID: 35093373 DOI: 10.1016/j.scitotenv.2022.153452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Operation performance and membrane fouling of a novel static magnetic field membrane bioreactor (SMFMBR) for treatment of hypersaline azo dye wastewater was investigated. The results showed that SMFMBRs possessed higher efficiency of dye decolorization, COD removal and detoxification than the control MBR without SMF. The (3#) SMFMBR equipped with 305.0 mT (the highest intensity) SMF displayed the best treatment performance among all the four reactors (named as 0#-3#, equipped with SMFs of 0 mT, 95.0 mT, 206.3 mT and 305.0 mT, respectively). Potentially effective microbes belonging to Rhodanobacter, Saccharibacteria genera incertae sedis, Defluviimonas, Cellulomonas, Cutaneotrichosporon, Candida and Pichia were enriched in three SMFMBRs, in both of suspended sludge and bio-cakes. The relative abundance of Candida and Pichia in suspended sludge of 3# SMFMBR was the highest among all the four reactors, suggesting their successful colonization and potentially persistent effect of bioaugmentation. On the other hand, SMF of higher intensity effectively mitigated membrane fouling. Less production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), lower protein/polysaccharide (PN/PS) ratio in SMP and EPS, looser structure of bio-cakes on membrane surface, as well as lower relative abundance of potential fouling causing microbes (mainly bacteria) in microbial communities were determined in 3# SMFMBR than the other three groups.
Collapse
Affiliation(s)
- Meining Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Jiamin Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Shuxiang Ning
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaohan Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Liang Tan
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China.
| |
Collapse
|
15
|
Evaluation of Lignocellulosic Wastewater Valorization with the Oleaginous Yeasts R. kratochvilovae EXF7516 and C. oleaginosum ATCC 20509. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the conversion of lignocellulose, phenolic wastewaters are generated. Therefore, researchers have investigated wastewater valorization processes in which these pollutants are converted to chemicals, i.e., lipids. However, wastewaters are lean feedstocks, so these valorization processes in research typically require the addition of large quantities of sugars and sterilization, which increase costs. This paper investigates a repeated batch fermentation strategy with Rhodotorula kratochvilovae EXF7516 and Cutaneotrichosporon oleaginosum ATCC 20509, without these requirements. The pollutant removal and its conversion to microbial oil were evaluated. Because of the presence of non-monomeric substrates, the ligninolytic enzyme activity was also investigated. The repeated batch fermentation strategy was successful, as more lipids accumulated every cycle, up to a total of 5.4 g/L (23% cell dry weight). In addition, the yeasts consumed up to 87% of monomeric substrates, i.e., sugars, aromatics, and organics acids, and up to 23% of non-monomeric substrates, i.e., partially degraded xylan, lignin, cellulose. Interestingly, lipid production was only observed during the harvest phase of each cycle, as the cells experienced stress, possibly due to oxygen limitation. This work presents the first results on the feasibility of valorizing non-sterilized lignocellulosic wastewater with R. kratochvilovae and C. oleaginosum using a cost-effective repeated batch strategy.
Collapse
|
16
|
Wang H, Peng X, Li H, Giannis A, He C. Recent Biotechnology Advances in Bio-Conversion of Lignin to Lipids by Bacterial Cultures. Front Chem 2022; 10:894593. [PMID: 35494654 PMCID: PMC9039179 DOI: 10.3389/fchem.2022.894593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
The complexity and recalcitrance of the lignin structure is a major barrier to its efficient utilization and commercial production of high-value products. In recent years, the “bio-funneling” transformation ability of microorganisms has provided a significant opportunity for lignin conversion and integrated biorefinery. Based on the chemical structure of lignin, this mini-review introduces the recent advances of lignin depolymerization by bacterial strains and the application of microbial lignin degradation in lipids production. Furthermore, the current challenges, future trends and perspectives for microbe-based lignin conversion to lipids are discussed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- Guizhou Industry Polytechnic College, Guiyang, China
| | - Xiaodong Peng
- Guizhou Institute of Products Quality Inspection and Testing, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- *Correspondence: Hu Li, ; Chao He,
| | - Apostolos Giannis
- School of Chemical and Environmental Engineering, Technical University of Crete, University Campus, Chania, Greece
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
- *Correspondence: Hu Li, ; Chao He,
| |
Collapse
|
17
|
Shaigani P, Awad D, Redai V, Fuchs M, Haack M, Mehlmer N, Brueck T. Oleaginous yeasts- substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microb Cell Fact 2021; 20:220. [PMID: 34876116 PMCID: PMC8650408 DOI: 10.1186/s12934-021-01710-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/20/2021] [Indexed: 11/12/2022] Open
Abstract
