1
|
Zainal Ariffin SH, Megat Abdul Wahab R, Abdul Razak M, Yazid MD, Shahidan MA, Miskon A, Zainol Abidin IZ. Evaluation of in vitro osteoblast and osteoclast differentiation from stem cell: a systematic review of morphological assays and staining techniques. PeerJ 2024; 12:e17790. [PMID: 39071131 PMCID: PMC11283775 DOI: 10.7717/peerj.17790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Background Understanding human stem cell differentiation into osteoblasts and osteoclasts is crucial for bone regeneration and disease modeling. Numerous morphological techniques have been employed to assess this differentiation, but a comprehensive review of their application and effectiveness is lacking. Methods Guided by the PRISMA framework, we conducted a rigorous search through the PubMed, Web of Science and Scopus databases, analyzing 254 articles. Each article was scrutinized against pre-defined inclusion criteria, yielding a refined selection of 14 studies worthy of in-depth analysis. Results The trends in using morphological approaches were identified for analyzing osteoblast and osteoclast differentiation. The three most used techniques for osteoblasts were Alizarin Red S (mineralization; six articles), von Kossa (mineralization; three articles) and alkaline phosphatase (ALP; two articles) followed by one article on Giemsa staining (cell morphology) and finally immunochemistry (three articles involved Vinculin, F-actin and Col1 biomarkers). For osteoclasts, tartrate-resistant acid phosphatase (TRAP staining) has the highest number of articles (six articles), followed by two articles on DAPI staining (cell morphology), and immunochemistry (two articles with VNR, Cathepsin K and TROP2. The study involved four stem cell types: peripheral blood monocyte, mesenchymal, dental pulp, and periodontal ligament. Conclusion This review offers a valuable resource for researchers, with Alizarin Red S and TRAP staining being the most utilized morphological procedures for osteoblasts and osteoclasts, respectively. This understanding provides a foundation for future research in this rapidly changing field.
Collapse
Affiliation(s)
- Shahrul Hisham Zainal Ariffin
- Department of Science Biology and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Centre of Family Dental Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Muhammad Abdul Razak
- Board of Director Office, 6th Floor, Chancellery Building, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Science Biology and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Azizi Miskon
- Department of Electrical and Electronics Engineering, Faculty of Engineering, National Defence University of Malaysia, Sungai Besi, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Intan Zarina Zainol Abidin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| |
Collapse
|
2
|
Benahmed AG, Tippairote T, Gasmi A, Noor S, Avdeev O, Shanaida Y, Mojgani N, Emadali A, Dadar M, Bjørklund G. Periodontitis Continuum: Antecedents, Triggers, Mediators, and Treatment Strategies. Curr Med Chem 2024; 31:6775-6800. [PMID: 39428847 DOI: 10.2174/0109298673265862231020051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2024]
Abstract
Periodontitis (PD) is a chronic inflammatory disease of the periodontium characterized by the formation of gingival pockets and gingival recession. The local inflammatory environment can lead to the destruction of the extracellular matrix and subsequent bone loss. The pathophysiology of PD involves interactions between genetic predisposition, lifestyle, environmental factors, the oral microbiota condition, systemic health disorders, innate and adaptive immune responses, and various host defenses. The review highlighted the importance of the oral cavity condition in systemic health. Thus, a correlation between harmful oral microbiota and cardiovascular disease (CVD)/diabetes/ arthritis, etc, progressions through inflammation and bacterial translocation was highlighted. Antecedents increase an individual's risk of developing PD, trigger initiate microbe-host immunologic responses, and mediators sustain inflammatory interactions. Generally, this review explores the antecedents, triggers, and mediators along the pathophysiological continuum of PD. An analysis of modern approaches to treating periodontitis, including antibiotics for systemic and local use, was carried out. The potential role of natural ingredients such as herbal extracts, phytoconstituents, propolis, and probiotics in preventing and treating PD was highlighted.
Collapse
Affiliation(s)
| | - Torsak Tippairote
- Department of Research, HP Medical Centre, Bangkok, Thailand
- Thailand Initiatives for Functional Medicine, Bangkok, Thailand
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Alireza Emadali
- School of Dentistry Medicine, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
3
|
Mulinari-Santos G, dos Santos JS, Kitagawa IL, de Souza Batista FR, Botacin PR, Antoniali C, Lisboa-Filho PN, Okamoto R. Estrogen Deficiency Impairs Osseointegration in Hypertensive Rats Even Treated with Alendronate Coated on the Implant Surface. J Funct Biomater 2023; 14:471. [PMID: 37754885 PMCID: PMC10532300 DOI: 10.3390/jfb14090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Hypertension and estrogen deficiency can affect bone metabolism and therefore increase the risk of osseointegration. Antihypertensive drugs such as losartan not only control blood pressure but also enhance bone healing. In addition, alendronate sodium is widely used to treat postmenopausal osteoporosis. Hence, we evaluated the effect of systemic antihypertensive and local alendronate coted on implants on osseointegration under hypertensive and estrogen-deficiency conditions. A total of 64 spontaneously hypertensive rats (SHRs) treated with losartan were randomly divided according to the estrogen-deficiency induction by ovariectomy (OVX) or not (SHAM), and whether the implant surface was coated with sodium alendronate (ALE) or not, resulting in four groups: SHR SHAM, SHR SHAM ALE, SHR OVX, and SHR OVX ALE. The removal torque, microcomputed tomography, and epifluorescence microscopy were the adopted analyses. The hypertensive and estrogen-deficiency animals presented a lower removal torque even when treated with alendronate on implant surface. The microcomputed tomography revealed a higher bone volume and bone-to-implant contact in the SHRs than the SHR OVX rats. Epifluorescence showed a decreased mineral apposition ratio in the SHR OVX ALE group. The data presented indicate that estrogen deficiency impairs osseointegration in hypertensive rats; in addition, alendronate coated on the implant surface does not fully reverse this impaired condition caused by estrogen deficiency.
