1
|
Duhan J, Kumar H, Obrai S. Recent Advances in Nanomaterials Based Optical Sensors for the Detection of Melatonin and Serotonin. J Fluoresc 2025; 35:1315-1333. [PMID: 38436821 DOI: 10.1007/s10895-024-03647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
In this review paper we discussed the detection of melatonin and serotonin by using various optical methods. Melatonin and serotonin are very necessary body hormones these are also called neuroregulatory hormones secreted by pineal gland in brain by pinealocytes and shape of pineal gland is cone like. Sensitive detection of melatonin and serotonin in pharmacological samples and human serum is crucial for human beings, lots of research publications available in literature for melatonin and serotonin and we overviewed these papers. We have deeply reviewed many research papers where sensitively sensing of melatonin and serotonin occurs, by using of various interfering agents and nanomaterials. This review aims presenting colorimetry, fluorometry and spectrophotometric detection of melatonin (MEL) and serotonin (SER) by using different metal oxides, carbon nanomaterials (nanosheets, nanorods, nanofibers) and many other agents. Nanomaterials typically possess favourable optical, electrical and mechanical characteristics, they provide up new avenues for enhancing the efficacy of sensors. It is crucial to provide an optical sensors platform that is dependable, sensitive and low price. The development of sensors and biosensors to use nanomaterials for neurotransmitters has advanced significantly in recent years. There are currently many developing biomarkers in biological fluids, and bionanomaterial-based biosensor systems, as well as clinical and pharmacological settings, have garnered significant interest. Biomarkers have been found using optical devices in a quick, selective and sensitive manner. Our aim is to compile all the data that already published on MEL, SER sensing and comparison of each method, we mainly focused on principle, observations, sensitivity, selectivity, limit of detection, mechanism behind the reaction, effect of temperature, pH and concentration. In the last of this paper, we discuss some challenges of these methods and future projects.
Collapse
Affiliation(s)
- Jyoti Duhan
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India
| | - Himanshu Kumar
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India
| | - Sangeeta Obrai
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India.
| |
Collapse
|
2
|
Sunon P, Ngokpho B, Kaewket K, Wannapaiboon S, Ngamchuea K. Copper(II) phthalocyanine as an electrocatalytic electrode for cathodic detection of urinary tryptophan. Analyst 2024; 149:3041-3051. [PMID: 38625079 DOI: 10.1039/d4an00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, we introduce a novel method for tryptophan detection via a reduction reaction facilitated by its interaction with a copper(II) phthalocyanine (CuPc) electrocatalytic electrode. This method addresses challenges associated with the susceptibility of the oxidation response to interference from various species when measuring tryptophan in bodily fluids. The reduction currents exhibit a linear increase with tryptophan concentrations in two ranges: 0.0013-0.10 mM and 0.10-1.20 mM, with the sensitivities of 14.7 ± 0.5 μA mM-1 and 3.5 ± 0.1 μA mM-1, respectively. The limit of detection (LOD, 3SB/m) is determined to be 0.39 μM. The sensor exhibits excellent reproducibility, with the relative standard deviation of <5%. Application of the sensor to authentic urine samples yields a % recovery of 101 ± 4%.
Collapse
Affiliation(s)
- Pachanuporn Sunon
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
- Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Busarakham Ngokpho
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| | - Keerakit Kaewket
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| | - Suttipong Wannapaiboon
- Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
3
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Dandu SS, Joshi DJ, Park TJ, Kailasa SK. Functionalization of Gold Nanostars with Melamine for Colorimetric Detection of Uric Acid. APPLIED SPECTROSCOPY 2023; 77:360-370. [PMID: 36653320 DOI: 10.1177/00037028231154935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gold nanostars (AuNSs) are synthesized using a seed-mediated growth method. The synthesized AuNSs solution is stable and shows a localized surface plasmon resonance (LSPR) band in the visible range, which is confirmed using ultraviolet-visible (UV-Vis) spectroscopy. Furthermore, the as-synthesized AuNSs were functionalized with melamine and used as a sensor for the colorimetric detection of uric acid (UA). The detection mechanism could be assessed through various analytical techniques such as UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), zeta potential, field emission scanning electron microscopy (FE-SEM), and transmission electron microscopic techniques. These methods exhibited a good linear regression between the absorption ratio of LSPR band of melamine-AuNSs and the concentration of UA (0-120 µM), with the detection limit of 8.50 nm. As a result, UA was quantitatively detected in biofluids by using melamine-AuNSs as a colorimetric sensor, revealing melamine-AuNSs-based colorimetric approach which could be used as a simple platform for UA assay in biofluids.
