1
|
Lahr RG, Meyer M, Nelson L, Kottschade LA, Jannetto PJ, Yang YK. Performance Comparison of Liquid Chromatography and Paper Spray Ionization with Mass Spectrometry for Measuring Kinase Inhibitors in Human Plasma. ACS Pharmacol Transl Sci 2025; 8:557-565. [PMID: 39974637 PMCID: PMC11834250 DOI: 10.1021/acsptsci.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Kinase inhibitors are small-molecule drugs designed to target oncogenic mutations in cancer treatment. Although less toxic than conventional chemotherapy drugs, they can cause severe adverse effects in some patients, resulting in dose reduction and cessation. To evaluate if therapeutic drug monitoring of kinase inhibitors and their metabolites can improve toxicity assessment in patients, we developed and evaluated the analytical performance of two parallel methods utilizing liquid chromatography (LC) and paper spray (PS) ionization coupled with a triple quadrupole mass spectrometer (MS) for the measurement of dabrafenib, its major metabolite OH-dabrafenib, and trametinib in patient plasma samples. The PS-MS method yielded a faster sample analysis time (2 min) compared to the LC separation (9 min). The two methods shared the same analytical measurement range (AMR) for dabrafenib and OH-dabrafenib (10-3500 and 10-1250 ng/mL), but the AMR differed for trametinib (LC-MS: 0.5-50 ng/mL; PS-MS: 5.0-50 ng/mL). The imprecision across their respective AMR was 1.3-6.5% (dabrafenib), 3.0-9.7% (OH-dabrafenib), and 1.3-5.1% (trametinib) for the LC-MS method and 3.8-6.7% (dabrafenib), 4.0-8.9% (OH-dabrafenib), and 3.2-9.9% (trametinib) for the PS-MS method. Using authentic patient samples, the quantification results were comparable between the two methods: dabrafenib (correlation coefficient r = 0.9977), OH-dabrafenib (r = 0.885), and trametinib (r = 0.9807). Nonetheless, the PS-MS method displayed significantly higher variations compared with the LC-MS method. Based on the LC-MS method, we were able to profile the concentrations and metabolism patterns of dabrafenib and trametinib in patients who were receiving the drugs for BRAF V600 mutation-driven malignancies.
Collapse
Affiliation(s)
- Richard G. Lahr
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Makenzie Meyer
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Leah Nelson
- Mayo Clinic Comprehensive Cancer Center,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Lisa A. Kottschade
- Mayo Clinic Comprehensive Cancer Center,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Paul J. Jannetto
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| | - Yifei K. Yang
- Department of Laboratory Medicine and Pathology,
Mayo Clinic, Rochester, Minnesota 55905, United
States
| |
Collapse
|
2
|
Lee D, Ro H, Hwang S, Lee M, Kim H, Heo J, Cha S. Determination of Sulfites in Dried Fruits by Paper Spray Ionization Tandem Mass Spectrometry. Molecules 2024; 29:2192. [PMID: 38792053 PMCID: PMC11124160 DOI: 10.3390/molecules29102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Sulfite, a widely used food additive, is subject to regulated labeling. The extraction of sulfite as the stable hydroxymethylsulfonate (HMS) form and its quantitative analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been recognized for their good sensitivity, selectivity, and versatility across various food materials. This study aimed to develop a cost-effective and simpler method for sulfite quantitation, while maintaining the superior sensitivity and selectivity of mass spectrometry (MS). To achieve this, we introduced paper spray ionization (PSI), an ambient desorption ionization technique that could achieve the direct measurement of analytes without employing separation. We also employed a novel internal standard (IS) structurally similar to the analyte, replacing the more expensive isotopically labeled IS. Although the PSI-MS/MS method developed in this study exhibited slightly lower analytical performance compared to the conventional LC-MS/MS, it remained effective for sulfite analysis in dried fruits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sangwon Cha
- Department of Chemistry, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Pereira I, Robinson JL, Gill CG. Simultaneous quantitation of urinary albumin and creatinine for rapid clinical albuminuria diagnostics using high-throughput paper spray mass spectrometry. Analyst 2024; 149:1102-1110. [PMID: 38093632 DOI: 10.1039/d3an01855e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Albuminuria is a clinical condition associated with poor kidney function, diagnosed by determining the ratio of albumin to creatinine concentrations in patient urine samples. We present a high-throughput paper spray mass spectrometry (PS-MS) method for simultaneous quantitation of urinary albumin and creatinine for potential diagnosis of albuminuria. Minimal (urine dilution) or no sample preparation is required. The analytical performance of the method was evaluated, achieving linear calibration curves (R2 > 0.99) with little inter-day variability in the slope (N = 5 days), exhibiting coefficient of variation (CV) of 8% and 3% for albumin and creatinine, respectively. LOD and LOQ for albumin were 2.1 and 7.0 mg L-1, and for creatinine were 0.01 and 0.03 mmol L-1, respectively. Intra- and inter-day (N = 5) precisions (%CV) and accuracies (%bias) were <10% and ±11%, respectively, for both analytes. The method was applied to determine albumin-to-creatinine ratios in anonymous human patient urine samples (N = 56), and a correlation of R2 = 0.9744 was achieved between the PS-MS results and validated clinical method results. This work demonstrates the utility of PS-MS to simultaneously quantify a large (albumin) and a small (creatinine) molecule directly in patient urine samples, and its potential as a tool for clinical albuminuria diagnostics.
Collapse
Affiliation(s)
- Igor Pereira
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada.
| | | | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada.
- Chemistry Department, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Chemistry Department, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA, 98195-1618, USA
| |
Collapse
|
4
|
An SJ, Kal Y, Jeong M, Kang S, Kwak B, Kim H, Ryu S, Cha S. Simple Protein Analysis by Droplet Paper Spray Ionization Mass Spectrometry with Polyolefin Silica-Based Paper. Molecules 2023; 28:7339. [PMID: 37959759 PMCID: PMC10647424 DOI: 10.3390/molecules28217339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Paper spray ionization mass spectrometry (PSI MS) has emerged as a notable method for the rapid analysis of biological samples. However, the typical cellulose-based paper tip is incompatible with protein detection due to the strong interaction between cellulose hydroxyl groups and proteins. In this study, we utilized a commercially available polyolefin-based synthetic paper, Teslin®, as an alternative PSI substrate for simple protein analysis. We have named this method "droplet PSI" MS, as the aqueous protein solution droplet retains its shape on the Teslin® paper tip. For droplet PSI, no further chemical pretreatment was necessary for the Teslin® substrate; the only required preparation was shaping the Teslin® paper into a triangular tip. In droplet PSI MS, protein ion signals were instantly detected from a protein solution droplet upon applying a spray solvent in situ along with high voltage (HV). When compared with conventional PSI MS, our method demonstrated superior sensitivity. The droplet PSI MS utilizing Teslin® also showcased flexibility in real-time observation of protein alterations induced by an acid additive. Additionally, the effects of spray solvent composition and the application method were discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sangwon Cha
- Department of Chemistry, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
5
|
Correia VTDV, Silva VDM, Mendonça HDOP, Ramos ALCC, Silva MR, Augusti R, de Paula ACCFF, Ferreira RMDSB, Melo JOF, Fante CA. Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry. Molecules 2023; 28:2359. [PMID: 36903602 PMCID: PMC10005132 DOI: 10.3390/molecules28052359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 03/08/2023] Open
Abstract
Jabuticaba (Plinia cauliflora) and jambolan (Syzygium cumini) fruits are rich in phenolic compounds with antioxidant properties, mostly concentrated in the peel, pulp, and seeds. Among the techniques for identifying these constituents, paper spray mass spectrometry (PS-MS) stands out as a method of ambient ionization of samples for the direct analysis of raw materials. This study aimed to determine the chemical profiles of the peel, pulp, and seeds of jabuticaba and jambolan fruits, as well as to assess the efficiency of using different solvents (water and methanol) in obtaining metabolite fingerprints of different parts of the fruits. Overall, 63 compounds were tentatively identified in the aqueous and methanolic extracts of jabuticaba and jambolan, 28 being in the positive ionization mode and 35 in the negative ionization mode. Flavonoids (40%), followed by benzoic acid derivatives (13%), fatty acids (13%), carotenoids (6%), phenylpropanoids (6%), and tannins (5%) were the groups of substances found in greater numbers, producing different fingerprints according to the parts of the fruit and the different extracting solvents used. Therefore, compounds present in jabuticaba and jambolan reinforce the nutritional and bioactive potential attributed to these fruits, due to the potentially positive effects performed by these metabolites in human health and nutrition.