Background Oleaginous yeasts are promising microbial platforms for sustainable, bio-based production of biofuels and oleochemical building blocks. Bio-based residues provide sustainable and cost-effective carbon sources for fermentative yeast oil production without land-use change. Considering the regional abundancy of different waste streams, we chose complex biomass residue streams of marine origin; macroalgae hydrolysate, and terrestrial origin; wheat straw hydrolysate in the presence, and absence of corn steep liquor as a complex nitrogen source. We investigated the biomass and lipid yields of an array of well-described oleaginous yeasts; R. glutinis, T. asahii, R. mucilaginosa, R. toruloides, C. oleaginosus growing on these hydrolysates. Furthermore, their sugar utilization, fatty acid profile, and inhibitory effect of the hydrolysates on yeast growth were compared. For correlative reference, we initially performed comparative growth experiments for the strains on individual monomeric sugars separately. Each of these monomeric sugars was a dominant carbon source in the complex biomass hydrolysates evaluated in this study. In addition, we evaluated N-acetylglucosamine, the monomeric building block of chitin, as a low-cost nitrogen and carbon source in yeast fermentation. Results C. oleaginosus provided the highest biomass and lipid yields. In the wheat straw and brown algae hydrolysates, this yeast strain gained 7.5 g/L and 3.8 g/L lipids, respectively. Cultivation in algae hydrolysate resulted in a higher level of unsaturated fatty acids in the lipids accumulated by all yeast strains. R. toruloides and C. oleaginosus were able to effectively co-utilize mannitol, glucose, and xylose. Growth rates on wheat straw hydrolysate were enhanced in presence of corn steep liquor. Conclusions Among the yeast strains investigated in this study, C. oleaginosus proved to be the most versatile strain in terms of substrate utilization, productivity, and tolerance in the complex media. Various fatty acid profiles obtained on each substrate encourage the manipulation of culture conditions to achieve the desired fatty acid composition for each application. This could be accomplished by combining the element of carbon source with other formerly studied factors such as temperature and oxygen. Moreover, corn steep liquor showed promise for enhancement of growth in the oleaginous strains provided that carbon substrate is available. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01710-3.
Collapse
Affiliation(s)
- Pariya Shaigani
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Veronika Redai
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Monika Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Thomas Brueck
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
18
|
Al-Tohamy R, Sun J, Khalil MA, Kornaros M, Ali SS. Wood-feeding termite gut symbionts as an obscure yet promising source of novel manganese peroxidase-producing oleaginous yeasts intended for azo dye decolorization and biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:229. [PMID: 34863263 PMCID: PMC8645103 DOI: 10.1186/s13068-021-02080-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/18/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production. RESULTS Out of 38 yeast isolates screened from wood-feeding termite gut symbionts, nine isolates exhibited high levels of extracellular manganese peroxidase (MnP) activity ranged between 23 and 27 U/mL after 5 days of incubation in an optimal substrate. Of these MnP-producing yeasts, four strains had lipid accumulation greater than 20% (oleaginous nature), with Meyerozyma caribbica SSA1654 having the highest lipid content (47.25%, w/w). In terms of tolerance to lignocellulose degradation inhibitors, the four MnP-producing oleaginous yeast strains could grow in the presence of furfural, 5-hydroxymethyl furfural, acetic acid, vanillin, and formic acid in the tested range. M. caribbica SSA1654 showed the highest tolerance to furfural (1.0 g/L), 5-hydroxymethyl furfural (2.5 g/L) and vanillin (2.0 g/L). Furthermore, M. caribbica SSA1654 could grow in the presence of 2.5 g/L acetic acid but grew moderately. Furfural and formic acid had a significant inhibitory effect on lipid accumulation by M. caribbica SSA1654, compared to the other lignocellulose degradation inhibitors tested. On the other hand, a new MnP-producing oleaginous yeast consortium designated as NYC-1 was constructed. This consortium demonstrated effective decolorization of all individual azo dyes tested within 24 h, up to a dye concentration of 250 mg/L. The NYC-1 consortium's decolorization performance against Acid Orange 7 (AO7) was investigated under the influence of several parameters, such as temperature, pH, salt concentration, and co-substrates (e.g., carbon, nitrogen, or agricultural wastes). The main physicochemical properties of biodiesel produced by AO7-degraded NYC-1 consortium were estimated and the results were compared to those obtained from international standards. CONCLUSION The findings of this study open up a new avenue for using peroxidase-producing oleaginous yeasts inhabiting wood-feeding termite gut symbionts, which hold great promise for the remediation of recalcitrant azo dye wastewater and lignocellulosic biomass for biofuel production.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
| | - Maha A Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, 1 Karatheodori Str, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
19
|
Weiland F, Kohlstedt M, Wittmann C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab Eng 2021; 71:13-41. [PMID: 34864214 DOI: 10.1016/j.ymben.2021.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Lignin is an important structural component of terrestrial plants and is readily generated during biomass fractionation in lignocellulose processing facilities. Due to lacking alternatives the majority of technical lignins is industrially simply burned into heat and energy. However, regarding its vast abundance and a chemically interesting richness in aromatics, lignin is presently regarded as the most under-utilized and promising feedstock for value-added applications. Notably, microbes have evolved powerful enzymes and pathways that break down lignin and metabolize its various aromatic components. This natural pathway atlas meanwhile serves as a guiding star for metabolic engineers to breed designed cell factories and efficiently upgrade this global waste stream. The metabolism of aromatic compounds, in combination with success stories from systems metabolic engineering, as reviewed here, promises a sustainable product portfolio from lignin, comprising bulk and specialty chemicals, biomaterials, and fuels.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
20
|
Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. BIORESOUR BIOPROCESS 2021; 8:91. [PMID: 38650203 PMCID: PMC10992092 DOI: 10.1186/s40643-021-00434-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Amanda M Forti
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
21
|
Abstract
Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.