Collapse
Affiliation(s)
- Sai Snigdha Dandu
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Dharaben J Joshi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| |
Collapse
|
5
|
Huang L, Qin S, Xu Y, Cheng S, Yang J, Wang Y. Enzyme-free colorimetric detection of uric acid on the basis of MnO2 nanosheets - mediated oxidation of 3, 3', 5, 5'- tetramethylbenzidine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Kopčil M, Kanďár R. Screening method for the simultaneous determination of allantoin and uric acid from dried blood spots. J Pharm Biomed Anal 2023; 225:115222. [PMID: 36621284 DOI: 10.1016/j.jpba.2022.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Uric acid and its oxidation product allantoin are excellent biomarkers of oxidative stress in humans. Currently, there are high requirements not only for tests monitoring oxidative stress but also for screening laboratory tests in general. The highest demand is imposed on the simplest sampling, easy transport of the sample, and the shortest possible analysis time. The possible solution how to fulfil the requirements is sampling by dried blood spot technique with subsequent HPLC-MS/MS analysis. A fast, sensitive, and reliable HPLC-MS/MS method for the simultaneous determination of uric acid and allantoin from dried blood spots using stable isotopically labelled analogs as internal standards was developed. The separation took place in the reversed phase within 3 min, with protein precipitation and extraction in a one-step procedure. The analytical parameters of the method were satisfactory with an excellent linear range. The presented method was used to determine allantoin and uric acid levels in dried blood spot samples from 100 healthy volunteer donors. The median uric acid concentration in the cohort was 239.3 µmol/L and the median allantoin concentration was 5.6 µmol/L. The presented analytical protocol and method are suitable for screening and monitoring allantoin and uric acid levels as biomarkers of oxidative stress in clinical practice.
Collapse
Affiliation(s)
- Michal Kopčil
- Department of Biological and Biochemical Science, Faculty of Chemical Technology, The University of Pardubice, Pardubice, Czech Republic
| | - Roman Kanďár
- Department of Biological and Biochemical Science, Faculty of Chemical Technology, The University of Pardubice, Pardubice, Czech Republic.
| |
Collapse
|
7
|
Preparation of Multiwalled Carbon Nanotubes: Electrochemically Treated Pencil Graphite Electrodes for Nanomolar Detection of L‐Tryptophan in Complex Samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202201697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Fabrication of a novel nano-biosensor for efficient colorimetric determination of uric acid. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wibowo D, Malik RHA, Mustapa F, Nakai T, Maulidiyah M, Nurdin M. Highly Synergistic Sensor of Graphene Electrode Functionalized with Rutile TiO 2 Microstructure to Detect L-Tryptophan Compound. J Oleo Sci 2022; 71:759-770. [PMID: 35387917 DOI: 10.5650/jos.ess21416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electrochemical processes are an effective method for detecting dangerous food ingredients. The synergetic between the reduction-oxidation (redox) processes inspired several papers and spurred research towards studying the new materials that can further adapt to optimize the rapid detection of chemical compounds. In this study, we report the eco-synthesis using graphene/TiO2 rutile (G/TiO2) electrode microstructures easily prepared through the physical method by mixing graphene and TiO2 powder and its application for sensing L-tryptophan (Trp) compound. The material characterization results show that the graphene surface is smoother than the G/TiO2 material. Graphene has been detected using X-ray diffraction (XRD) at a value of 2 thetas 26.39° and TiO2 forms rutile crystals (110). The FTIR spectrum exhibits the functional groups from graphene of -OH, C-H, C=C, C-O, and TiO2 identified with Ti-O bonds. The electrochemical test against G/TiO2 electrode microstructures for Trp compound shows that 0.5 g TiO2 rutile was the best composition functionalized with graphene material under 0.1M K3[Fe(CN)6] + 0.1M NaNO3 electrolyte with a scan rate of 0.1 V/s. Determination of the detection limit was obtained at 0.005 mg/L with a HorRat value of 1.05%. The stability test was carried out for 25 days, and the addition of Pb(NO3)2 as an interference compound had a significant effect on the decrease in electrode performance.