Collapse
Affiliation(s)
- Vinícius Tadeu da Veiga Correia
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | | | - Ana Luiza Coeli Cruz Ramos
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mauro Ramalho Silva
- Departamento de Nutrição, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte 30640-070, Brazil
| | - Rodinei Augusti
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | - Camila Argenta Fante
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
6
|
Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (Theobroma grandiflorum) by PSI-HRMS/MS and LC-HRMS/MS. Metabolites 2023; 13:metabo13030367. [PMID: 36984807 PMCID: PMC10056743 DOI: 10.3390/metabo13030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (Theobroma grandiflorum) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3′-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants.
Collapse
|
7
|
Luo W, van Beek TA, Chen B, Zuilhof H, Salentijn GIJ. Boronate affinity paper spray mass spectrometry for determination of elevated levels of catecholamines in urine. Anal Chim Acta 2022; 1235:340508. [DOI: 10.1016/j.aca.2022.340508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/01/2022]
|
8
|
Muyizere T, Mukiza J. Progress on the development of a metal salt-assisted ionization source for the mass spectrometric analysis of polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2803-2819. [PMID: 35848110 DOI: 10.1039/d2ay00724j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mass spectrometric analysis of polymers has been addressed as a challenging research topic due to poor ionization and complicated analysis using conventional mass spectrometry. The ionization source has demonstrated a promising future in rapid mass spectrometric analysis. Soft ionization techniques, such as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are the most ionization sources appeared to be a powerful tools for polymer characterization when combined with MS. However, they always need metal salts to be introduced during the ionization protocol for polymers due to the crucial role played by their ions (cations and anions). The current review focuses on the progress in the development of metal ion-assisted-ionization sources for the mass spectrometric analysis of polymers. Different ionization systems are comprehensively reviewed. The application of metal ion-assisted ESI, nanoESI, PSI, and MALDI-MS for polymer sample analyses is systematically discussed. The future research trends and challenges in this cutting-edge research field are summarized. It also aims to provide the current state-of-the-art of metal salts as a platform for ionization systems for the mass spectrometric characterization of polymers and offers the current challenges and perspectives on the promising future to improve analytical performance in this field. Finally, this mini-review provides a comprehensive handbook to researchers from different research backgrounds wishing to work in this area.
Collapse
Affiliation(s)
- Theoneste Muyizere
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, 100190 Beijing, China.
| | - Janvier Mukiza
- Rwanda Food and Drugs Authority, Kigali 1948, Rwanda.
- School of Education, College of Education, University of Rwanda, P. O. BOX 55, Rwamagana, Rwanda
| |
Collapse
|
9
|
Seró R, Ayala-Cabrera J, Santos F, Moyano E. Paper spray-atmospheric pressure photoionization-high resolution mass spectrometry for the direct analysis of neutral fluorinated compounds in waterproof impregnation sprays. Anal Chim Acta 2022; 1204:339720. [DOI: 10.1016/j.aca.2022.339720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
|
10
|
Rapid quantitative analysis of hormones in serum by multilayer paper spray MS: Free MS from HPLC. Talanta 2022; 237:122900. [PMID: 34736715 DOI: 10.1016/j.talanta.2021.122900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Developing rapid and reliable method for simultaneous hormones quantitation is of great significant because of important roles of hormones in metabolism. However, current methods are faced with problems of low throughput or complicated operation procedure to remove matrices from serum samples in routine clinical diagnosis. In the present work, a multilayer PS-MS method was developed for rapid and simple detection of hormones. In the strategy, multilayer filter paper acted as the Liquid Chromatography in LC-MS/MS for separation of hormones and biological matrices. Qualitative and quantitative analysis of three hormones, testosterone (T), androsterone (ADT) and androstenedione (4-AD) were realized through MS/MS spectra. The method exhibited linearity in the range of 0.02-2 μg/L and the results of recovery and repeatability were satisfactory for standard samples and spiked serum. The time-cost of a whole detection process was less than 3 min. The established multilayer PS-MS realized rapid, simple and reliable quantitative analysis of various hormones and provided broad prospect for clinical analysis of small molecules in different biological samples. Moreover, it provides a novel MS approach with high through-put and free HPLC, meeting the requirements of point-of-care testing (POCT).
Collapse
|
11
|
Dulay MT, Boeser CL, Walker KL, Feider C, Zare RN. Polymer substrate with surface solvent reservoir for polymer-spray mass spectrometric analysis of hydrophilic drugs. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
12
|
Yang Y, Niu W, Wang W, Qi S, Tong L, Mu X, Chen Z, Li W, Tang B. h-FBN assisted negative ion paper spray for the sensitive detection of small molecules. Chem Commun (Camb) 2021; 57:6612-6615. [PMID: 34116566 DOI: 10.1039/d1cc02338a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Negative ion mode paper spray mass spectrometry (PS-MS) suffers from intense background noise and unstable MS signal. For the first time, we reported fluorinated boron nitride nanosheet (h-FBN) assisted negative ion PS-MS for the detection of a series of molecules. We demonstrated that the introduction of h-FBN can greatly improve the detection sensitivity and signal stability in the negative ion mode.
Collapse
Affiliation(s)
- Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Weihua Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Weiqing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Siyun Qi
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Xiaoyan Mu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China.
| |
Collapse
|
13
|
Guo P, Min K, Luo W, Huang S, Yang Z, Ma M, Liu S, Fang Z, Chen B, Zuilhof H. Ionization of glycans from alkali metal salt-impregnated paper. Talanta 2021; 234:122674. [PMID: 34364474 DOI: 10.1016/j.talanta.2021.122674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Abstract
Ambient ionization of glycans is simply and efficiently achieved by spraying from an alkali metal salt-impregnated paper surface. Monosaccharides, oligosaccharides and ring glycans easily form abundant alkali metal adduct ions, and give simple and clean high-quality mass spectra. The enhancement is specific for glycans, compared to a wide variety of non-glycan compounds present in a matrix. In addition, molecular weight of unknown glycans can be further identified based on the ion mass difference of various alkali metal adduct ions from a certain compound when using a mixed salt-impregnated paper containing five cation salts. Successful determination of glycans and glycoconjugates in plant extracts, honey, blood and urine demonstrates the practicability of this approach to complicated matrices, especially biological matrices.
