1
|
Zeng H, Wu J, Yu C. Biotransformation of agar extraction waste into cultivation matrix using an adaptively evolved Paenibacillus mucilaginosus strain. World J Microbiol Biotechnol 2025; 41:108. [PMID: 40148699 DOI: 10.1007/s11274-025-04332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Industrial agar extraction waste (AEW), which consists of resistant K-rich perlite and agar-dominated seaweed residues, poses environmental challenges. In this study, we isolated K-solubilizing bacteria from an AEW storage yard and identified the adaptively evolved strain, ZK03-Aga1, with efficient K-solubilizing and agar-utilizing properties. Co-fermentation of ZK03-Aga1 with AEW significantly enhanced the production of oligosaccharides, K, and soluble solids. These products, combined with a commercial soilless matrix, form a composite matrix that has been validated for fertility through bok choy planting experiments. The results showed increased bok choy yield, energy, protein, trace element, and chlorophyll content. Bacterial community composition analysis indicated an increase in nitrogen-fixing and organic matter-degrading bacteria. This suggests that AEW nutrients, via ZK03-Aga1 fermentation, directly benefit crops, improving yield, quality, and microbial structure for sustainable fertility. This study presents an efficient method for reusing AEW and mitigating its environmental impacts.
Collapse
Affiliation(s)
- Hanting Zeng
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chundong Yu
- School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Bao Y, Xu P. Implications of Environmental Variations on Saccharina japonica Cultivation in Xiangshan Bay, China. BIOLOGY 2025; 14:175. [PMID: 40001943 PMCID: PMC11851459 DOI: 10.3390/biology14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
This study took Xiangshan Bay as an example to illustrate the variation characteristics of the physicochemical environments (temperature, salinity, light, nutrients, and currents) during one kelp cultivation cycle. The study was conducted from November 2020 to May 2021 through tracking down observations. Furthermore, the environmental factors were evaluated using suitability functions of kelp growth, aiming to provide references for promoting kelp cultivation in South China. We discussed the self-limiting effect of nutrients in the culture zone. The results showed that the average temperature, salinity, and light intensity during the cruises in Xiangshan Bay kelp farm were characterized by seasonal variations. Temperature was found to be the most critical environmental factor in determining the kelp cultivation window and hence the yield in Xiangshan Bay. The dissolved inorganic nitrogen (DIN) concentrations initially decreased and then increased, while the dissolved inorganic phosphorus (DIP) concentrations remained decreasing along with the kelp cultivation. The surface tide currents were dramatically attenuated by the suspended kelp cultivation, while the quasi-steady circulations which played a key role in nutrient supplementation for kelp cultivation were not weakened by the kelp cultivation. Among the cruises, the suitability indices' ranges for temperature, salinity, light, and nutrients were 0.02-0.94, 0.96-0.99, 0.97-1, 0.96-0.97 (DIN), and 0.92-0.95 (DIP), respectively. The results of the suitability functions demonstrated that the salinity and light conditions in Xiangshan Bay were very suitable for kelp cultivation and would not cause significant cultivation risks. Although the cultivated kelp could greatly absorb nutrients, the suitability index of nutrients remained adequate even during the late stage of cultivation, indicating the present kelp cultivation scale has not reached the carrying capacity of Xiangshan Bay and there is still much potential for development. To this end, further selective breeding of the thermal tolerance variety has become the key to improving the kelp cultivation performance in Xiangshan Bay. Meanwhile, the self-limiting effects in relation to nutrients are not significant in the Xiangshan Bay kelp farm, but it might be more significant in other kelp farms.
Collapse
Affiliation(s)
| | - Peng Xu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
3
|
Guo Y, Zuo T, Gong S, Chen A, Jin H, Liu J, Wang Q, Liu J, Kang S, Li P, Wei F, Ma S. Multi-Element Fingerprinting Combined with Chemometrics for Identification of Seaweeds and Innovative Risk-Benefit Assessment. Foods 2024; 13:4159. [PMID: 39767101 PMCID: PMC11675776 DOI: 10.3390/foods13244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Seaweeds are one of the major marine foods with high values. The diversity of seaweed species significantly impacts their quality and is closely linked to their purity and safety. For the first time, this study established a model to discriminate seaweed species using a multi-element fingerprinting approach for species identification. Twenty-nine elements derived from seaweeds were analyzed. Chemometrics showed that seaweed samples could be well separated by the established multi-element fingerprints, of which Ag, Mn, Sr, and K were the most important variables for discrimination. Furthermore, the present study proposed an innovative risk-benefit assessment strategy for seaweeds that considers both risks and benefits, developing a novel risk-benefit assessment model from both dietary and medicinal perspectives for the first time. Our innovative strategy was well-conceived to accurately and effectively differentiate seaweeds based on species and scientifically evaluate both benefits and risks associated with seaweeds. This strategy is poised to offer invaluable insights into the sustainable growth of the seaweed sector and to bolster public health initiatives, ensuring a robust and forward-looking approach to both industry and healthcare advancements.
Collapse
Affiliation(s)
- Yuansheng Guo
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Tiantian Zuo
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Shuo Gong
- School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Anzhen Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao Institute for Food and Drug Control, Qingdao 266073, China;
| | - Hongyu Jin
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Jing Liu
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Qi Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Jingjing Liu
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Shuai Kang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Ping Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Feng Wei
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Shuangcheng Ma
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| |
Collapse
|
4
|
Schick S, Heindel J, Groten R, Seide GH. Overcoming Challenges in the Commercialization of Biopolymers: From Research to Applications-A Review. Polymers (Basel) 2024; 16:3498. [PMID: 39771350 PMCID: PMC11679288 DOI: 10.3390/polym16243498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Biopolymers are promising sustainable alternatives to petrochemical polymers, but the recent increase in published research articles has not translated into marketable products. Here, we discuss barriers to market entry by exploring application-specific, ecological, and economic aspects, such as the utilization of biodegradable polymers to mitigate the accumulation of microplastics. We summarize previous studies revealing how fiber surface properties and the dwell time during fiber spinning affect degradability. We show how biopolymers can be processed on existing machines and how degradability can be tailored by changing process parameters. This novel approach, known as degradation by design, will allow us to rethink product development and ensure that biopolymers are not only able to replace petrochemical polymers but also reduce the environmental harm they cause.
