1
|
Sundaram M, Dorado M, Akaribo B, Filion A, Han BA, Gottdenker NL, Schmidt JP, Drake JM, Stephens PR. Fruit-frugivore dependencies are important in Ebolavirus outbreaks in Sub-Saharan Africa. ECOGRAPHY 2024; 2024:e06950. [PMID: 40018392 PMCID: PMC11867621 DOI: 10.1111/ecog.06950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/01/2025]
Abstract
Ebolaviruses have the ability to infect a wide variety of species, with many African mammals potentially serving either as primary reservoirs or secondary amplifying hosts. Previous work has shown that frugivorous bats and primates are often associated with spillover and outbreaks. Yet the role that patterns of biodiversity, either of mammalian hosts or of common fruiting species such as Ficus (figs, fruit resources used by a wide variety of species), play in driving outbreak risk remains unclear. We investigated what factors most directly influence Ebolavirus outbreak risk in Sub-Saharan Africa by using a phylogenetically informed path analysis to compare a wide array of potential models (path diagrams) of spatial dynamics. We considered mammalian frugivore richness, cercopithecid and hominid primate richness, richness of pteropodid (fruit) bats, the spatial distribution of species that have tested positive for Ebolavirus antibodies in the wild, Ficus habitat suitability, and environmental conditions (mean annual and variability in temperature and rainfall). The proximate factors that most influenced whether a given host species range contained a site of a previous outbreak event were 1) habitat suitability for Ficus and 2) the diversity of cercopithecid primates. Frugivore richness overall (including bats, primates, and a few other mammals) and the richness of bats in the family Pteropodidae had a strong effect on which species tested positive for Ebolavirus antibodies, but did not influence outbreak risk directly in pathways explored. We interpret this as evidence that foraging around Ficus and frugivorous mammals (such as cercopithecid primates which are commonly hunted for food) play a prominent role in driving outbreaks into human communities, relative to other factors we considered which influence outbreak risk more indirectly.
Collapse
Affiliation(s)
- Mekala Sundaram
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Infectious Diseases and Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | | | - Benedicta Akaribo
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Antoine Filion
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | | | | | - John P. Schmidt
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Patrick R. Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
2
|
Warmuth VM, Metzler D, Zamora-Gutierrez V. Human disturbance increases coronavirus prevalence in bats. SCIENCE ADVANCES 2023; 9:eadd0688. [PMID: 37000877 PMCID: PMC10065436 DOI: 10.1126/sciadv.add0688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human land modification is a known driver of animal-to-human transmission of infectious agents (zoonotic spillover). Infection prevalence in the reservoir is a key predictor of spillover, but landscape-level associations between the intensity of land modification and infection rates in wildlife remain largely untested. Bat-borne coronaviruses have caused three major disease outbreaks in humans: severe acute respiratory syndrome (SARS), Middle East respiratory syndrome, and coronavirus disease 2019 (COVID-19). We statistically link high-resolution land modification data with bat coronavirus surveillance records and show that coronavirus prevalence significantly increases with the intensity of human impact across all climates and levels of background biodiversity. The most significant contributors to the overall human impact are agriculture, deforestation, and mining. Regions of high predicted bat coronavirus prevalence coincide with global disease hotspots, suggesting that infection prevalence in wildlife may be an important factor underlying links between human land modification and zoonotic disease emergence.