Collapse
Affiliation(s)
- Ping Guo
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, China; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703, WE Wageningen, the Netherlands
| | - Ke Min
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, China
| | - Wei Luo
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, China
| | - Si Huang
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, China
| | - Zihui Yang
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, China
| | - Shubin Liu
- Division of Research Computing, Information Technology Services, University of North Carolina, North Carolina, 27599, USA
| | - Zhengfa Fang
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, China.
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703, WE Wageningen, the Netherlands; Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Mikhail IE, Tehranirokh M, Gooley AA, Guijt RM, Breadmore MC. Hyphenated sample preparation-electrospray and nano-electrospray ionization mass spectrometry for biofluid analysis. J Chromatogr A 2021; 1646:462086. [PMID: 33892255 DOI: 10.1016/j.chroma.2021.462086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Stand-alone electrospray ionization mass spectrometry (ESI-MS) has been advancing through enhancements in throughput, selectivity and sensitivity of mass spectrometers. Unlike traditional MS techniques which usually require extensive offline sample preparation and chromatographic separation, many sample preparation techniques are now directly coupled with stand-alone MS to enable outstanding throughput for bioanalysis. In this review, we summarize the different sample clean-up and/or analyte enrichment strategies that can be directly coupled with ESI-MS and nano-ESI-MS for the analysis of biological fluids. The overview covers the hyphenation of different sample preparation techniques including solid phase extraction (SPE), solid phase micro-extraction (SPME), slug flow micro-extraction/nano-extraction (SFME/SFNE), liquid extraction surface analysis (LESA), extraction electrospray, extraction using digital microfluidics (DMF), and electrokinetic extraction (EkE) with ESI-MS and nano-ESI-MS.
Collapse
Affiliation(s)
- Ibraam E Mikhail
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia; Department of Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Masoomeh Tehranirokh
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, VIC, 3134, Australia
| | - Andrew A Gooley
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Trajan Scientific and Medical, Ringwood, VIC, 3134, Australia
| | - Rosanne M Guijt
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Centre for Regional and Rural Futures, Deakin University, Geelong, VIC, 3220, Australia
| | - Michael C Breadmore
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Australia; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
15
|
Min K, Yang Q, Zhong X, Yan D, Luo W, Fang Z, Xiao J, Ma M, Chen B. Rapid analysis of anionic and cationic surfactants in water by paper spray mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:986-995. [PMID: 33533766 DOI: 10.1039/d0ay02215b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discharge of wastewater containing surfactants and other industrial pollutants is contaminating the world's water resources which should be taken seriously. This paper describes a paper spray mass spectrometric (PS-MS) method for rapid and quantitative analysis of anionic and cationic surfactants in water samples. Eight cationic surfactants and four anionic surfactants can be simultaneously determined in positive or negative mode without sample pretreatment and chromatographic separation. The PS-MS analysis time was only 10 s. Under optimized conditions, the method presented a suitable linear range (1-80 μg mL-1, linear regression coefficients (R2) higher than 0.995 for cationic surfactants, R2 higher than 0.990 for anionic surfactants), a low limit of detection (0.05-0.35 μg mL-1 for cationic surfactants and 0.20-0.35 μg mL-1 for anionic surfactants), and satisfactory recovery values (97.3-106.1%). The method validation indicated that the method precision and accuracy were satisfactory. The results demonstrated that PS-MS is especially suitable for the high-throughput analysis of surfactants in water samples.
Collapse
Affiliation(s)
- Ke Min
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen Z, Shi Q, Wang W, Jiang Z, Zhang GL, Tong L, Mu X, Tang B. Fabrication of a "Selenium Signature" Chemical Probe-Modified Paper Substrate for Simultaneous and Efficient Determination of Biothiols by Paper Spray Mass Spectrometry. Anal Chem 2021; 93:1749-1756. [PMID: 33351590 DOI: 10.1021/acs.analchem.0c04457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant efforts have been made to develop robust and reliable methods for simultaneous biothiols determination in different matrices, but there still exist the problems such as easy oxidation, tedious derivatization, and difficulty in discrimination, which brings unsatisfactory results in their accuracy and fast quantification in biological samples. To overcome these problems, a simultaneous biothiols detection method combining a "selenium signature" chemical probe and paper spray mass spectrometry (PS-MS) was proposed. In the strategy, the modified-paper substrate is used to enhance the analytical performance. Chemical probe Ebselen-NH2 that has a specific response to biothiols was designed and covalently fixed on the surface of an oxidized paper substrate. By the identification of derivatized product with distinctive selenium isotope distribution and employment of the optimized PS-MS method, qualitative and quantitative analysis of five biothiols including glutathione (GSH), cysteine (Cys), cysteinylglycine (CysGly), N-acetylcysteine (Nac), and homocysteine (Hcy) were realized. Biothiols in plasma and cell lysates were measured with satisfactory results. The established method not only provides a novel protocol for simultaneous determination of biothiols, but also is helpful for understanding the biological and clinical roles played by these bioactive small molecules.
Collapse
Affiliation(s)
- Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Qian Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Weiqing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guang-Lu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoyan Mu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
17
|
In Situ Separation and Analysis of Lipids by Paper Spray Ionization Mass Spectrometry. Molecules 2020; 26:molecules26010093. [PMID: 33379256 PMCID: PMC7795734 DOI: 10.3390/molecules26010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022] Open
Abstract
Paper spray ionization (PSI) is an extractive ambient ionization technique for mass spectrometry (MS), whereby a triangular paper tip serves as the sampling base and the electrospray tip. During PSI, analytes are extracted and transported to the edge of the paper tip by the applied spraying solvent. Analytes can be purified from a sample matrix and separated from each other by this transportation process. In this study, we investigated and utilized the analyte transportation process of PSI for the in situ separation and analysis of lipid mixtures. We found that differential transport of phosphatidylcholine (PC) and triacylglycerol (TAG), the two most abundant lipid classes in animals, occurred during PSI. We also found that the order in which these lipids moved strongly depended on how the spraying solvent was applied to the paper base. The more polar PC moved faster than the less polar TAG during PSI, when a polar solvent was slowly fed into a paper tip, whereas TAG was transported faster than PC when excess solvent was applied to the tip at once. In addition, we achieved a complete separation and detection of PC and TAG by slowly supplying a nonpolar solvent to a PSI tip.