Collapse
Affiliation(s)
- Simon Schick
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands;
| | - Julia Heindel
- Department of Business Administration, University of Applied Sciences Munich, Lothstrasse 34, 80335 Munich, Germany
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Mönchengladbach, Webschulstrasse 31, 41065 Mönchengladbach, Germany
| | - Gunnar H. Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands;
| |
Collapse
|
5
|
de Souza Mesquita LM. The perfect match between macroalgae and eutectic solvents as a sustainable gateway to ready-to-use extracts towards a (blue + green) economy ─ A perspective review. BIORESOURCE TECHNOLOGY 2024; 414:131600. [PMID: 39389382 DOI: 10.1016/j.biortech.2024.131600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The article discusses how aligning with the Sustainable Development Goals (SDGs) can foster a sustainable economy, mainly through the (green + blue) economy, which involves valorizing macroalgae to produce ready-to-use extracts. It focuses on the potential of eutectic solvents (commonly known as deep eutectic solvents - DES) as promising candidates for this purpose. Traditional methods for extracting bioactive compounds from macroalgae, which rely on organic solvents and aqueous buffers, often involve harsh conditions and extensive processing. These factors can lead to reduced extract quality and/or low yields. In contrast, if properly designed, DES presents a green and sustainable alternative. They offer advantages such as low volatility, adjustable polarity, and negligible toxicity, making them a more environmentally friendly and efficient option for extraction processes. They can be customized to enhance both biological and technological properties, resulting in extracts with unique characteristics such as increased antioxidant activity, antiproliferative and anti-inflammatory effects, as well as improving the viscoelasticity of polysaccharides (fucoidans, alginates, and κ-carrageenan) from macroalgae. In this sense, the tunable nature of DES enables the optimization of extraction conditions to maximize yield, purity, and bioactivity, making it a smart alternative for producing bio-based products. Despite limited literature on DES for this purpose, the article highlights their potential and outlines the main advantages and challenges needed for macroalgae valorization.
Collapse
Affiliation(s)
- Leonardo M de Souza Mesquita
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 13484-350 Limeira, São Paulo, Brazil.
| |
Collapse
|
6
|
Mazéas L, Bouguerba-Collin A, Cock JM, Denoeud F, Godfroy O, Brillet-Guéguen L, Barbeyron T, Lipinska AP, Delage L, Corre E, Drula E, Henrissat B, Czjzek M, Terrapon N, Hervé C. Candidate genes involved in biosynthesis and degradation of the main extracellular matrix polysaccharides of brown algae and their probable evolutionary history. BMC Genomics 2024; 25:950. [PMID: 39390408 PMCID: PMC11468063 DOI: 10.1186/s12864-024-10811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Brown algae belong to the Stramenopiles phylum and are phylogenetically distant from plants and other multicellular organisms. This independent evolutionary history has shaped brown algae with numerous metabolic characteristics specific to this group, including the synthesis of peculiar polysaccharides contained in their extracellular matrix (ECM). Alginates and fucose-containing sulphated polysaccharides (FCSPs), the latter including fucans, are the main components of ECMs. However, the metabolic pathways of these polysaccharides remain poorly described due to a lack of genomic data. RESULTS An extensive genomic dataset has been recently released for brown algae and their close sister species, for which we previously performed an expert annotation of key genes involved in ECM-carbohydrate metabolisms. Here we provide a deeper analysis of this set of genes using comparative genomics, phylogenetics analyses, and protein modelling. Two key gene families involved in both the synthesis and degradation of alginate were suggested to have been acquired by the common ancestor of brown algae and their closest sister species Schizocladia ischiensis. Our analysis indicates that this assumption can be extended to additional metabolic steps, and thus to the whole alginate metabolic pathway. The pathway for the biosynthesis of fucans still remains biochemically unresolved and we also investigate putative fucosyltransferase genes that may harbour a fucan synthase activity in brown algae. CONCLUSIONS Our analysis is the first extensive survey of carbohydrate-related enzymes in brown algae, and provides a valuable resource for future research into the glycome and ECM of brown algae. The expansion of specific families related to alginate metabolism may have represented an important prerequisite for the evolution of developmental complexity in brown algae. Our analysis questions the possible occurrence of FCSPs outside brown algae, notably within their closest sister taxon and in other Stramenopiles such as diatoms. Filling this knowledge gap in the future will help determine the origin and evolutionary history of fucan synthesis in eukaryotes.