Collapse
Affiliation(s)
- Gabriel Mulinari-Santos
- Department of Diagnostic and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Jaqueline Silva dos Santos
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Igor Lebedenco Kitagawa
- Federal Institute of Education, Science and Technology of São Paulo (IFSP), Birigui, SP, Brazil
| | | | - Paulo Roberto Botacin
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Cristina Antoniali
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | | | - Roberta Okamoto
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| |
Collapse
|
4
|
Torres-Monjarás AP, Sánchez-Gutiérrez R, Hernández-Castro B, González-Baranda L, Alvarado-Hernández DL, Pozos-Guillén A, Muñoz-Ruiz A, Méndez-González V, González-Amaro R, Vitales-Noyola M. Bacteria associated with apical periodontitis promotes in vitro the differentiation of macrophages to osteoclasts. Clin Oral Investig 2023:10.1007/s00784-023-04920-8. [PMID: 36800026 DOI: 10.1007/s00784-023-04920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To analyze the possible in vitro effect of the cytokine RANKL and bacteria involved in apical periodontitis on the differentiation of macrophages into osteoclasts. MATERIAL AND METHODS Bacteria were isolated (mainly E. faecium and E. faecalis) from the root canal of fifty patients with apical periodontitis, the possible effect of these bacteria on the phagocytic activity of the monocyte cell line THP-1 was analyzed by flow cytometry. Furthermore, the effect of these bacteria (alone or in combination with the cytokine RANKL) on the differentiation of THP-1 macrophages into osteoclasts was analyzed through the expression of the receptor RANK and the tartrate-resistant acid phosphatase TRAP. Finally, the release of different cytokines (IL-1β, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) by THP-1 cells induced to differentiate into osteoclasts was also analyzed. RESULTS We observed a significant proportion of THP-1 cells were able to internalize E. faecium and E. faecalis. Furthermore, these bacteria were able to induce (alone or in combination with RANKL) a significant expression of RANK by THP-1 macrophages; accordingly, E. faecium and E. faecalis induced very significant levels of TRAP in these cells. Finally, during the differentiation of THP-1 macrophages induced by RANKL or bacteria, a significant release of the pro-inflammatory cytokines IL-6 and TNF-α was observed. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggest that the causative agents of apical periodontitis can induce the differentiation of osteoclasts as well as the release of pro-inflammatory cytokines, phenomena that may have an important role in the bone damage observed in this condition.
Collapse
Affiliation(s)
- A P Torres-Monjarás
- Endodontics Postgraduate Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - R Sánchez-Gutiérrez
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - B Hernández-Castro
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México.,School of Medicine UASLP, San Luis Potosí, SLP, México
| | - L González-Baranda
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - D L Alvarado-Hernández
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México.,School of Medicine UASLP, San Luis Potosí, SLP, México
| | - A Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - A Muñoz-Ruiz
- Postgraduate Dental Science Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - V Méndez-González
- Endodontics Postgraduate Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - R González-Amaro
- Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México.,School of Medicine UASLP, San Luis Potosí, SLP, México
| | - M Vitales-Noyola
- Endodontics Postgraduate Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México. .,Research Center for Health Sciences and Biomedicine, UASLP, Sierra Leona 550, San Luis Potosí, 78210, SLP, México.
| |
Collapse
|
5
|
Zhang J, Huang X, Xie J, Fang J, Fu H. Exosomal miR-29a Derived from Bone Marrow Mesenchymal Stem Cells Promotes Mouse Bone Development and Formation. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bone undergoes constant remodeling during development, and the maintenance of its function requires a dynamic balance between bone formation and resorption by osteoclasts. With unique bone resorption capabilities, as large multinucleated cells, osteocytes participate in bone remodeling
and they are produced by the mononuclear/macrophage cells under activation of Wnt and Runx2. The mechanism underlying osteogenesis remains unclear. We investigated the impact of exosomal miR-29a derived from BMSCs on bone development and formation. In this study, BMSCs were transfected and
then injected into mice followed by analysis of femur and skull development and regeneration by HE staining and CT scanning, and the expression of DKK1, Runx-2, and osteogenic biomarkers (Osterix, Satb2, ALP, and BSP) by western blot and RT-qPCR. Compared with mice in miR-29a inhibitor group,
the femur and skull of mice in miRNA NC group were more complete. miR-29a derived from BMSCs induced a decrease of DKK1 expression and increase of the expression of β-catenin and osteogenic transcription factors. In conclusion, this study demonstrates that BMSC-derived exosomes
miR-29a facilitates osteogenesis in mice through inhibition of DKK1 expression.