Collapse
|
18
|
Shi P, Li M, Fu X, Xia B, Zhou Y. Study on the separation mechanism of solid-substrate electrospray ionization mass spectrometry. J Sep Sci 2020; 44:1026-1035. [PMID: 33340232 DOI: 10.1002/jssc.202000926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023]
Abstract
Solid-substrate electrospray ionization mass spectrometry is an important ambient ionization technology to simplify mass spectrometry analysis. Nowadays, its separation application has been reported increasingly, however, the detailed separation mechanism is still indistinct although the chromatographic effect was reported as a possible factor. In this study, substrate-filled capillary electrospray ionization mass spectrometry was developed as an ideal model to investigate the separation mechanism using over thirty small molecules (neutral, basic, and weakly acidic) as model compounds with C18-bonded silica gel and silica gel as the substrates. The chromatographic effect was validated by the negative t-value of oil-water distribution coefficient, and the electric field effect was verified by the paired t-test (p < 0.01) between the retention times at 5.5 and 4.0 kV. A differential equation was proposed to quantify the compound retention under electric field. The quantitative method was validated to rapidly quantify proline (31.88 μg/mL) and hydroxyproline (20.71 μg/mL) in plasma with acceptable selectivity and accuracy. In conclusion, the separation mechanism of solid-substrate electrospray ionization mass spectrometry was the combination of the chromatographic and electric field effects, which could provide theoretical guidance for the separation optimization, and also promote its applications in biological, pharmaceutical, forensic, food and environmental analyses, etc.
Collapse
Affiliation(s)
- Peiyu Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Min Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Xian Fu
- GCP Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
19
|
Sarih NM, Romero-Perez D, Bastani B, Rauytanapanit M, Boisdon C, Praneenararat T, Tajuddin HA, Abdullah Z, Badu-Tawiah AK, Maher S. Accelerated nucleophilic substitution reactions of dansyl chloride with aniline under ambient conditions via dual-tip reactive paper spray. Sci Rep 2020; 10:21504. [PMID: 33299034 PMCID: PMC7725966 DOI: 10.1038/s41598-020-78133-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
Paper spray ionization (PSI) mass spectrometry (MS) is an emerging tool for ambient reaction monitoring via microdroplet reaction acceleration. PSI-MS was used to accelerate and monitor the time course of the reaction of dansyl chloride with aniline, in acetonitrile, to produce dansyl aniline. Three distinct PSI arrangements were explored in this study representing alternative approaches for sample loading and interaction; conventional single tip as well as two novel setups, a dual-tip and a co-axial arrangement were designed so as to limit any on-paper interaction between reagents. The effect on product abundance was investigated using these different paper configurations as it relates to the time course and distance of microdroplet travel. It was observed that product yield increases at a given distance and then decreases thereafter for all PSI configurations. The fluorescent property of the product (dansyl aniline) was used to visually inspect the reaction progress on the paper substrate during the spraying process. Amongst the variety of sample loading methods the novel dual-tip arrangement showed an increased product yield and microdroplet density, whilst avoiding any on-paper interaction between the reagents.
Collapse
Affiliation(s)
- Norfatirah Muhamad Sarih
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - David Romero-Perez
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Behnam Bastani
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Monrawat Rauytanapanit
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Thanit Praneenararat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Hairul Anuar Tajuddin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zanariah Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| |
Collapse
|
20
|
Filho JFA, Dos Santos NA, Borges KB, Lacerda V, Pelição FS, Romão W. Fiber spray ionization mass spectrometry in forensic chemistry: A screening of drugs of abuse and direct determination of cocaine in urine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8747. [PMID: 32056289 DOI: 10.1002/rcm.8747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Ambient mass spectrometry techniques are much required in forensic chemistry to evaluate evidence with low analytical interference, high confidence, and accuracy. However, traditional methodologies, such as paper spray ionization, have been shown to present low sensitivity in the analysis of illicit drugs from biological matrices. METHODS Fiber spray ionization mass spectrometry (FSI-MS) was developed using a capillary polypropylene (PP) hollow fiber. Seized samples of drugs, i.e. a tablet, blotter paper, hashish, and cocaine powder, were analyzed. Cocaine was quantified from whole urine by dipping the fiber directly into solution. FSI-MS was tested for the analysis of a sample of urine obtained from a drug abuse suspect. RESULTS The FSI(+) analysis showed the detection of different types of synthetic drugs in tablet and blotter paper samples, e.g. amphetamine, cathinones, phenethylamines, and opioids, while pure cocaine and different types of coca alkaloids were identified from cocaine powder with good sensitivity and high mass accuracy. The hashish analysis by FSI(-) revealed signals of cannabinoids, cannabinoid acids, and cannabinoid derivatives, detected mainly as [M - H]- ions or chlorine adducts [M + Cl]- . The quantification of cocaine in whole urine showed good sensitivity and precision with limits of detection and quantification of 5.16 and 17.21 ng/mL, respectively, linearity above 0.999, and relative standard deviation below 2.71%. The evaluation of seized sample of urine showed the detection of cocaine with relative ion intensity greater than 36%, as well as the metabolites benzoylecgonine and cocaethylene with a relative intensity of 1.4% and 6%, respectively. CONCLUSIONS The developed FSI-MS method has the potential to be applied to forensic sample evaluation as well as to determine illicit drugs from biological matrices in toxicological analysis. The use of a capillary PP fiber has advantages as an extractor agent and ionizing substrate, and also the feature of it being dipped directly into the sample, thus preserving the integrity of the sample, which makes this a very promising ambient mass spectrometry method and relevant to forensic chemistry.
Collapse
Affiliation(s)
- João Francisco Allochio Filho
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Instituto Federal do Espírito Santo, São Mateus, ES, 29932-540, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Brazil
| | - Nayara A Dos Santos
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| | - Valdemar Lacerda
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Fabrício Souza Pelição
- Departamento Médico Legal, Polícia Civil do Espírito Santo (PC-ES), Vitória, ES, 29045-402, Brazil
| | - Wanderson Romão
- Laboratório de Petroleômica e Química Forense, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Brazil
- Instituto Federal do Espírito Santo, Vila Velha, ES, 29106-010, Brazil
| |
Collapse
|
21
|
Jackson S, Frey BS, Bates MN, Swiner DJ, Badu-Tawiah AK. Direct differentiation of whole blood for forensic serology analysis by thread spray mass spectrometry. Analyst 2020; 145:5615-5623. [PMID: 32633747 PMCID: PMC7896278 DOI: 10.1039/d0an00857e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Direct analysis of whole blood on bloodstained textiles is achieved with thread spray mass spectrometry (MS). This capability satisfies investigators' first priority in crime scene investigations, which is determining if a stain is blood. This thread spray method explores the use of evidentiary fabric threads for rapid determination of hemoglobin directly from whole blood within textiles without prior extraction steps. The multiplicity of information that can be derived from the thread spray MS method distinguishes it from the current presumptive Bluestar® method, by enabling the detection of hemoglobin (both α- and β-chains), the heme co-factor and lipids all from a single blood sample. Lipid composition was found to differ for blood samples originating from human, canine, and horse species. The robustness of the thread spray MS method as a forensic analytical platform was evaluated in three ways: (1) its successful applicability to samples previously tested by the Bluestar® presumptive method, offering a confirmatory test without prior sample pre-treatment, (2) successful detection of heme from previously washed fabrics, which demonstrated the unprecedented sensitivity of the thread spray method, and (3) the ability to analyze samples stored under ambient conditions for up to 30 days. These results attest to the potential capabilities of the thread spray MS platform in forensic serology, and its application for direct analysis of evidentiary garments, which confer the advantages of rapid analysis and the reduction of the false positive and negative identification rates for blood on textiles.