Collapse
Affiliation(s)
- Lisa Mazéas
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Ahlem Bouguerba-Collin
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - J Mark Cock
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - France Denoeud
- Génomique Métabolique, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Genoscope, Evry, 91057, France
| | - Olivier Godfroy
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Loraine Brillet-Guéguen
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Tristan Barbeyron
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Ludovic Delage
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Elodie Drula
- Aix Marseille Univ, CNRS, UMR 7257 AFMB, Marseille, France
- INRAE, USC 1408 AFMB, Marseille, France
- INRAE, Aix-Marseille Univ, UMR1163 BBF, Marseille, France
| | - Bernard Henrissat
- Aix Marseille Univ, CNRS, UMR 7257 AFMB, Marseille, France
- INRAE, USC 1408 AFMB, Marseille, France
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mirjam Czjzek
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Terrapon
- Aix Marseille Univ, CNRS, UMR 7257 AFMB, Marseille, France
- INRAE, USC 1408 AFMB, Marseille, France
| | - Cécile Hervé
- Integrative Biology of Marine Models Laboratory, Sorbonne Université, CNRS, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
7
|
Bednaršek N, Pelletier G, Beck MW, Feely RA, Siegrist Z, Kiefer D, Davis J, Peabody B. Predictable patterns within the kelp forest can indirectly create temporary refugia from ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174065. [PMID: 38897470 DOI: 10.1016/j.scitotenv.2024.174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Kelps are recognized for providing many ecosystem services in coastal areas and considered in ocean acidification (OA) mitigation. However, assessing OA modification requires an understanding of the multiple parameters involved in carbonate chemistry, especially in highly dynamic systems. We studied the effects of sugar kelp (Saccharina latissima) on an experimental farm at the north end of Hood Canal, Washington-a low retentive coastal system. In this field mesocosm study, two oyster species (Magallana gigas, Ostrea lurida) were exposed at locations in the mid, edge, and outside the kelp array. The Hood Head Sugar Kelp Farm Model outputs were used to identify dominating factors in spatial and temporal kelp dynamics, while wavelet spectrum analyses helped in understanding predictability patterns. This was linked to the measured biological responses (dissolution, growth, isotopes) of the exposed organisms. Positioned in an area of high (sub)-diel tidal fluxes with low retention potential, there were no measurable alterations of the seawater pH at the study site, demonstrating that the kelp array could not induce a direct mitigating effect against OA. However, beneficial responses in calcifiers were still observed, which are linked to two causes: increased pH predictability and improved provisioning through kelp-derived particulate organic resource utilization and as such, kelp improved habitat suitability and indirectly created refugia against OA. This study can serve as an analogue for many coastal bay habitats where prevailing physical forcing drives chemical changes. Future macrophyte studies that investigate OA mitigating effects should focus also on the importance of predictability patterns, which can additionally improve the conditions for marine calcifiers and ecosystem services vulnerable to or compromised by OA, including aquaculture sustainability.
Collapse
Affiliation(s)
- Nina Bednaršek
- Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, 2030 SE Marine Science Drive Newport, OR 97365, Oregon State University, USA; Institute Jožef Stefan, 1000 Ljubljana, Slovenia.
| | - Greg Pelletier
- Washington Department of Ecology, Olympia, 300 Desmond Dr SE, WA 98503,(Emeritus), USA
| | - Marcus W Beck
- Tampa Bay Estuary Program, St. Petersburg, FL 33701, USA
| | - Richard A Feely
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
| | - Zach Siegrist
- System Science Applications, Inc, Renton, Washington, USA
| | - Dale Kiefer
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Davis
- Puget Sound Restoration Fund, Bainbridge Island, WA, 98110, USA
| | | |
Collapse
|
8
|
Donati L, Valicenti ML, Giannoni S, Morena F, Martino S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int J Mol Sci 2024; 25:10386. [PMID: 39408716 PMCID: PMC11476540 DOI: 10.3390/ijms251910386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Mechanosensing and mechanotransduction pathways between the Extracellular Matrix (ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development, morphology, maintenance, and function. Understanding these mechanisms involves creating an appropriate cell support that elicits signals to guide cellular functions. In this context, polymers can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural physiological system. The generated specific stimuli depend on the different natural or synthetic origins of the polymers, the chemical composition, the assembly structure, and the physical and surface properties of biomaterials. This review discusses the most widely used polymers and their customization to develop biomaterials with tailored properties. It examines how the characteristics of biomaterials-based polymers can be harnessed to replicate the functions of biological cells, making them suitable for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Leonardo Donati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Maria Luisa Valicenti
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Samuele Giannoni
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
- Centro di Eccellenza Materiali Innovativi Nanostrutturati per Applicazioni Chimiche Fisiche e Biomediche (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
9
|
Wanapat M, Prachumchai R, Dagaew G, Matra M, Phupaboon S, Sommai S, Suriyapha C. Potential use of seaweed as a dietary supplement to mitigate enteric methane emission in ruminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:173015. [PMID: 38710388 DOI: 10.1016/j.scitotenv.2024.173015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Seaweeds or marine algae exhibit diverse morphologies, sizes, colors, and chemical compositions, encompassing various species, including red, green, and brown seaweeds. Several seaweeds have received increased research attention and application in animal feeding investigations, particularly in ruminant livestock, due to their higher yield and convenient harvestability at present. Recent endeavors encompassing both in vitro and in vivo experiments have indicated that many seaweeds, particularly red seaweed (Asparagopsis taxiformis and Asparagopsis armata), contain plant secondary compounds, such as halogenated compounds and phlorotannins, with the potential to reduce enteric ruminal methane (CH4) emissions by up to 99 % when integrated into ruminant diets. This review provides an encompassing exploration of the existing body of knowledge concerning seaweeds and their impact on rumen fermentation, the toxicity of ruminal microbes, the health of animals, animal performance, and enteric ruminal CH4 emissions in both in vitro and in vivo settings among ruminants. By attaining a deeper comprehension of the implications of seaweed supplementation on rumen fermentation, animal productivity, and ruminal CH4 emissions, we could lay the groundwork for devising innovative strategies. These strategies aim to simultaneously achieve environmental benefits, reduce greenhouse gas emissions, enhance animal efficiency, and develop aquaculture and seaweed production systems, ensuring a high-quality and consistent supply chain. Nevertheless, future research is essential to elucidate the extent of the effect and gain insight into the mode of action.
Collapse
Affiliation(s)
- Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rittikeard Prachumchai
- Division of Animal Science, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani 12130, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
10
|
Mogany T, Bhola V, Bux F. Algal-based bioplastics: global trends in applied research, technologies, and commercialization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38022-38044. [PMID: 38787471 PMCID: PMC11189328 DOI: 10.1007/s11356-024-33644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The excessive global demand for plastic materials has resulted in severe plastic waste pollution. Conventional plastics derived from non-renewable fossil fuels are non-biodegradable, leading to significant environmental problems. Algal-based bioplastics represent a more viable, renewable, and sustainable alternative to conventional plastics. They have identical properties and characteristics as conventional plastics while being naturally biodegradable. The potential of the algal biomass value chain has already been well-established by researchers. Here, we review the novel insights on research, technology, and commercialization trends of algal-based bioplastics, encompassing macroalgae and green microalgae/cyanobacteria. Data showed that within the last decade, there has been substantial interest in utilizing microalgae for biopolymer production, with more focus on using cyanobacterial species compared to green algae. Moreover, most of the research conducted has largely focused on the production of PHA or its co-polymers. Since 2011, there have been a total of 55 patents published related to algal-based bioplastics production. To date, ~ 81 entities worldwide (commercial and private businesses) produce bioplastics from algae. Overall results of this study emphasized that even with the economic and social challenges, algae possess a substantial potential for the sustainable development of bioplastics while also addressing the UN's SDGs.