Collapse
Affiliation(s)
- Dwiprayogo Wibowo
- Department of Environmental Engineering, Faculty of Engineering, Universitas Muhammadiyah Kendari
| | - Riski Hul Akma Malik
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Faizal Mustapa
- Doctoral student of Agriculture, Department of Water Resources, Universitas Halu Oleo
| | | | - Maulidiyah Maulidiyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Muhammad Nurdin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| |
Collapse
|
10
|
Xu X, Zhang H, Li CH, Guo XM. Multimode determination of uric acid based on porphyrinic MOFs thin films by electrochemical and photoelectrochemical methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Luo JS, Jin YP, Guo YM, Li Q. Redox-controlled synthesis of fluorescent polydopamine nanoparticles for label-free detection of glutathione. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Carbon quantum dots with green fluorescence as a probe for detecting uric acid. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02071-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Dinu A, Apetrei C. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan. Int J Mol Sci 2022; 23:1218. [PMID: 35163145 PMCID: PMC8835779 DOI: 10.3390/ijms23031218] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the studies on developing sensors and biosensors-with an obvious interdisciplinary character-have drawn the attention of many researchers specializing in various fundamental, but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and is aimed at synthesizing the most relevant studies on the construction and functioning of versatile devices, of electrochemical sensors and biosensors, respectively. The first part presents examples of the most representative scientific research focusing on the role and the importance of the phenylalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure and their impact on the central nervous system. The second part is dedicated to presenting and exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors and biosensors developed so far to detect amino acids with the aid of conductor polymers and molecularly imprinted polymers from the point of view of the performances obtained, with emphasis on the detection methods, on the electrochemical reactions that take place upon detection, and on the electroanalytical performances. The present study was carried out with a view to highlighting, for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing efficient devices that might be used in the quality control of medicines, as well as in studying and monitoring diseases associated with these amino acids.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, RO-800008 Galati, Romania;
| |
Collapse
|
14
|
Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Yegya Raman PK, Karaman C. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. CHEMOSPHERE 2022; 287:132187. [PMID: 34509007 DOI: 10.1016/j.chemosphere.2021.132187] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, we report a novel enzymatic biosensor based on glutathione peroxidase (GSH-Px), graphene oxide (GO) and nafion for the electrochemical sensing of glutathione (GSH) in body fluids. GSH-Px was immobilized covalently via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto modified glassy carbon electrode (GCE) decorated with GO and nafion and successfully used for sensing of GSH in the presence of H2O2 as catalyst with Michaelis-Menten constant about 0.131 mmol/L. The active surface are of GCE improve from 0.183 cm2 to 0.225 cm2 after modification with GO. The introduced biosensor (GSH-Px/GO/nafion/GCE) was used for monitoring of GSH over the range 0.003-370.0 μM, with a detection limit of 1.5 nM using differential pulse voltammetric (DPV) method. The GSH-Px/GO/nafion/GCE was successfully applied to the determination of GSH in real samples.
Collapse
Affiliation(s)
- Somaye Cheraghi
- Iran National Science Foundation (INSF), Tehran, Iran; Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - H Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Fatmeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | | | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, Turkey.
| |
Collapse
|
15
|
Cao D, Luo YX, Liu WP, Li YS, Gao XF. Enzyme-free fluorescence determination of uric acid and trace Hg(II) in serum using Si/N doped carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120182. [PMID: 34303219 DOI: 10.1016/j.saa.2021.120182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
A new fluorescence probe method for the detection of Hg(II) in serum was established, which has the detection limit of 3.57 nM and quantification limit of 5 nM, based on the electrostatic induced agglomeration quenching and complexation between Hg(II) and silicon-nitrogen-doped carbon nanodots (Si/N-CDs). Furthermore, the fluorescence probe also showed the satisfactory results in the determination of Hg(II) in human serum. Subsequently, take advantage of the uric acid (UA) to recover the fluorescence of the Si/N-CDs-Hg(II) complex probe, another enzyme-free ways to determine UA was developed. The complex probe can selectively detect the UA content in the 0.5-30 μM range, and its detection limit can reach 0.14 μM, which has successfully detected the UA in total serum, and the results were no significant difference comparing with the controls.