Collapse
Affiliation(s)
- Sierra Jackson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Direct ambient ionization techniques have been developed with the aim to reduce the complexity of mass spectrometry analysis by minimizing sample preparation and chromatographic separation. In this context, paper spray-MS (PS-MS) is an innovative approach that provides faster and cheaper analysis of biofluids by the addition of the sample directly to a paper. In forensic toxicology, the analytical workflow for the detection and quantification of drugs of abuse is onerous, including sample treatment, extraction and clean up, especially regarding complex biological matrices. PS-MS allows the detection of analytes of toxicological interest in blood, plasma and urine using low sample volume. This review aims to discuss the potential use, advances and challenges of PS-MS in forensic toxicology.
Collapse
|
23
|
Frey BS, Damon DE, Badu-Tawiah AK. Emerging trends in paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications. MASS SPECTROMETRY REVIEWS 2020; 39:336-370. [PMID: 31491055 PMCID: PMC7875099 DOI: 10.1002/mas.21601] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Recent advancements in the sensitivity of chemical instrumentation have led to increased interest in the use of microsamples for translational and biomedical research. Paper substrates are by far the most widely used media for biofluid collection, and mass spectrometry is the preferred method of analysis of the resultant dried blood spot (DBS) samples. Although there have been a variety of review papers published on DBS, there has been no attempt to unify the century old DBS methodology with modern applications utilizing modified paper and paper-based microfluidics for sampling, storage, processing, and analysis. This critical review will discuss how mass spectrometry has expanded the utility of paper substrates from sample collection and storage, to direct complex mixture analysis to on-surface reaction monitoring.
Collapse
Affiliation(s)
- Benjamin S Frey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
24
|
Choi S, Cha S. Investigation of Reactions Between Isothiazolinones and Cysteamine by Reactive Paper Spray Ionization Mass Spectrometry (Reactive PSI MS). B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soobin Choi
- Department of ChemistryHankuk University of Foreign Studies Yongin 17035 South Korea
| | - Sangwon Cha
- Department of ChemistryHankuk University of Foreign Studies Yongin 17035 South Korea
| |
Collapse
|
25
|
Liu Y, Yang Q, Chen X, Song Y, Wu Q, Yang Y, He L. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips. Talanta 2019; 204:238-247. [DOI: 10.1016/j.talanta.2019.05.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022]
|
26
|
Yang Y, Liu H, Chen Z, Wu T, Jiang Z, Tong L, Tang B. A Simple 3D-Printed Enzyme Reactor Paper Spray Mass Spectrometry Platform for Detecting BuChE Activity in Human Serum. Anal Chem 2019; 91:12874-12881. [DOI: 10.1021/acs.analchem.9b02728] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Huimin Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Tianhong Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
27
|
Vandergrift GW, Gill CG. Paper spray mass spectrometry: A new drug checking tool for harm reduction in the opioid overdose crisis. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:729-737. [PMID: 31432563 DOI: 10.1002/jms.4431] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Fentanyl and related psychoactive substances are at the forefront of the opioid overdose crisis, for which a complete solution is not immediately obvious. Drug testing for harm reduction may be an effective approach to both reduce overdoses and importantly, engage people who use drugs (PWUD) with the medical system. Paper spray mass spectrometry (PS-MS) is an ambient ionization strategy that is uniquely suited to address this complicated analytical task. This perspectives article presents the merits of PS-MS, with a focus upon the current state of its use as a candidate drug checking strategy for harm reduction. PS-MS is inherently sensitive and selective, with detection limits in the picogram range. It requires small drug samples (~1 mg) for quantitative drug testing, critical to encourage pre-consumption measurements by PWUD in the context of a harm reduction strategy. Calibrations obtained in surrogate drug matrices containing highly concentrated primary drugs demonstrate comparable sensitivities, a wide calibration range, and minimal matrix effects. PS-MS can be interfaced with high-resolution MS for non-targeted analysis, allowing the identification of novel psychoactive substances as they appear in street drugs. Individual quantitative PS-MS measurements for drug testing can be done in 1 minute or less, resulting in high sample throughput. Significant advancement in mass spectrometer miniaturization and mobilization has concomitant benefits for direct, on-site drug checking, such as reduced cost, simplified maintenance and ease of use by less skilled operators. While PS-MS technology continues to rapidly advance, it is our opinion that PS-MS can be utilized as an effective tool for harm reduction in the opioid overdose crisis.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC, Canada
- Chemistry Department, University of Victoria, Victoria, BC, Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC, Canada
- Chemistry Department, University of Victoria, Victoria, BC, Canada
- Chemistry Department, Simon Fraser University, Burnaby, BC, Canada
- Environmental and Occupational Health Sciences Department, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Bambauer TP, Maurer HH, Weber AA, Hannig M, Pütz N, Koch M, Manier SK, Schneider M, Meyer MR. Evaluation of novel organosilane modifications of paper spray mass spectrometry substrates for analyzing polar compounds. Talanta 2019; 204:677-684. [PMID: 31357352 DOI: 10.1016/j.talanta.2019.05.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Paper spray mass spectrometry (PSMS) is currently used in different analytical fields, but less effort has been made so far to use PSMS for highly polar compounds. Such analytes usually show poor performance in PSMS due to their high affinity for common paper substrates in addition to high matrix effects. In this study, strategies for hydrophobic modifications of commercially available paper substrates using ten different organosilanes were developed. The modified substrates were generated, characterized, and applied for PSMS analysis of polar toxins. By using the modified paper, PSMS performance of some of the toxins could be considerably increased, especially for orellanine, showing a more than 80-fold signal enhancement when substrates modified with chlorotrimethylsilane were used. For other toxins like ricinine, only small beneficial effects could be shown on PSMS performance when using modified substrates. Statistical equivalence tests showed sufficient ruggedness of the developed procedures also compared to conventional substrates. Thus, further systematic development of paper substrates modified with organosilane derivatives based on the presented study for application in PSMS should be encouraged.