Collapse
Affiliation(s)
- Trisha Mogany
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Virthie Bhola
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
11
|
Stephens T, Umanzor S. Comparative nutrient drawdown capacities of farmed kelps and implications of metabolic strategy and nutrient source. JOURNAL OF PHYCOLOGY 2024; 60:685-694. [PMID: 38548387 DOI: 10.1111/jpy.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 06/12/2024]
Abstract
Seaweed aquaculture, particularly kelp farming, is a popular topic as a potential solution for mitigating anthropogenic pollutants and enhancing coastal drawdown of carbon and nitrogen. Using a common garden approach, this study evaluated nutrient drawdown capacities of Alaria marginata (ribbon kelp) and Saccharina latissima (sugar kelp) across four commercial kelp farms in Southeast and Southcentral Alaska. Our findings show that A. marginata exhibited ~30% more carbon and 21% more nitrogen content compared to S. latissima. These results demonstrate the potential for A. marginata to serve as a more efficient species for nutrient drawdown into farmed kelp tissues (per unit biomass) for consideration of potential mitigative actions. The efficacy of this drawdown is likely to be driven by the careful pairing of kelp species with farming environment. Temporally, there was a noted increase in carbon content and a decline in nitrogen content from March to May for both species, consistent with known seasonal nutrient dynamics in coastal waters. Notably, differences in the carbon stable isotope signatures (δ13C) between the kelps may hint at variations in metabolic pathways and nutrient sourcing, particularly concerning the preferential assimilation of CO2 versusHCO 3 - , and highlight the need for further work on this topic for applied macroalgal research.
Collapse
Affiliation(s)
- Tiffany Stephens
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Schery Umanzor
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| |
Collapse
|
12
|
Dar A, Hafeez M, Sarwar F, Ain NU, Yaseen G. Iron-doped biochar, an agricultural and environmentally beneficial fertilizer. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:524. [PMID: 38717730 DOI: 10.1007/s10661-024-12695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
The utilization of agricultural waste to create value-added goods has benefited waste management while resolving cost-effectiveness and food shortage problems. Returning biochar produced from agricultural waste to the agricultural field is a sustainable method of enhancing crop production while lowering the environmental effect of typical fertilizers. It also enhances soil condition by modulating pH, soil organic carbon, water retention capacity, and soil ion exchange potential. The current work concentrated on the production of iron oxide-loaded biochar from banana peels. Pyrolysis was carried out at temperatures ranging from 400 to 500 °C. The co-precipitation technique was utilized to impregnate Fe3O4 nanoparticles on biochar, and it showed to be an effective and trustworthy method. Loading was done in situ. Characterization techniques such as XRD, FTIR, CHNS, and TGA were employed to characterize synthesized materials. Swelling ratio, water retention, absorbance, and equilibrium water content percentage were used to study the adsorption capabilities of Fe3O4-loaded biochar, soil, and raw biochar. As a consequence, Fe3O4-enriched biochar was shown to have better adsorption capability than raw biochar, which in turn showed better adsorption properties than soil. Iron-loaded biochar was employed as a fertilizer in Abelmoschus esculentus (Okra), and the results showed that it is a cost-effective, environmentally friendly fertilizer.
Collapse
Affiliation(s)
- Amara Dar
- Center for Analytical Chemistry, University of the Punjab, Lahore, Pakistan
| | - Mahreen Hafeez
- Center for Analytical Chemistry, University of the Punjab, Lahore, Pakistan
| | - Fiza Sarwar
- Department of Earth & Environmental Sciences, Bahria University, Islamabad, Pakistan.
| | - Noor Ul Ain
- University of Management and Technology, Lahore, Pakistan
| | - Ghazala Yaseen
- University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
13
|
Elkaliny NE, Alzamel NM, Moussa SH, Elodamy NI, Madkor EA, Ibrahim EM, Elshobary ME, Ismail GA. Macroalgae Bioplastics: A Sustainable Shift to Mitigate the Ecological Impact of Petroleum-Based Plastics. Polymers (Basel) 2024; 16:1246. [PMID: 38732716 PMCID: PMC11085313 DOI: 10.3390/polym16091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The surge in global utilization of petroleum-based plastics, which notably heightened during the COVID-19 pandemic, has substantially increased its harm to ecosystems. Considering the escalating environmental impact, a pivotal shift towards bioplastics usage is imperative. Exploring and implementing bioplastics as a viable alternative could mitigate the ecological burden posed by traditional plastics. Macroalgae is a potential feedstock for the production of bioplastics due to its abundance, fast growth, and high cellulose and sugar content. Researchers have recently explored various methods for extracting and converting macroalgae into bioplastic. Some of the key challenges in the production of macroalgae bioplastics are the high costs of large-scale production and the need to optimize the extraction and conversion processes to obtain high-quality bioplastics. However, the potential benefits of using macroalgae for bioplastic production include reducing plastic waste and greenhouse gas emissions, using healthier materials in various life practices, and developing a promising area for future research and development. Also, bioplastic provides job opportunities in free enterprise and contributes to various applications such as packaging, medical devices, electronics, textiles, and cosmetics. The presented review aims to discuss the problem of petroleum-based plastic, bioplastic extraction from macroalgae, bioplastic properties, biodegradability, its various applications, and its production challenges.
Collapse
Affiliation(s)
- Nehal E. Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nurah M. Alzamel
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Shaaban H. Moussa
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Nour I. Elodamy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Engy A. Madkor
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa M. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan A. Ismail
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
14
|
Gong Y, Shang DD, Sun CL, Du ZJ, Chen GJ. Direct Degradation of Fresh and Dried Macroalgae by Agarivorans albus B2Z047. Mar Drugs 2024; 22:203. [PMID: 38786594 PMCID: PMC11122777 DOI: 10.3390/md22050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.