Collapse
Affiliation(s)
- Dan Cao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ya-Xiong Luo
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Wei-Ping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong 643000, China
| | - Yong-Sheng Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiu-Feng Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Zhao XY, Yang QS, Wang J, Fu DL, Jiang DK. A novel 3D coordination polymer constructed by dual-ligand for highly sensitive detection of purine metabolite uric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120065. [PMID: 34198120 DOI: 10.1016/j.saa.2021.120065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Uric acid (UA), as the final product of purine metabolism, exists in urine and serum, which plays an important role in human metabolism, immunity and other functions. The sensitive, efficient, and rapid detection of UA has far-reaching significance in clinical diagnosis and disease prevention. Herein, a novel coordination polymer constructed by dual-ligand was successfully prepared, which exhibited excellent thermal and water stability. The polymer was interlaced by coordination bonds and hydrogen bonds to form an infinitely extended three-dimensional framework, which showed a rare and novel topological structure. The complex selectively recognized UA through significant fluorescence quenching response in the presence of various interferences. The excellent detection sensitivity (the limited detection of 1.2 μM), outstanding anti-interference ability and remarkable recyclability marked the complex to be a promising sensor material towards UA. In addition, the detection mechanism of UA by the complex was investigated in detail by combining density functional theory (DFT) and a variety of other analytical methods.
Collapse
Affiliation(s)
- Xiao-Yang Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Qi-Shan Yang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Jia Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Dong-Lei Fu
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Dao-Kuan Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
| |
Collapse
|
17
|
Khan ZA, Hong PJS, Lee CH, Hong Y. Recent Advances in Electrochemical and Optical Sensors for Detecting Tryptophan and Melatonin. Int J Nanomedicine 2021; 16:6861-6888. [PMID: 34675512 PMCID: PMC8521600 DOI: 10.2147/ijn.s325099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophan and melatonin are pleiotropic molecules, each capable of influencing several cellular, biochemical, and physiological responses. Therefore, sensitive detection of tryptophan and melatonin in pharmaceutical and human samples is crucial for human well-being. Mass spectrometry, high-performance liquid chromatography, and capillary electrophoresis are common methods for both tryptophan and melatonin analysis; however, these methods require copious amounts of time, money, and manpower. Novel electrochemical and optical detection tools have been subjects of intensive research due to their ability to offer a better signal-to-noise ratio, high specificity, ultra-sensitivity, and wide dynamic range. Recently, researchers have designed sensitive and selective electrochemical and optical platforms by using new surface modifications, microfabrication techniques, and the decoration of diverse nanomaterials with unique properties for the detection of tryptophan and melatonin. However, there is a scarcity of review articles addressing the recent developments in the electrochemical and optical detection of tryptophan and melatonin. Here, we provide a critical and objective review of high-sensitivity tryptophan and melatonin sensors that have been developed over the past six years (2015 onwards). We review the principles, performance, and limitations of these sensors. We also address critical aspects of sensitivity and selectivity, limit and range of detection, fabrication process and time, durability, and biocompatibility. Finally, we discuss challenges related to tryptophan and melatonin detection and present future outlooks.
Collapse
Affiliation(s)
- Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
| | - Paul Jung-Soo Hong
- Department of Chemistry, Newton South High School, Newton, MA, 02459, USA
| | - Christina Hayoung Lee
- Department of Biology, College of Arts and Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | - Yonggeun Hong
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| |
Collapse
|
18
|
Development of a Novel Sensor Based on Polypyrrole Doped with Potassium Hexacyanoferrate (II) for Detection of L-Tryptophan in Pharmaceutics. INVENTIONS 2021. [DOI: 10.3390/inventions6030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study describes the development of a new sensor with applicability in the determination and quantification of yjr essential amino acid (AA) L-tryptophan (L-TRP) from pharmaceutical products. The proposed sensor is based on a carbon screen-printed electrode (SPCE) modified with the conductor polymer polypyrrole (PPy) doped with potassium hexacyanoferrate (II) (FeCN). For the modification of the SPCE with the PPy doped with FeCN, the chronoamperometry (CA) method was used. For the study of the electrochemical behavior and the sensitive properties of the sensor when detecting L-TRP, the cyclic voltammetry (CV) method was used. This developed electrode has shown a high sensibility, a low detection limit (LOD) of up to 1.05 × 10−7 M, a quantification limit (LOQ) equal to 3.51 × 10−7 M and a wide linearity range between 3.3 × 10−7 M and 1.06 × 10−5 M. The analytical performances of the device were studied for the detection of AA L-TRP from pharmaceutical products, obtaining excellent results. The validation of the electroanalytical method was performed by using the standard method with good results.