Collapse
Affiliation(s)
- Thomas P Bambauer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421, Homburg, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421, Homburg, Germany
| | - Armin A Weber
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421, Homburg, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, Homburg/Saar, Germany
| | - Norbert Pütz
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Sascha K Manier
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421, Homburg, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123, Saarbruecken, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Center for Molecular Signaling (PZMS), 66421, Homburg, Germany.
| |
Collapse
|
29
|
Paper spray high-resolution accurate mass spectrometry for quantitation of voriconazole in equine tears. Anal Bioanal Chem 2019; 411:5187-5196. [PMID: 31123782 DOI: 10.1007/s00216-019-01898-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023]
Abstract
Paper spray high-resolution accurate mass spectrometry is a fast and versatile analysis method. This ambient ionization technique enables the quantitation of xenobiotics in complex biological matrices without chromatography or conventional sample extraction. The simplicity, rapidity, and affordability of the paper spray mass spectrometry (PS-MS) method make the technique especially attractive for clinical investigations where fast and affordable sample analysis is crucial. A new PS-MS method for the quantitation of voriconazole in equine tears was developed and validated. For a concentration range of 10 to 1000 ng/mL, good linearity (R2 > 0.99), inter- and intra-run precision (coefficient of variation (CV) max. 11.9%), accuracy (bias of the nominal concentration ± 13.9%), and selectivity (signal areas of the double blanks represent 0.13 ± 0.05% of the lower limit of quantitation (LLOQ) signal in equine tears) were observed. The quantitation of voriconazole was based on three product ions and calculated relative to the isotope-labeled internal standard, voriconazole-d3, which had a final concentration of 250 ng/mL in the standards and samples. The matrix effect of the method showed an ionization suppression by reduction of the voriconazole response to 63.6%, 70.2%, and 81.9% for 30 ng/mL, 450 ng/mL, and 900 ng/mL in equine tears compared with voriconazole in solvent (methanol:water, 50:50, v:v). The method was used to analyze 126 study samples collected for a pharmacokinetic study investigating a novel approach for treatment of fungal keratitis in horses. Therefore, the integrity of the sample dilution (n = 6, CV 6.90%, and bias of nominal concentration + 8.40%) and the carryover effect (increase from 0.33 ± 0.21% to 1.33 ± 0.89% of the signal of the LLOQ) was further investigated. To our knowledge, this method is the first application of PS-MS for quantitation of drug concentrations in tears from any species.
Collapse
|
30
|
Basuri P, Baidya A, Pradeep T. Sub-Parts-per-Trillion Level Detection of Analytes by Superhydrophobic Preconcentration Paper Spray Ionization Mass Spectrometry (SHPPSI MS). Anal Chem 2019; 91:7118-7124. [DOI: 10.1021/acs.analchem.9b00144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Avijit Baidya
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS), Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
31
|
Wickramasekara S, Kaushal R, Li H, Patwardhan D. Paper spray portable mass spectrometry for screening of phorbol ester contamination in glycerol-based medical products. Anal Bioanal Chem 2019; 411:2707-2714. [DOI: 10.1007/s00216-019-01717-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 01/11/2023]
|
32
|
Development of paper substrate for paper spray MS in high-sensitivity analysis of biological samples. Bioanalysis 2018; 10:2047-2067. [DOI: 10.4155/bio-2018-0199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Paper spray (PS) has demonstrated a promising future for direct mass spectrometric analysis. In the process of PS, paper substrate has been demonstrated as a crucial factor in determining the final performance of PS-MS, and therefore much attention is paid to modification of paper substrate. In this review, we systematically introduce the development of paper substrate for PS. Various commercial and modified papers are comprehensively reviewed, and much effort is focused on some physical and chemical approaches for modification of paper substrate. The application of modified paper substrates to biological sample analyses is discussed. The future promising directions of paper substrate for PS are highlighted.
Collapse
|
33
|
The impacts of paper properties on matrix effects during paper spray mass spectrometry analysis of prescription drugs, fentanyl and synthetic cannabinoids. Forensic Chem 2018. [DOI: 10.1016/j.forc.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Abstract
This paper focuses on one of the most commonly encountered materials in our society, namely paper. Paper is an inherently complex material, yet its use provides for chemical analysis approaches that are elegant in their simplicity of execution. In the first half of the previous century, paper in scientific research was used mainly for filtration and chromatographic separation. While its use decreased with the rise of modern elution chromatography, paper remains a versatile substrate for low-cost analytical tests. Recently, we have seen renewed interest to work with paper in (bio)analytical science, a result of the growing demand for inexpensive, portable analysis. Dried blood spotting, paper microfluidics, and paper spray ionization are areas in which paper is (re)establishing itself as an important material. These research areas all exploit several properties of paper, including stable sample storage, passive fluid movement and manipulation, chromatographic separation/extraction, modifiable surface and/or volume, easily altered shape, easy transport, and low cost. We propose that the real, and to date underexploited, potential of paper lies in utilizing its combined characteristics to add new dimensions to paper-based (bio)chemical analysis, expanding its applicability. This article provides the reader with a short historical perspective on the scientific use of paper and the developments that led to the establishment of the aforementioned research areas. We review important characteristics of paper and place them in a scientific context in this descriptive, yet critical, assessment of the achieved and the achievable in paper-based analysis. The ultimate goal is the exploration of integrative approaches at the interface between the different fields in which paper is or can be used.
Collapse
Affiliation(s)
- G Ij Salentijn
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands.,Laboratory of Organic Chemistry , Wageningen University and Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - M Grajewski
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - E Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| |
Collapse
|
35
|
Chiang S, Zhang W, Ouyang Z. Paper spray ionization mass spectrometry: recent advances and clinical applications. Expert Rev Proteomics 2018; 15:781-789. [PMID: 30223684 PMCID: PMC6320440 DOI: 10.1080/14789450.2018.1525295] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Paper spray mass spectrometry has provided a rapid, quantitative ambient ionization method for xenobiotic and biomolecule analysis. As an alternative to traditional sample preparation and chromatography, paper spray demonstrates the sampling ionization of a wide range of molecules and significant sensitivity from complex biofluids. The amenability of paper spray with dried blood spots and other sampling types shows strong potential for rapid, point-of-care (POC) analysis without time-consuming separation procedures. Areas covered: This special report summarizes the current state and advances in paper spray mass spectrometry that relate to its applicability for clinical analysis. It also provides our perspectives on the future development of paper spray mass spectrometry and its potential roles in clinical settings. Expert commentary: Paper spray has provided the fundamental aspects of ambient ionization needed for implementation at the POC. With further clinical management and standardization, paper spray has the potential to replace traditional complex analysis procedure for rapid quantitative detection of illicit drugs, therapeutic drugs and metabolites. Surface and substrate modifications also offer significant improvement in desorption and ionization efficiencies, resulting in enhanced sensitivity. Comprehensive analysis of metabolites and lipids will further extend the implementation of paper spray ionization mass spectrometry into clinical applications.