Collapse
Affiliation(s)
- Vera M. Warmuth
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany
| | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany
| | - Veronica Zamora-Gutierrez
- CONACYT - Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR), Instituto Politécnico Nacional, Durango, México
| |
Collapse
|
3
|
Jain S, Khaiboullina S, Martynova E, Morzunov S, Baranwal M. Epidemiology of Ebolaviruses from an Etiological Perspective. Pathogens 2023; 12:248. [PMID: 36839520 PMCID: PMC9963726 DOI: 10.3390/pathogens12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Since the inception of the ebolavirus in 1976, 32 outbreaks have resulted in nearly 15,350 deaths in more than ten countries of the African continent. In the last decade, the largest (2013-2016) and second largest (2018-2020) ebolavirus outbreaks have occurred in West Africa (mainly Guinea, Liberia, and Sierra Leone) and the Democratic Republic of the Congo, respectively. The 2013-2016 outbreak indicated an alarming geographical spread of the virus and was the first to qualify as an epidemic. Hence, it is imperative to halt ebolavirus progression and develop effective countermeasures. Despite several research efforts, ebolaviruses' natural hosts and secondary reservoirs still elude the scientific world. The primary source responsible for infecting the index case is also unknown for most outbreaks. In this review, we summarize the history of ebolavirus outbreaks with a focus on etiology, natural hosts, zoonotic reservoirs, and transmission mechanisms. We also discuss the reasons why the African continent is the most affected region and identify steps to contain this virus.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Sergey Morzunov
- Department of Pathology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
4
|
Mader AD, Waters NA, Kawazu EC, Marvier M, Monnin N, Salkeld DJ. Messaging Should Reflect the Nuanced Relationship between Land Change and Zoonotic Disease Risk. Bioscience 2022; 72:1099-1104. [PMID: 36325104 PMCID: PMC9618275 DOI: 10.1093/biosci/biac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A hallmark of the media publicity surrounding COVID-19 has been the message that land change causes zoonotic diseases to spill over from wild animals to humans. The secondary peer-reviewed literature sends a similar message. However, as indicated in the primary peer-reviewed literature, the complexity of interacting variables involved in zoonotic disease spillover makes it unlikely for such a claim to be universally applicable. The secondary peer-reviewed literature and the mainstream media also differ markedly from the primary peer-reviewed literature in their lack of nuance in messaging about the relationship between land change and spillover risk. We advocate accurate, nuanced messaging for the sake of the local communities at greatest risk from zoonotic disease, for the sake of scientific credibility, and so that proportionate attention may be given to other possible drivers of spillover risk.
Collapse
Affiliation(s)
- André D Mader
- Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan
| | - Neil A Waters
- University of Tokyo, Kashiwa, Chiba Prefecture, Japan
| | - Erin C Kawazu
- Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan
| | | | - Noémie Monnin
- University College London, London, England, United Kingdom
| | - Daniel J Salkeld
- Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
5
|
Nanni V, Mammola S, Macías-Hernández N, Castrogiovanni A, Salgado AL, Lunghi E, Ficetola GF, Modica C, Alba R, Spiriti MM, Holtze S, de Mello ÉM, De Mori B, Biasetti P, Chamberlain D, Manenti R. Global response of conservationists across mass media likely constrained bat persecution due to COVID-19. BIOLOGICAL CONSERVATION 2022; 272:109591. [PMID: 35603331 PMCID: PMC9110911 DOI: 10.1016/j.biocon.2022.109591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Most people lack direct experience with wildlife and form their risk perception primarily on information provided by the media. The way the media frames news may substantially shape public risk perception, promoting or discouraging public tolerance towards wildlife. At the onset of the COVID-19 pandemic, bats were suggested as the most plausible reservoir of the virus, and this became a recurrent topic in media reports, potentially strengthening a negative view of this ecologically important group. We investigated how media framed bats and bat-associated diseases before and during the COVID-19 pandemic by assessing the content of 2651 online reports published across 26 countries, to understand how and how quickly worldwide media may have affected the perception of bats. We show that the overabundance of poorly contextualized reports on bat-associated diseases likely increased the persecution towards bats immediately after the COVID-19 outbreak. However, the subsequent interventions of different conservation communication initiatives allowed pro-conservation messages to resonate across the global media, likely stemming an increase in bat persecution. Our results highlight the modus operandi of the global media regarding topical biodiversity issues, which has broad implications for species conservation. Knowing how the media acts is pivotal for anticipating the propagation of (mis)information and negative feelings towards wildlife. Working together with journalists by engaging in dialogue and exchanging experiences should be central in future conservation management.