Collapse
|
19
|
Reanpang P, Mool-Am-Kha P, Upan J, Jakmunee J. A novel flow injection amperometric sensor based on carbon black and graphene oxide modified screen-printed carbon electrode for highly sensitive determination of uric acid. Talanta 2021; 232:122493. [PMID: 34074450 DOI: 10.1016/j.talanta.2021.122493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023]
Abstract
A simple, rapid, and cost-effective flow injection amperometric (FI-Amp) sensor for sensitive determination of uric acid (UA) was developed based on a new combination of carbon black (CB) and graphene oxide (GO) modified screen-printed carbon electrode (SPCE). The CB-GO nanocomposites were simply synthesized and modified on the working electrode surface to increase electrode conductivity and enhance the sensitivity of UA determination via the electrocatalytic activity toward UA oxidation. The morphologies and electrochemical properties of the synthesized nanomaterials were investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The modified electrode was incorporated with FI-Amp to improve UA detection's sensitivity, stability, and automation. Some parameters affecting sensitivity were optimized, including pH of the electrolyte solution, applied potential, amount of CB-GO suspension, flow rate, injection volume, and reaction coil length. Using an applied potential of +0.35 V (vs Ag/AgCl), the anodic current was linearly proportional to UA concentration over the range of 0.05-2000 μM with a detection limit of 0.01 μM (3 S/N). Besides, the developed method provides a sample throughput of 25 injections h-1, excellent sensitivity (0.0191 μA/μM), selectivity, repeatability (RSD 3.1%, n = 7), and stability (RSD 1.08%, n = 50). The proposed system can tolerate potential interferences commonly found in human urine. Furthermore, a good correlation coefficient between the results obtained from the FI-Amp sensor and a hospital laboratory implies that the proposed system is accurate and can be utilized for UA detection in urine samples.
Collapse
Affiliation(s)
- Preeyaporn Reanpang
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Lampang, 52190, Thailand
| | - Pijika Mool-Am-Kha
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jantima Upan
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaroon Jakmunee
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence for Innovation in Chemistry and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
20
|
Yang M, Wang H, Liu P, Cheng J. A 3D electrochemical biosensor based on Super-Aligned Carbon NanoTube array for point-of-care uric acid monitoring. Biosens Bioelectron 2021; 179:113082. [PMID: 33601134 DOI: 10.1016/j.bios.2021.113082] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Uric acid analysis is extremely important for gout prognosis, diagnosis and treatment. Previous technologies either lack specificity or exhibit poor performance, and thus could not meet the need of Point-of-Care (POC) uric acid monitoring. Here we present for the first time, a novel electrochemical biosensor based on 3D Super-Aligned Carbon NanoTube (SACNT) array to facilitate POC uric acid monitoring. The working electrode of the biosensor is composed of an orderly 3D SACNT array immobilized with uricase through a precipitation and crosslinking procedure. Such biosensor possesses a higher enzyme density, significantly larger contact area with reactants and could maintain the intact SACNT structure and its excellent conductivity after modification. The developed 3D SACNT array electrochemical biosensor benefits from high specific surface area, high electro-catalytic activity and large contact area with analytes, and demonstrates high sensitivity of 518.8 μA/(mM⋅cm2), wide linear range of 100-1000 μM and low limit of detection of 1 μM for uric acid. Dynamic uric acid monitoring has been achieved using the presented biosensor. And the obtained results in serum samples had no significant difference compared with those obtained using the FDA-approved electrochemical analyzer (Paired T-test, p > 0.05). These demonstrated that the technology can potentially be applied in POC monitoring of other biomolecules to improve prognosis, diagnosis and treatment outcomes of metabolic diseases.