Collapse
Affiliation(s)
- Spencer Chiang
- State Key Laboratory of Precision Measurement Technology
and Instruments, Department of Precision Instrument, Tsinghua University, Beijing,
China
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, Indiana, USA
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology
and Instruments, Department of Precision Instrument, Tsinghua University, Beijing,
China
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, Indiana, USA
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology
and Instruments, Department of Precision Instrument, Tsinghua University, Beijing,
China
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, Indiana, USA
| |
Collapse
|
36
|
Jackson S, Swiner DJ, Capone PC, Badu-Tawiah AK. Thread spray mass spectrometry for direct analysis of capsaicinoids in pepper products. Anal Chim Acta 2018; 1023:81-88. [DOI: 10.1016/j.aca.2018.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/13/2018] [Accepted: 04/15/2018] [Indexed: 01/05/2023]
|
37
|
Damon DE, Yin M, Allen DM, Maher YS, Tanny CJ, Oyola-Reynoso S, Smith BL, Maher S, Thuo MM, Badu-Tawiah AK. Dried Blood Spheroids for Dry-State Room Temperature Stabilization of Microliter Blood Samples. Anal Chem 2018; 90:9353-9358. [DOI: 10.1021/acs.analchem.8b01962] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Deidre E. Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengzhen Yin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Danyelle M. Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yosef S. Maher
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christian J. Tanny
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Stephanie Oyola-Reynoso
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Barry L. Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, U.K. L69 3GJ
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, U.K. L69 3GJ
| | - Martin M. Thuo
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
38
|
de Paula C, Jurisch M, Piccin E, Augusti R. Recognizing drug-facilitated crimes: Detection and quantification of benzodiazepines in beverages using fast liquid-liquid extraction with low temperature partitioning and paper spray mass spectrometry. Drug Test Anal 2018; 10:1348-1357. [DOI: 10.1002/dta.2395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Camila de Paula
- Departamento de Química, Instituto de Ciências Exatas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Marina Jurisch
- Departamento de Química, Instituto de Ciências Exatas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Evandro Piccin
- Departamento de Química, Instituto de Ciências Exatas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Rodinei Augusti
- Departamento de Química, Instituto de Ciências Exatas; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
39
|
McKenna J, Jett R, Shanks K, Manicke NE. Toxicological Drug Screening using Paper Spray High-Resolution Tandem Mass Spectrometry (HR-MS/MS). J Anal Toxicol 2018; 42:300-310. [DOI: 10.1093/jat/bky001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Josiah McKenna
- Forensic and Investigative Sciences Program, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford St, Indianapolis, IN 46202
| | - Rachel Jett
- Forensic and Investigative Sciences Program, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford St, Indianapolis, IN 46202
| | - Kevin Shanks
- AXIS Forensic Toxicology, 5780 W 71st St, Indianapolis, IN 46278
| | - Nicholas E Manicke
- Forensic and Investigative Sciences Program, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford St, Indianapolis, IN 46202
- Department of Chemistry and Chemical Biology, IUPUI, 402 N Blackford St, Indianapolis, IN 46202
| |
Collapse
|
40
|
Michely JA, Meyer MR, Maurer HH. Paper Spray Ionization Coupled to High Resolution Tandem Mass Spectrometry for Comprehensive Urine Drug Testing in Comparison to Liquid Chromatography-Coupled Techniques after Urine Precipitation or Dried Urine Spot Workup. Anal Chem 2017; 89:11779-11786. [DOI: 10.1021/acs.analchem.7b03398] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Julian A. Michely
- Department of Experimental and Clinical
Toxicology, Institute of Experimental and Clinical Pharmacology and
Toxicology, Saarland University, Homburg, Saar D-66421, Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical
Toxicology, Institute of Experimental and Clinical Pharmacology and
Toxicology, Saarland University, Homburg, Saar D-66421, Germany
| | - Hans H. Maurer
- Department of Experimental and Clinical
Toxicology, Institute of Experimental and Clinical Pharmacology and
Toxicology, Saarland University, Homburg, Saar D-66421, Germany
| |
Collapse
|
41
|
Dulay MT, Zare RN. Polymer-spray mass spectrometric detection and quantitation of hydrophilic compounds and some narcotics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1651-1658. [PMID: 28792093 PMCID: PMC5591076 DOI: 10.1002/rcm.7952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 05/11/2023]
Abstract
RATIONALE High-throughput screening of biofluids is essential in monitoring concentration of a variety of drugs to determine their efficacy and toxicity. Organosiloxane polymers prepared by sol-gel chemistry as sample supports, and electrospray ionization emitters in a single material and as an alternative to paper substrates, is described in this study. METHODS Hydrophobic drugs and hydrophilic streptomycin were analyzed by polymer-spray mass spectrometry with an LTQ-Orbitrap mass spectrometer. Drug samples in urine (1-2 μL) were deposited on an OSX polymer, allowed to dry, then electrosprayed from the polymer tip into the mass spectrometer without sample pretreatment. The OSX polymers, whose polarity and porosity can be controlled, were prepared by sol-gel chemistry where methyl-substituted alkoxysilanes were hydrolyzed in the presence of a pore template and an acid catalyst. RESULTS Five nanograms each of seven narcotic drugs were detected in <1 min (relative standard deviation (RSD) of response <1% for each drug). Calibration curves of cocaine and streptomycin in urine were used to establish the performance of the polymer. For sample 1 (n = 2), the mean recovery for cocaine was 81% with paper and 90% with polymer. Streptomycin is detected with polymer, not with paper; for samples 1 and 2 (n = 3), mean recovery was 97% and 95%, respectively. CONCLUSIONS Organosiloxane polymers achieve more sensitive analysis than paper, allowing for more accurate quantitation of both hydrophobic and hydrophilic drug compounds. The ability to tailor the polymer polarity and porosity allows for the synthesis of a wide range of polymers, and thus opens many possibilities for further development and applications.
Collapse
|
42
|
Zhang W, Wang X, Xia Y, Ouyang Z. Ambient Ionization and Miniature Mass Spectrometry Systems for Disease Diagnosis and Therapeutic Monitoring. Theranostics 2017; 7:2968-2981. [PMID: 28839457 PMCID: PMC5566099 DOI: 10.7150/thno.19410] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/06/2017] [Indexed: 12/26/2022] Open
Abstract
Mass spectrometry has become a powerful tool in the field of biomedicine. The combination of ambient ionization and miniature mass spectrometry systems could most likely fulfill a significant need in medical diagnostics, providing highly specific molecular information in real time for clinical and even point-of-care analysis. In this review, we discuss the recent development of ambient ionization and miniature mass spectrometers as well as their potential in disease diagnosis and therapeutic monitoring, with an emphasis on their capability in analysis of biofluids and tissues. We also speculate the future development of the integrated, miniature MS systems and provide our perspectives on the challenges in technical development as well as possible solutions for path forward.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 10084, China
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
43
|
Li LH, Hsieh HY, Hsu CC. Clinical Application of Ambient Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2017; 6:S0060. [PMID: 28337399 PMCID: PMC5359754 DOI: 10.5702/massspectrometry.s0060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/07/2017] [Indexed: 11/23/2022] Open
Abstract
Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | - Hua-Yi Hsieh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | | |
Collapse
|
44
|
Direct sample analysis-mass spectrometry vs separation mass spectrometry techniques for the analysis of writing inks. Forensic Chem 2016. [DOI: 10.1016/j.forc.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Zheng Y, Wang Q, Wang X, Chen Y, Wang X, Zhang X, Bai Z, Han X, Zhang Z. Development and Application of Zirconia Coated Paper Substrate for High Sensitivity Analysis of Therapeutic Drugs in Dried Blood Spots. Anal Chem 2016; 88:7005-13. [DOI: 10.1021/acs.analchem.5b04732] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yajun Zheng
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Qian Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoting Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Ying Chen
- Clinical
Analysis Laboratory, Xi’an Mental Health Center, Xi’an 710061, China
| | - Xuan Wang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoling Zhang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zongquan Bai
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Xiaoxiao Han
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhiping Zhang
- School of Chemistry