Collapse
Affiliation(s)
- Ya Gong
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Dan-Dan Shang
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
| | - Cheng-Lin Sun
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Khan N, Sudhakar K, Mamat R. Macroalgae farming for sustainable future: Navigating opportunities and driving innovation. Heliyon 2024; 10:e28208. [PMID: 38560151 PMCID: PMC10981073 DOI: 10.1016/j.heliyon.2024.e28208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Seaweed cultivation has garnered significant interest, driven by its wide range of biomass benefits. However, comprehensive assessments from various perspectives are imperative to ensure the sustainable cultivation of seaweed. Biotic and Abiotic factors can significantly impact seaweed yield in complex commercial farming. Biotic factors include bacteria, fungi, viruses, and other algae, while abiotic factors include environmental conditions such as temperature, salinity, light intensity, and nutrient availability. Additionally, the susceptibility of seaweeds to pests and diseases further compounds the issue, leading to potential crop losses. This study endeavours to shed light on the immense potential of macroalgae cultivation and underscores the pressing need for scientific advancements in this field. The comprehensive review clearly explains the latest developments in seaweed cultivation and highlights significant advances from diverse seaweed research. Moreover, it provides insightful glimpses into possible future developments that could shape the trajectory of this promising industry.
Collapse
Affiliation(s)
- Nida Khan
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300, Kuantan, Pahang, Malaysia
- Centre of Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang Al-Sultan Abdullah, 26300, Kuantan, Pahang, Malaysia
| | - K. Sudhakar
- Centre for Automotive Engineering Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600, Malaysia
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600, Pahang, Malaysia
- Energy Centre, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - R. Mamat
- Centre for Automotive Engineering Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600, Malaysia
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600, Pahang, Malaysia
| |
Collapse
|
16
|
Segaran TC, Azra MN, Mohd Noor MI, Danish-Daniel M, Burlakovs J, Lananan F, Xu J, Kari ZA, Wei LS. Knowledge mapping analysis of the global seaweed research using CiteSpace. Heliyon 2024; 10:e28418. [PMID: 38560172 PMCID: PMC10981124 DOI: 10.1016/j.heliyon.2024.e28418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Seaweed research has gained substantial momentum in recent years, attracting the attention of researchers, academic institutions, industries, policymakers, and philanthropists to explore its potential applications and benefits. Despite the growing body of literature, there is a paucity of comprehensive scientometric analyses, highlighting the need for an in-depth investigation. In this study, we utilized CiteSpace to examine the global seaweed research landscape through the Web of Science Core Collection database, assessing publication trends, collaboration patterns, network structures, and co-citation analyses across 48,278 original works published since 1975. Our results demonstrate a diverse and active research community, with a multitude of authors and journals contributing to the advancement of seaweed science. Thematic co-citation cluster analysis identified three primary research areas: "Coral reef," "Solar radiation," and "Mycosporine-like amino acid," emphasizing the multidisciplinary nature of seaweed research. The increasing prominence of "Chemical composition" and "Antioxidant" keywords indicates a burgeoning interest in characterizing the nutritional value and health-promoting properties of seaweed. Timeline co-citation analysis unveils that recent research priorities have emerged around the themes of coral reefs, ocean acidification, and antioxidants, underlining the evolving focus and interdisciplinary approach of the field. Moreover, our analysis highlights the potential of seaweed as a functional food product, poised to contribute significantly to addressing global food security and sustainability challenges. This study underscores the importance of bibliometric analysis in elucidating the global seaweed research landscape and emphasizes the need for sustained knowledge exchange and collaboration to drive the field forward. By revealing key findings and emerging trends, our research offers valuable insights for academics and stakeholders, fostering a more profound understanding of seaweed's potential and informing future research endeavors in this promising domain.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, 83352, Indonesia
| | - Mohd Iqbal Mohd Noor
- Faculty of Business Management, Universiti Teknologi MARA (UiTM) (Pahang), 27600, Raub, Pahang, Malaysia
- Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Muhd Danish-Daniel
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
| | - Fathurrahman Lananan
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, 21300, Malaysia
| | - Juntian Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, No. 59 Cangwu Road, Haizhou District, Lianyungang City, Jiangsu, China
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- Tropical Rainforest Research Centre (TRaCe), Universiti Malaysia Kelantan, Pulau Banding, 33300, Gerik, Perak, Malaysia
| |
Collapse
|
17
|
Pereira L, Cotas J, Gonçalves AM. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024; 16:1123. [PMID: 38674814 PMCID: PMC11054349 DOI: 10.3390/nu16081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This review delves into the burgeoning field of seaweed proteins as promising alternative sources of protein. With global demand escalating and concerns over traditional protein sources' sustainability and ethics, seaweed emerges as a viable solution, offering a high protein content and minimal environmental impacts. Exploring the nutritional composition, extraction methods, functional properties, and potential health benefits of seaweed proteins, this review provides a comprehensive understanding. Seaweed contains essential amino acids, vitamins, minerals, and antioxidants. Its protein content ranges from 11% to 32% of dry weight, making it valuable for diverse dietary preferences, including vegetarian and vegan diets. Furthermore, this review underscores the sustainability and environmental advantages of seaweed protein production compared to traditional sources. Seaweed cultivation requires minimal resources, mitigating environmental issues like ocean acidification. As the review delves into specific seaweed types, extraction methodologies, and functional properties, it highlights the versatility of seaweed proteins in various food products, including plant-based meats, dairy alternatives, and nutritional supplements. Additionally, it discusses the potential health benefits associated with seaweed proteins, such as their unique amino acid profile and bioactive compounds. Overall, this review aims to provide insights into seaweed proteins' potential applications and their role in addressing global protein needs sustainably.