Collapse
|
22
|
Arastehfar A, de Almeida Júnior JN, Perlin DS, Ilkit M, Boekhout T, Colombo AL. Multidrug-resistant Trichosporon species: underestimated fungal pathogens posing imminent threats in clinical settings. Crit Rev Microbiol 2021; 47:679-698. [PMID: 34115962 DOI: 10.1080/1040841x.2021.1921695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Species of Trichosporon and related genera are widely used in biotechnology and, hence, many species have their genome sequenced. Importantly, yeasts of the genus Trichosporon have been increasingly identified as a cause of life-threatening invasive trichosporonosis (IT) in humans and are associated with an exceptionally high mortality rate. Trichosporon spp. are intrinsically resistant to frontline antifungal agents, which accounts for numerous reports of therapeutic failure when echinocandins are used to treat IT. Moreover, these fungi have low sensitivity to polyenes and azoles and, therefore, are potentially regarded as multidrug-resistant pathogens. However, despite the clinical importance of Trichosporon spp., our understanding of their antifungal resistance mechanisms is quite limited. Furthermore, antifungal susceptibility testing is not standardized, and there is a lack of interpretive epidemiological cut-off values for minimal inhibitory concentrations to distinguish non-wild type Trichosporon isolates. The route of infection remains obscure and detailed clinical and environmental studies are required to determine whether the Trichosporon infections are endogenous or exogenous in nature. Although our knowledge on effective IT treatments is rather limited and future randomized clinical trials are required to identify the best antifungal agent, the current paradigm advocates the use of voriconazole, removal of central venous catheters and recovery from neutropenia.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - João N de Almeida Júnior
- Laboratorio de Micologia Medica (LIM 53), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Central (LIM 03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, Adana, Turkey
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Ali SS, Al-Tohamy R, Koutra E, Kornaros M, Khalil M, Elsamahy T, El-Shetehy M, Sun J. Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:61. [PMID: 33685508 PMCID: PMC7938474 DOI: 10.1186/s13068-021-01906-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Textile industry represents one prevalent activity worldwide, generating large amounts of highly contaminated and rich in azo dyes wastewater, with severe effects on natural ecosystems and public health. However, an effective and environmentally friendly treatment method has not yet been implemented, while concurrently, the increasing demand of modern societies for adequate and sustainable energy supply still remains a global challenge. Under this scope, the purpose of the present study was to isolate promising species of yeasts inhabiting wood-feeding termite guts, for combined azo dyes and textile wastewater bioremediation, along with biodiesel production. RESULTS Thirty-eight yeast strains were isolated, molecularly identified and subsequently tested for desired enzymatic activity, lipid accumulation, and tolerance to lignin-derived metabolites. The most promising species were then used for construction of a novel yeast consortium, which was further evaluated for azo dyes degradation, under various culture conditions, dye levels, as well as upon the addition of heavy metals, different carbon and nitrogen sources, and lastly agro-waste as an inexpensive and environmentally friendly substrate alternative. The novel yeast consortium, NYC-1, which was constructed included the manganese-dependent peroxidase producing oleaginous strains Meyerozyma caribbica, Meyerozyma guilliermondii, Debaryomyces hansenii, and Vanrija humicola, and showed efficient azo dyes decolorization, which was further enhanced depending on the incubation conditions. Furthermore, enzymatic activity, fatty acid profile and biodiesel properties were thoroughly investigated. Lastly, a dye degradation pathway coupled to biodiesel production was proposed, including the formation of phenol-based products, instead of toxic aromatic amines. CONCLUSION In total, this study might be the first to explore the application of MnP and lipid-accumulating yeasts for coupling dye degradation and biodiesel production.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Maha Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Mohamed El-Shetehy
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
| |
Collapse
|
24
|
Baltz RH, Kao K, Link AJ, Marsili E, Reguera G, Shao Z, Vandamme EJ, Jeffries TW, Gonzalez R. Introduction to Special Issue on "Frontiers in Industrial Microbiology and Biotechnology 2020". J Ind Microbiol Biotechnol 2020; 47:621-622. [PMID: 33123834 DOI: 10.1007/s10295-020-02322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Katy Kao
- Department of Chemical and Materials Engineering, San Jose State University, San Jose, CA, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Enrico Marsili
- Department of Chemical and Materials Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | | | | | - Ramon Gonzalez
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|