Collapse
Affiliation(s)
- Muqun Yang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua University, Shenzhen, 518055, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Han Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Peng Liu
- Tsinghua-Foxconn Nanotechnology Research Center & State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Jing Cheng
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute(TBSI), Tsinghua University, Shenzhen, 518055, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Dheepthi GunaVathana S, Wilson J, Prashanthi R, Cyrac Peter A. CuO nanoflakes anchored polythiophene nanocomposite: Voltammetric detection of L-Tryptophan. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Electrochemical sensor based on modified methylcellulose by graphene oxide and Fe3O4 nanoparticles: Application in the analysis of uric acid content in urine. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114503] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Simultaneous determination of dopamine, uric acid and estriol in maternal urine samples based on the synergetic effect of reduced graphene oxide, silver nanowires and silver nanoparticles in their ternary 3D nanocomposite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Synthesis of carbon quantum dots with iron and nitrogen from Passiflora edulis and their peroxidase-mimicking activity for colorimetric determination of uric acid. Mikrochim Acta 2020; 187:405. [DOI: 10.1007/s00604-020-04391-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
|
25
|
Electrochemical attack and corrosion of platinum electrodes in dielectrophoretic diagnostic devices. Anal Bioanal Chem 2020; 412:3871-3880. [PMID: 32277243 DOI: 10.1007/s00216-020-02607-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Though the advances in microelectronic device fabrication have realized new capabilities in integrated analytical and diagnostic platforms, there are still notable limitations in point-of-care sample preparation. AC electrokinetic devices, especially those leveraging dielectrophoresis (DEP), have shown potential to solve these limitations and allow for sample-to-answer in a single point-of-care device. However, when working directly with whole blood or other high conductance (~ 1 S/m) biological fluids, the aggressive electrochemical conditions created by the electrode can fundamentally limit the device operation. In this study, platinum wire-based electrode devices spanning circular polytetrafluorethylene (PTFE) wells and a planar microarray device with sputtered platinum electrodes were tested in plasma and PBS buffers of differing concentration across a wide range of frequencies and electric field intensities (AC voltages) to determine their respective safe regions of operation and to gain an understanding about the failure mechanisms of this class of device. At frequencies of 10 kHz and below, the upper bound of operation is the degradation of electrodes due to electrochemical attack by chlorine overcoming the native platinum oxide passivation. At higher frequencies, 100 kHz and above, the dielectric loss and subsequent heating of the buffer will boil before the electrodes suffer observable damage, due to the slow irreversible reaction kinetics. Effective dielectrophoretic capture of small biological particles at these frequencies is limited, and heat/oxidative denaturation of target material are a major concern. A new class of smaller devices, ones capable of high throughput at voltages low enough to maintain the integrity of the platinum passivation layer, is needed to mitigate these fundamental limitations.
Collapse
|
26
|
Shukla RP, Cazelles R, Kelly DL, Ben-Yoav H. A reduced-graphene oxide-modified microelectrode for a repeatable detection of antipsychotic clozapine using microliters-volumes of whole blood. Talanta 2020; 209:120560. [DOI: 10.1016/j.talanta.2019.120560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022]
|
27
|
Luo D, Fang Z, Zhao X, Ma Y, Ye J, Chu Q. Salt-effect enhanced hollow-fiber liquid-phase microextraction of glutathione in human saliva followed by miniaturized capillary electrophoresis with amperometric detection. Electrophoresis 2020; 41:328-334. [PMID: 31884689 DOI: 10.1002/elps.201900390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
A hollow-fiber liquid-phase microextraction (HF-LPME) method was established for purification and enrichment of glutathione (GSH) in human saliva followed by a miniaturized capillary electrophoresis with amperometric detection system (mini-CE-AD). Based on regulating isoelectric point and increasing salt effect to modify donor phase, HF-LPME could provide high enrichment efficiency for GSH up to 471 times, and the extract was directly injected for mini-CE-AD analysis. The salt-effect enhanced HF-LPME/mini-CE-AD method has been successfully applied to saliva analysis, and acceptable LOD (0.46 ng/mL, S/N = 3) and recoveries (92.7-101.3%) could be obtained in saliva matrix. The sample pretreatment of this developed method was simple and required no derivatization, providing a potential alternative for non-invasive fluid analysis using portable instrument.
Collapse
Affiliation(s)
- Dan Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Zhonghui Fang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Xiaoshuang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Yaolu Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| |
Collapse
|
28
|
Wang Y, Liu X, Lu Z, Liu T, Zhao L, Ding F, Zou P, Wang X, Zhao Q, Rao H. Molecularly imprinted polydopamine modified with nickel nanoparticles wrapped with carbon: fabrication, characterization and electrochemical detection of uric acid. Mikrochim Acta 2019; 186:414. [PMID: 31187172 DOI: 10.1007/s00604-019-3521-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/19/2019] [Indexed: 01/12/2023]
Abstract
An electrochemical sensor is described for determination of uric acid (UA). Carbon-enwrapped nickel nanoparticles (Ni@BC) were coated with polydopamine (PDA) that was molecularly imprinted with UA. The biomass carbon (BC) was synthesized by one-step solid-state pyrolysis from leaves of Firmiana platanifolia. The imprinted polymer was obtained by electrodeposition of DA as the monomer. The amount of monomer, the scan cycles, pH value and adsorption time were optimized. Furthermore, the selectivity of the MIP for UA on a glassy carbon electrode (GCE) was evaluated by selectivity tests. The differential pulse voltammetric responses to UA with and without interferents were consistent. The modified GCE has a linear response in the 0.01-30 μM UA concentration range, and the limit of detection is 8 nM. The MIP electrode was applied to the analysis of UA in urine for which the initial concentrations were determined by the phosphotungstic acid kit. Recoveries ranged from 91.3 to 113.4%, with relative standard deviations between 1.3 and 9.7% (n = 3). Graphical abstract Schematic presentation of electrochemical detection of uric acid by molecularly imprinted polydopamine modified with nickel nanoparticles wrapped with carbon (Ni@BC-MIP).