Collapse
Affiliation(s)
- Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - Ana Marta Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
- Department of Biology and CESAM—Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Akshaya S, Nathanael AJ. A Review on Hydrophobically Associated Alginates: Approaches and Applications. ACS OMEGA 2024; 9:4246-4262. [PMID: 38313527 PMCID: PMC10831841 DOI: 10.1021/acsomega.3c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Alginates are linear anionic polysaccharides, which are well-known for their biocompatible, nontoxic, and biodegradable nature. The polymer consists of alternating units of β-(1 → 4)-linked D-mannuronic acid (M) and α-(1 → 4)-linked L-guluronic acid (G) that have hydroxyl and carboxyl groups as the main functional groups. As a large number of free carboxyl and hydroxyl groups are present in the polymeric chain, the polymer is predominantly hydrophilic. The food and pharmaceutical industries have been the most extensive utilizers of alginates to produce gelling and thickening agents. However, by imparting hydrophobicity to alginates, the range of applications can be widened. Although there are reviews on alginate and its chemical modifications, reviews focusing on hydrophobically associated alginates have not been presented. The commonly used chemical modifications to incorporate hydrophobicity include esterification, Ugi reaction, reductive amination, and graft copolymerization. The hydrophobically modified alginates play an important role in delivery of hydrophobic drugs and pesticides as the modification increases the affinity toward hydrophobic components and helps in their sustained release. Due to their nontoxic and edible nature, they find use in the food industry as emulsion stabilizer to stabilize oil-in-water emulsions and to improve creaming ability. Further, alginate-based materials such as membranes, aerogels, and films are hydrophobically modified to improve their functionality and applicability to water treatment and food packaging. This Review aims to highlight the important chemical modifications and methods that are done to impart hydrophobicity to alginate, and the applications of hydrophobically modified alginates in different sectors ranging from drug delivery to food packaging are discussed.
Collapse
Affiliation(s)
- Shenbagaraman Akshaya
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School
of Advanced Sciences (SAS), Vellore Institute
of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
19
|
Cotas J, Lomartire S, Gonçalves AMM, Pereira L. From Ocean to Medicine: Harnessing Seaweed's Potential for Drug Development. Int J Mol Sci 2024; 25:797. [PMID: 38255871 PMCID: PMC10815561 DOI: 10.3390/ijms25020797] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (A.M.M.G.)
| |
Collapse
|
20
|
Segaran TC, Azra MN, Handayani KS, Lananan F, Xu J. Seaweed and climate change: A mapping review. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106216. [PMID: 37891025 DOI: 10.1016/j.marenvres.2023.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023]
Abstract
Seaweed has garnered increasing interest due to its capacity to mitigate climate change by curbing carbon emissions from agriculture, as well as its potential to serve as a supplement or alternative for dietary, livestock feed, or fuel source production. Moreover, seaweed is regarded as one of the earliest plant forms to have evolved on Earth. Owing to the extensive body of literature available and the uncertainty surrounding the future trajectory of seaweed research under evolving climate conditions, this review scrutinizes the structure, dynamics, and progression of the literature pertaining to seaweed and climate change. This analysis is grounded in the Web of Science Core Collection database, augmented by CiteSpace software. Furthermore, we discuss the productivity and influence of individual researchers, research organizations, countries, and scientific journals. To date, there have been 8047 articles published globally (after a series of filters and exclusions), with a notable upswing in publication frequency since 2018. The USA, China, and Australia are among the leading countries contributing to this research area. Our findings reveal that current research on seaweed and climate change encompasses 13 distinct research clusters, including "marine heatwave", "temperate estuary", "ocean acidification", and "macroalgal bloom". The most frequently cited keywords are "climate change", "biomass", "community", and "photosynthesis". The seaweed species most commonly referenced in relation to climate change include Gracilaria sp., Sargassum sp., Ecklonia maxima, and Macrocystis pyrifera. These results provide valuable guidance for shaping the direction of specialized topics concerning marine biodiversity under shifting climate conditions. We propose that seaweed production may be compromised during prolonged episodes of reduced water availability, emphasizing the need to formulate strategies to guarantee its continued viability. This article offers fresh perspectives on the analysis of seaweed research in the context of impending climate change.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia.
| | - Mohamad Nor Azra
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia; Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Lombok 83352, Indonesia.
| | - Kiki Syaputri Handayani
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Lombok 83352, Indonesia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia.
| | - Juntian Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, No. 59 Cangwu Road, Haizhou District, Lianyungang City, Jiangsu, China.
| |
Collapse
|
21
|
Adamu Ugya Y, Chen H, Sheng Y, Ajibade FO, Wang Q. A review of microalgae biofilm as an eco-friendly approach to bioplastics, promoting environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 236:116833. [PMID: 37543134 DOI: 10.1016/j.envres.2023.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
In this comprehensive review, we delve into the challenges hindering the large-scale production of microalgae-based bioplastics, primarily focusing on economic feasibility and bioplastic quality. To address these issues, we explore the potential of microalgae biofilm cultivation as a sustainable and highly viable approach for bioplastic production. We present a proposed method for producing bioplastics using microalgae biofilm and evaluate its environmental impact using various tools such as life cycle analysis (LCA), ecological footprint analysis, resource flow analysis, and resource accounting. While pilot-scale and large-scale LCA data are limited, we utilize alternative indicators such as energy efficiency, carbon footprint, materials management, and community acceptance to predict the environmental implications of commercializing microalgae biofilm-based bioplastics. The findings of this study indicate that utilizing microalgae biofilm for bioplastic production offers significant environmental sustainability benefits. The system exhibits low energy requirements and a minimal carbon footprint. Moreover, it has the potential to address the issue of wastewater by utilizing it as a carbon source, thereby mitigating associated problems. However, it is important to acknowledge certain limitations associated with the method proposed in this review. Further research is needed to explore and engineer precise techniques for manipulating microalgae biofilm structure to optimize the accumulation of desired metabolites. This could involve employing chemical triggers, metabolic engineering, and genetic engineering to achieve the intended goals. In conclusion, this review highlights the potential of microalgae biofilm as a viable and sustainable solution for bioplastic production. While acknowledging the advantages, it also emphasizes the need for continued synthetic studies to enhance the efficiency and reliability of this approach. By addressing the identified drawbacks and maximizing the utilization of advanced techniques, we can further harness the potential of microalgae biofilm in contributing to a more environmentally friendly and economically feasible bioplastic industry.