and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| |
Collapse
|
46
|
Huang Y, Heron SR, Clark AM, Edgar JS, Yoon SH, Kilgour DPA, Turecek F, Aliseda A, Goodlett DR. Surface acoustic wave nebulization device with dual interdigitated transducers improves SAWN-MS performance. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:424-429. [PMID: 27270865 DOI: 10.1002/jms.3766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/13/2016] [Accepted: 03/21/2016] [Indexed: 06/06/2023]
Abstract
We compared mass spectrometric (MS) performance of surface acoustic wave nebulization (SAWN) generated by a single interdigitated transducer (IDT) designed to produce a progressive wave (PW) to one with a dual IDT that can in theory generate standing waves (SW). Given that devices using dual IDTs had been shown to produce fewer large size droplets on average, we hypothesized they would improve MS performance by improving the efficiency of desolvation. Indeed, the SW-SAWN chip provided an improved limit of detection of 1 femtomole of peptide placed on chip making it 100× more sensitive than the PW design. However, as measured by high-speed image recording and phase Doppler particle analyzer measurements, there was only a 26% increase in the small diameter (1-10 µm) droplets produced from the new device, precluding a conclusion that the decrease in droplet size was solely responsible for the improvement in MS signal/noise. Given that the dual IDT design produced a more instantaneous plume than the PW design, the more likely contributor to improved MS signal/noise was concluded to be a higher ion flux entering the mass spectrometer for the dual IDT designs. Notably, the dual IDT device allowed production of much higher quality protein mass spectra up to about 20 kDa, compared with the single IDT device. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - Alicia M Clark
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - J Scott Edgar
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Sung Hwan Yoon
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - David P A Kilgour
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | | | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - David R Goodlett
- Deurion, LLC, Seattle, WA, USA
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
47
|
de Paula CCA, Valadares A, Jurisch M, Piccin E, Augusti R. Paper spray mass spectrometry applied in the monitoring of a chemical system in dynamic chemical equilibrium: the redox process of methylene blue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1176-1180. [PMID: 27060845 DOI: 10.1002/rcm.7546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE The monitoring of chemical systems in dynamic equilibrium is not an easy task. This is due to the high rate at which the system returns to equilibrium after being perturbed, which hampers the possibility of following the aftereffects of the disturbance. In this context, it is necessary to use a fast analytical technique that requires no (or minimal) sample preparation, and which is capable of monitoring the species constituting the system in equilibrium. Paper spray ionization mass spectrometry (PS-MS), a recently introduced ambient ionization technique, has such characteristics and hence was chosen for monitoring a model system: the redox process of methylene blue. METHODS The model system evaluated herein was composed of three cationic species of methylene blue (MB), which coexist in a dynamic redox system: (1) [MB](+) of m/z 284 (cationic MB); (2) [MB + H + e](+•) of m/z 285 (the protonated form of a transient species resulting from the reduction of [MB](+) ); (3) [MB + 2H + 2e](+) or [leuco-MB + H](+) of m/z 286 (the protonated leuco form of MB). Aliquots of a MB solution were collected before and after the addition of a reducing agent (metallic zinc) and directly analyzed by PS-MS for identification of the predominant cationic species at different conditions. RESULTS The mass spectra revealed that before the addition of the reducing agent the ion of m/z 284 (cationic MB) is the unique species. Upon the addition of the reducing agent and acid, however, the solution continuously undergo discoloration while reduced species derived directly from cationic MB (m/z 285 and 286) are detected in the mass spectra with increasing intensities. Fragmentation patterns obtained for each ionic species, i.e. [MB](+) , [MB + H + e](+•) and [leuco-MB + H](+) , shown to be consistent with the proposed structures. CONCLUSIONS The PS-MS technique proved to be suitable for an in situ and 'near' real-time analysis of the dynamic equilibrium involving the redox of MB in aqueous medium. The data clearly demonstrated how the redox equilibrium shifts depending on the disturbance caused to the system.
Collapse
Affiliation(s)
| | - Alberto Valadares
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marina Jurisch
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Evandro Piccin
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Rodinei Augusti
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
48
|
Interlayer spray ionization mass spectrometry for the simple direct analysis of low amounts of sample. Anal Bioanal Chem 2016; 408:5005-12. [PMID: 27173393 DOI: 10.1007/s00216-016-9600-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/09/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Interlayer spray is proposed as a convenient ionization source for direct analysis by mass spectrometry. Two slices of non-absorbent substrate hold the liquid sample to form a sandwich structure. By applying a high voltage to the sample, spray is generated at the tip of the substrate. The sampling procedure can be operated easily in an open condition and the spray is processed in a semi-enclosed condition, which leads to a relatively stable process. An ultralow amount (<2 μL) of the liquid sample can be analyzed without dilution, which ensures that the natural concentration and properties of the target are maintained. Less influence from the substrate is achieved compared with the spray methods based on porous absorbent materials, which results in a sensitivity enhancement of large molecule samples. It is demonstrated that the interlayer spray is applicable for the analysis of various compounds, including therapeutic drugs, peptides, and proteins. Good linearity can be obtained at a concentration as low as 50 ng/mL in the quantitative analysis for imatinib. We also show the ability to identify the chemical residuals on surfaces with high sensitivity by the "wipe-spray" method, which is useful for the fast screening of illicit substances. Interlayer spray working with mass spectrometry provides a promising method for direct analysis in an ambient environment. Graphical Abstract The schematic of the interlayer spray ionization source.
Collapse
|
49
|
Ji B, Xia B, Gao Y, Ma F, Ding L, Zhou Y. Generating Electrospray Ionization on Ballpoint Tips. Anal Chem 2016; 88:5072-9. [DOI: 10.1021/acs.analchem.5b03990] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Baocheng Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Yuanji Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Fengwei Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Lisheng Ding
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| |
Collapse
|
50
|
Vega C, Spence C, Zhang C, Bills BJ, Manicke NE. Ionization Suppression and Recovery in Direct Biofluid Analysis Using Paper Spray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:726-34. [PMID: 26729455 DOI: 10.1007/s13361-015-1322-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 05/28/2023]
Abstract
Paper spray mass spectrometry is a method for the direct analysis of biofluid samples in which extraction of analytes from dried biofluid spots and electrospray ionization occur from the paper on which the dried sample is stored. We examined matrix effects in the analysis of small molecule drugs from urine, plasma, and whole blood. The general method was to spike stable isotope labeled analogs of each analyte into the spray solvent, while the analyte itself was in the dried biofluid. Intensity of the labeled analog is proportional to ionization efficiency, whereas the ratio of the analyte intensity to the labeled analog in the spray solvent is proportional to recovery. Ion suppression and recovery were found to be compound- and matrix-dependent. Highest levels of ion suppression were obtained for poor ionizers (e.g., analytes lacking basic aliphatic amine groups) in urine and approached -90%. Ion suppression was much lower or even absent for good ionizers (analytes with aliphatic amines) in dried blood spots. Recovery was generally highest in urine and lowest in blood. We also examined the effect of two experimental parameters on ion suppression and recovery: the spray solvent and the sample position (how far away from the paper tip the dried sample was spotted). Finally, the change in ion suppression and analyte elution as a function of time was examined by carrying out a paper spray analysis of dried plasma spots for 5 min by continually replenishing the spray solvent. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Carolina Vega
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Corina Spence
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Chengsen Zhang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Brandon J Bills
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nicholas E Manicke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|