Collapse
Affiliation(s)
- Yanying Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Xin Liu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Lijun Zhao
- Ministry of Agriculture and Rural Affairs Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry, Chengdu, 610065, People's Republic of China
| | - Fang Ding
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China
| | - Qingbiao Zhao
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Optoelectronics, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xinkang Road, Yucheng District, Ya'an, 625014, People's Republic of China.
| |
Collapse
|
29
|
Mattioli IA, Baccarin M, Cervini P, Cavalheiro ÉT. Electrochemical investigation of a graphite-polyurethane composite electrode modified with electrodeposited gold nanoparticles in the voltammetric determination of tryptophan. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Sierra T, Crevillen AG, Escarpa A. Electrochemical detection based on nanomaterials in CE and microfluidic systems. Electrophoresis 2018; 40:113-123. [DOI: 10.1002/elps.201800281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcala; Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR); University of Alcalá; Madrid Spain
| | - Agustin G. Crevillen
- Department of Analytical Sciences; Faculty of Sciences; Universidad Nacional de Educación a Distancia (UNED); Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering; University of Alcala; Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR); University of Alcalá; Madrid Spain
| |
Collapse
|
31
|
García-Carmona L, González MC, Escarpa A. Electrochemical On-site Amino Acids Detection of Maple Syrup Urine Disease Using Vertically Aligned Nickel Nanowires. ELECTROANAL 2018. [DOI: 10.1002/elan.201800103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
- Chemical Research Institute “Andrés M. del Río”; University of Alcalá; Alcalá de Henares E-28871 Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
- Chemical Research Institute “Andrés M. del Río”; University of Alcalá; Alcalá de Henares E-28871 Madrid Spain
| |
Collapse
|
32
|
Bananezhad A, Karimi-Maleh H, Ganjali MR, Norouzi P. MnO2
-TiO2
Nanocomposite and 2-(3,4-Dihydroxyphenethyl) Isoindoline-1,3-Dione as an Electrochemical Platform for the Concurrent Determination of Cysteine, Tryptophan and Uric Acid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Asma Bananezhad
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science; University of Tehran; Tehran Iran
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology; Quchan University of Technology; Quchan Iran
| | - Mohammad R. Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science; University of Tehran; Tehran Iran
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science; University of Tehran; Tehran Iran
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
33
|
Gao X, Gui R, Xu KQ, Guo H, Jin H, Wang Z. A bimetallic nanoparticle/graphene oxide/thionine composite-modified glassy carbon electrode used as a facile ratiometric electrochemical sensor for sensitive uric acid determination. NEW J CHEM 2018. [DOI: 10.1039/c8nj02904k] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel and facile ratiometric electrochemical sensor was developed for sensitive determination of uric acid.
Collapse
Affiliation(s)
- Xiaohui Gao
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Rijun Gui
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | | | - Huijun Guo
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Hui Jin
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| |
Collapse
|
34
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
35
|
Nakamura Y, Masumoto S, Matsunaga H, Haginaka J. Molecularly imprinted polymer for glutathione by modified precipitation polymerization and its application to determination of glutathione in supplements. J Pharm Biomed Anal 2017; 144:230-235. [DOI: 10.1016/j.jpba.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/11/2016] [Accepted: 12/03/2016] [Indexed: 11/25/2022]
|
36
|
García-Carmona L, Martín A, Sierra T, González MC, Escarpa A. Electrochemical detectors based on carbon and metallic nanostructures in capillary and microchip electrophoresis. Electrophoresis 2016; 38:80-94. [DOI: 10.1002/elps.201600232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Aida Martín
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| |
Collapse
|