Collapse
Affiliation(s)
- Yunusa Adamu Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yangyang Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, PMB 704, Nigeria
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China.
| |
Collapse
|
22
|
Farooqi ZUR, Qadir AA, Alserae H, Raza A, Mohy-Ud-Din W. Organic amendment-mediated reclamation and build-up of soil microbial diversity in salt-affected soils: fostering soil biota for shaping rhizosphere to enhance soil health and crop productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109889-109920. [PMID: 37792186 DOI: 10.1007/s11356-023-30143-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Soil salinization is a serious environmental problem that affects agricultural productivity and sustainability worldwide. Organic amendments have been considered a practical approach for reclaiming salt-affected soils. In addition to improving soil physical and chemical properties, organic amendments have been found to promote the build-up of new halotolerant bacterial species and microbial diversity, which plays a critical role in maintaining soil health, carbon dynamics, crop productivity, and ecosystem functioning. Many reported studies have indicated the development of soil microbial diversity in organic amendments amended soil. But they have reported only the development of microbial diversity and their identification. This review article provides a comprehensive summary of the current knowledge on the use of different organic amendments for the reclamation of salt-affected soils, focusing on their effects on soil properties, microbial processes and species, development of soil microbial diversity, and microbial processes to tolerate salinity levels and their strategies to cope with it. It also discusses the factors affecting the microbial species developments, adaptation and survival, and carbon dynamics. This review is based on the concept of whether addition of specific organic amendment can promote specific halotolerant microbe species, and if it is, then which amendment is responsible for each microbial species' development and factors responsible for their survival in saline environments.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Ayesha Abdul Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hussein Alserae
- Department of Soil Sciences and Water Resources, College of Agricultural Engineering Science, Baghdad University, Baghdad, Iraq
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
23
|
Oliveira BCC, Machado M, Machado S, Costa ASG, Bessada S, Alves RC, Oliveira MBPP. Algae Incorporation and Nutritional Improvement: The Case of a Whole-Wheat Pasta. Foods 2023; 12:3039. [PMID: 37628038 PMCID: PMC10453615 DOI: 10.3390/foods12163039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Algae contain high-quality proteins, dietary fiber, minerals, and phenolic compounds, making them promising alternative ingredients. Since pasta is consumed worldwide, it can be an effective vehicle for incorporating algae. This study compares the nutritional and antioxidant composition of whole-wheat pasta without and with enrichment of an algae mixture (containing Himanthalia elongata and Spirulina) and ascertains the influence of the cooking procedure on their features. Spirulina and H. elongata were also analyzed in parallel for comparison purposes. Macronutrients, chlorides and salt, total and free amino acid profiles, and antioxidant properties (total phenolic content and ferric reducing antioxidant power) were analyzed using AOAC, Mohr's, high performance liquid chromatography with fluorescence detection, and spectrophotometric methods, respectively. The results show a significant increase in fat (70.4%), protein (29.7%), ash (26.5%), and total amino acid (except for serine, tryptophan, isoleucine, and threonine) contents in the raw algae-enriched pasta. The antioxidant activity was also higher (4.15 versus 3.68 g ferrous sulfate eq./g dw, respectively). After cooking, protein, dietary fiber, total amino acids (except threonine) and antioxidant activity were stable in the algae-enriched pasta. Thus, algae can be an excellent ingredient for food applications with health benefits.
Collapse
Affiliation(s)
| | | | | | | | | | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | |
Collapse
|
24
|
Lagopati N, Pippa N, Gatou MA, Papadopoulou-Fermeli N, Gorgoulis VG, Gazouli M, Pavlatou EA. Marine-Originated Materials and Their Potential Use in Biomedicine. APPLIED SCIENCES 2023; 13:9172. [DOI: 10.3390/app13169172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Aquatic habitats cover almost 70% of the Earth, containing several species contributing to marine biodiversity. Marine and aquatic organisms are rich in chemical compounds that can be widely used in biomedicine (dentistry, pharmacy, cosmetology, etc.) as alternative raw biomaterials or in food supplements. Their structural characteristics make them promising candidates for tissue engineering approaches in regenerative medicine. Thus, seaweeds, marine sponges, arthropods, cnidaria, mollusks, and the biomaterials provided by them, such as alginate, vitamins, laminarin, collagen, chitin, chitosan, gelatin, hydroxyapatite, biosilica, etc., are going to be discussed focusing on the biomedical applications of these marine-originated biomaterials. The ultimate goal is to highlight the sustainability of the use of these biomaterials instead of conventional ones, mainly due to the antimicrobial, anti-inflammatory, anti-aging and anticancer effect.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Vassilis G. Gorgoulis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
25
|
Leston S, Rosa J, Vila Pouca AS, Barbosa J, Pardal MA, Ramos F, Freitas A. Assessing pharmaceuticals in the green seaweed Ulva lactuca through a multi-residue UHPLC-ToF-MS strategy. MARINE POLLUTION BULLETIN 2023; 193:115266. [PMID: 37423080 DOI: 10.1016/j.marpolbul.2023.115266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Seaweeds have become an important asset in several sectors, including the food and feed industries, cosmetics, and pharmaceuticals, among others. Whether harvested or reared, interest in algae has been growing worldwide due to the resources they offer, including proteins, vitamins, minerals, carbohydrates, essential fatty acids, and dietary fiber, as well as sources of biologically active compounds. However, given their morphology and physiology, as well as their harvest and cultivation environments, algae are prone to the presence of hazards, including pharmaceuticals taken up from the water. Thus, to ensure human and animal safety as well as environmental health, monitoring is essential. Therefore, this work describes the development and validation of a sensitive screening and confirmatory analytical method based on ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-ToF-MS). This multi-residue method enables the determination of 62 pharmaceuticals distributed between 8 therapeutic classes and was fully validated according to Commission Implementing Regulation (EU) 2021/808.