Collapse
Affiliation(s)
- Veronica Nanni
- School for Advanced Studies IUSS, Science, Technology and Society Department, 25100 Pavia, Italy
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- Molecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| | - Nuria Macías-Hernández
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- Department of Animal Biology, Edaphology and Geology, University of Laguna, La Laguna, Tenerife 38206, Canary Islands, Spain
| | - Alessia Castrogiovanni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Cleoria, 10, 20133 Milano, Italy
| | - Ana L Salgado
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Enrico Lunghi
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Cleoria, 10, 20133 Milano, Italy
| | - Corrado Modica
- Faunico office of species protection, Leanderstraße 16, 54295 Trier, Germany
| | - Riccardo Alba
- Dept. of Life Science and Systems Biology, University of Torino, Via Accademia Albertina, 13, 10123 Torino, Italy
| | - Maria Michela Spiriti
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
- Ethics Laboratory for Veterinary Medicine, Conservation and Animal Welfare, University of Padua, 35020 Padua, Italy
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Érica Munhoz de Mello
- Urban Bats Laboratory, Zoonoses Control Center of Belo Horizonte, Belo Horizonte, Brazil
| | - Barbara De Mori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | - Pierfrancesco Biasetti
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Dan Chamberlain
- Dept. of Life Science and Systems Biology, University of Torino, Via Accademia Albertina, 13, 10123 Torino, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Cleoria, 10, 20133 Milano, Italy
- Laboratory of Subterranean Biology "Enrico Pezzoli", Parco Regionale del Monte Barro, 23851 Galbiate, Italy
| |
Collapse
|
6
|
Stephens PR, Gottdenker N, Schatz AM, Schmidt JP, Drake JM. Characteristics of the 100 largest modern zoonotic disease outbreaks. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200535. [PMID: 34538141 PMCID: PMC8450623 DOI: 10.1098/rstb.2020.0535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 12/19/2022] Open
Abstract
Zoonotic disease outbreaks are an important threat to human health and numerous drivers have been recognized as contributing to their increasing frequency. Identifying and quantifying relationships between drivers of zoonotic disease outbreaks and outbreak severity is critical to developing targeted zoonotic disease surveillance and outbreak prevention strategies. However, quantitative studies of outbreak drivers on a global scale are lacking. Attributes of countries such as press freedom, surveillance capabilities and latitude also bias global outbreak data. To illustrate these issues, we review the characteristics of the 100 largest outbreaks in a global dataset (n = 4463 bacterial and viral zoonotic outbreaks), and compare them with 200 randomly chosen background controls. Large outbreaks tended to have more drivers than background outbreaks and were related to large-scale environmental and demographic factors such as changes in vector abundance, human population density, unusual weather conditions and water contamination. Pathogens of large outbreaks were more likely to be viral and vector-borne than background outbreaks. Overall, our case study shows that the characteristics of large zoonotic outbreaks with thousands to millions of cases differ consistently from those of more typical outbreaks. We also discuss the limitations of our work, hoping to pave the way for more comprehensive future studies. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Patrick R. Stephens
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
| | - N. Gottdenker
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, 30602 GA, USA
| | - A. M. Schatz
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
| | - J. P. Schmidt
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
| | - John M. Drake
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, 30602 GA, USA
| |
Collapse
|
7
|
Medina‐Rivera M, Centeno‐Tablante E, Finkelstein JL, Rayco‐Solon P, Peña‐Rosas JP, Garcia‐Casal MN, Rogers L, Ridwan P, Martinez SS, Andrade J, Layden AJ, Chang J, Zambrano MP, Ghezzi‐Kopel K, Mehta S. Presence of Ebola virus in breast milk and risk of mother-to-child transmission: synthesis of evidence. Ann N Y Acad Sci 2021; 1488:33-43. [PMID: 33113592 PMCID: PMC8048832 DOI: 10.1111/nyas.14519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022]
Abstract
To help inform global guidelines on infant feeding, this systematic review synthesizes evidence related to the presence of the Ebola virus (EBOV) in breast milk and its potential risk of viral transmission to the infant when breastfeeding. We relied on a comprehensive search strategy to identify studies including women with suspected, probable, or confirmed EBOV infection, intending to breastfeed or give breast milk to an infant. Our search identified 10,454 records, and after deduplication and screening, we assessed 148 full texts. We included eight studies reporting on 10 breastfeeding mothers and their children (one mother with twins), who provided breast milk samples for assessment. EBOV was detected via RT-PCR or viral culture in seven out of ten breast milk samples. Four out of the five-breastfed infants with EBOV-positive breast milk were found positive for EBOV infection, and all of these EBOV-positive infants died. Since previous reports have detected EBOV in tears, saliva, sweat, and contaminated surfaces, with the current evidence, it is not possible to conclude with certainty that breast milk was the main route of EBOV transmission.
Collapse
Affiliation(s)
| | | | | | - Pura Rayco‐Solon
- Department of Maternal, Newborn, Child and Adolescent Health and AgeingWorld Health OrganizationGenevaSwitzerland
| | | | | | - Lisa Rogers
- Department of Nutrition and Food SafetyWorld Health OrganizationGenevaSwitzerland
| | - Pratiwi Ridwan
- Division of Nutritional SciencesCornell UniversityIthacaNew York
| | - Sabrina Sales Martinez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social WorkFlorida International UniversityMiamiFlorida
| | - Joyce Andrade
- Hospital de Niños Roberto Gilbert ElizaldeGuayaquilEcuador
| | | | - Juan Chang
- Hospital de Niños Roberto Gilbert ElizaldeGuayaquilEcuador
| | | | | | - Saurabh Mehta
- Division of Nutritional SciencesCornell UniversityIthacaNew York
| |
Collapse
|