Collapse
Affiliation(s)
- Sara Leston
- CFE - Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; REQUIMTE/LAQV, Rua D. Manuel II, Apartado, 55142 Porto, Portugal.
| | - João Rosa
- CFE - Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana Sofia Vila Pouca
- INIAV-LNIV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Jorge Barbosa
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado, 55142 Porto, Portugal
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Fernando Ramos
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado, 55142 Porto, Portugal; Pharmacy Faculty, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Andreia Freitas
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado, 55142 Porto, Portugal; INIAV-LNIV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|
26
|
Dang BT, Ramaraj R, Huynh KPH, Le MV, Tomoaki I, Pham TT, Hoang Luan V, Thi Le Na P, Tran DPH. Current application of seaweed waste for composting and biochar: A review. BIORESOURCE TECHNOLOGY 2023; 375:128830. [PMID: 36878373 DOI: 10.1016/j.biortech.2023.128830] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address the origins of ocean acidification, seaweed aquaculture is emerging as a key biosequestration strategy. Nevertheless, seaweed biomass is involved in developing food and animal feed, whereas seaweed waste from commercial hydrocolloid extraction is dumped in landfills, which together limit the carbon cycle and carbon sequestration. This work sought to evaluate the production, properties, and applications of seaweed compost and biochar to strengthen the "carbon sink" implications of aquaculture sectors. Due to their unique characteristics, the production of seaweed-derived biochar and compost, as well as their existing applications, are distinct when compared to terrestrial biomass. This paper outlines the benefits of composting and biochar production as well as proposes ideas and perspectives to overcome technical shortcomings. If properly synchronized, progression in the aquaculture sector, composting, and biochar production, potentially promote various Sustainable Development Goals.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | | | - Ky-Phuong-Ha Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Minh-Vien Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Itayama Tomoaki
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tan-Thi Pham
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Van Hoang Luan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Pham Thi Le Na
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Duyen P H Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan, ROC
| |
Collapse
|
27
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
28
|
Xu J, Liao W, Liu Y, Guo Y, Jiang S, Zhao C. An overview on the nutritional and bioactive components of green seaweeds. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [PMCID: PMC10026244 DOI: 10.1186/s43014-023-00132-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
AbstractGreen seaweed, as the most abundant species of macroseaweeds, is an important marine biological resource. It is a rich source of several amino acids, fatty acids, and dietary fibers, as well as polysaccharides, polyphenols, pigments, and other active substances, which have crucial roles in various biological processes such as antioxidant activity, immunoregulation, and anti-inflammatory response. In recent years, attention to marine resources has accelerated the exploration and utilization of green seaweeds for greater economic value. This paper elaborates on the main nutrients and active substances present in different green seaweeds and provides a review of their biological activities and their applications for high-value utilization.
Graphical abstract
Collapse
|
29
|
Kamal M, Abdel-Raouf N, Alwutayd K, AbdElgawad H, Abdelhameed MS, Hammouda O, Elsayed KNM. Seasonal Changes in the Biochemical Composition of Dominant Macroalgal Species along the Egyptian Red Sea Shore. BIOLOGY 2023; 12:biology12030411. [PMID: 36979103 PMCID: PMC10045638 DOI: 10.3390/biology12030411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023]
Abstract
Macroalgae are significant biological resources in coastal marine ecosystems. Seasonality influences macroalgae biochemical characteristics, which consequentially affect their ecological and economic values. Here, macroalgae were surveyed from summer 2017 to spring 2018 at three sites at 7 km (south) from El Qusier, 52 km (north) from Marsa Alam and 70 km (south) from Safaga along the Red Sea coast, Egypt. Across all the macroalgae collected, Caulerpa prolifera (green macroalgae), Acanthophora spicifera (red macroalgae) and Cystoseira myrica, Cystoseira trinodis and Turbinaria ornata (brown macroalgae) were the most dominant macroalgal species. These macroalgae were identified at morphological and molecular (18s rRNA) levels. Then, the seasonal variations in macroalgal minerals and biochemical composition were quantified to determine the apt period for harvesting based on the nutritional requirements for commercial utilizations. The chemical composition of macroalgae proved the species and seasonal variation. For instance, minerals were more accumulated in macroalgae C. prolifera, A. spicifera and T. ornata in the winter season, but they were accumulated in both C. myrica and C. trinodis in the summer season. Total sugars, amino acids, fatty acids and phenolic contents were higher in the summer season. Accordingly, macroalgae collected during the summer can be used as food and animal feed. Overall, we suggest the harvesting of macroalgae for different nutrients and metabolites in the respective seasons.
Collapse
Affiliation(s)
- Marwa Kamal
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Neveen Abdel-Raouf
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khairiah Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Mohamed Sayed Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ola Hammouda
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
30
|
Galanakis CM. The "Vertigo" of the Food Sector within the Triangle of Climate Change, the Post-Pandemic World, and the Russian-Ukrainian War. Foods 2023; 12:foods12040721. [PMID: 36832796 PMCID: PMC9956103 DOI: 10.3390/foods12040721] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Over the last few years, the world has been facing dramatic changes due to a condensed period of multiple crises, including climate change, the COVID-19 pandemic, and the Russian-Ukrainian war. Although different, these consecutive crises share common characteristics (e.g., systemic shocks and non-stationary nature) and impacts (e.g., disruption of markets and supply chains), questioning food safety, security, and sustainability. The current article analyses the effects of the noted crises in the food sector before proposing target mitigation measures to address the different challenges. The goal is to transform the food systems to increase their resilience and sustainability. This goal can only be achieved if all relevant actors within the supply chain (e.g., governments, companies, distributors, farmers, etc.) play their role by designing and implementing target interventions and policies. In addition, the transformation of the food sector should be proactive concerning food safety, circular (valorizing several bioresources under the principles of climate neutral economy and blue bioeconomy), digital (based on Industry 4.0 applications), and inclusive (ensuring that all citizens are actively engaged). Food production modernization (e.g., by implementing emerging technologies) and developing shorter and more domestic supply chains are also critical to achieving food resilience and security.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Galanakis Laboratories, Research & Innovation Department, 73131 Chania, Greece;
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
| |
Collapse
|