Collapse
Affiliation(s)
- Jianguo Zhang
- Special Needs Medical Service Center, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Xingru Huang
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, 510375, China
| | - Jie Xie
- Department of Orthopedics, Guangzhou Liwan District Orthopaedic Hospital, Guangzhou, Guangdong, 510140, China
| | - Jian Fang
- Guangzhou University of Traditional Chinese Medicine Third School of Clinical Medicine, Guangzhou, Guangdong, 510375, China
| | - Huaili Fu
- Special Needs Medical Service Center, Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| |
Collapse
|
6
|
Wang X, Fu L, Sun R, Zhang C, Zhang Y. Bone Marrow Mesenchymal Stem Cell-Exosomes (BMSC-ExO) Promote Osteogenic Differentiation In Vitro and Osteogenesis In Vivo by Regulating miR-318/Runt-Related Transcription Factor 2 (RUNX2). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Primary osteoporosis (PMOP) is characterized by bone mass reduction and bone microstructure destruction, increased bone fragility and prone to fracture, which is partially caused by ovarian dysfunction and decreased estrogen content. Bone marrow mesenchymal stem cell exosomes (BMSC-ExO)
can improve PMOP. In this study, BMSC-EXO was used to study the role and function of miR-318 and Runx2 in PMOP. Human osteogenitor cells were isolated from PMOP patients with primary osteoporosis. After BMSC-exo treatment, miR-318 and Runx 2 level was tested by RT-qPCR and Western blot. In
addition, mice in OVX group were treated with BMSC-ExO (bilateral ovaries were removed) to observe the effect of BMSC-ExO on bone tissue. Our results showed that BMSC-exo treatment significantly decreased miR-318 level, upregulated RUNX2 expression and increased ALP activity. In addition,
BMSC-exo administration ameliorated the declined bone mass and bone formation in osteoporotic femurs in OVX mice. In conclusion, BMSC-Exo enhances Runx2 levels by down-regulation of miR-318, thereby promoting osteogenic differentiation of osteogenitor cells, providing new potential therapeutic
targets for treating PMOP.
Collapse
Affiliation(s)
- Xiufeng Wang
- Department of Pediatric Part 3, Xingtai People’s Hospital, Xingtai, Hebei, 054000, China
| | - Lin Fu
- Department of Pathology, Xingtai People’s Hospital, Xingtai, Hebei, 054000, China
| | - Ruixue Sun
- Department of Pediatric Part 3, Xingtai People’s Hospital, Xingtai, Hebei, 054000, China
| | - Cuilin Zhang
- Department of Pediatric Part 3, Xingtai People’s Hospital, Xingtai, Hebei, 054000, China
| | - Yanling Zhang
- Department of Pediatric Part 3, Xingtai People’s Hospital, Xingtai, Hebei, 054000, China
| |
Collapse
|
7
|
Xu X, Li Y, Shi L, He K, Sun Y, Ding Y, Meng B, Zhang J, Xiang L, Dong J, Liu M, Zhang J, Xiang L, Xiang G. Myeloid-derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation. EMBO Rep 2022; 23:e53509. [PMID: 35068044 PMCID: PMC8892248 DOI: 10.15252/embr.202153509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Whether bone marrow regulates bone metabolism through endocrine and paracrine mechanism remains largely unknown. Here, we found that (i) myeloid cell-specific myeloid-derived growth factor (MYDGF) deficiency decreased bone mass and bone strength in young and aged mice; (ii) myeloid cell-specific MYDGF restoration prevented decreases in bone mass and bone strength in MYDGF knockout mice; moreover, myeloid cell-derived MYDGF improved the progress of bone defects healing, prevented ovariectomy (OVX)-induced bone loss and age-related osteoporosis; (iii) MYDGF inhibited osteoclastogenesis and promoted osteoblast differentiation in vivo and in vitro; and (iv) PKCβ-NF-κB and MAPK1/3-STAT3 pathways were involved in the regulation of MYDGF on bone metabolism. Thus, we concluded that myeloid cell-derived MYDGF is a positive regulator of bone homeostasis by inhibiting bone resorption and promoting bone formation. MYDGF may become a potential novel therapeutic drug for osteoporosis, and bone marrow may become a potential therapeutic target for bone metabolic disorders.
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Yixiang Li
- Department of Hematology and Medical OncologySchool of MedicineEmory UniversityAtlantaGAUSA
| | - Lingfeng Shi
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Kaiyue He
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Ying Sun
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Yan Ding
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Biying Meng
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiajia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Lin Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Jing Dong
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Min Liu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Junxia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Lingwei Xiang
- Centers for Surgery and Public HealthBrigham and Women's HospitalBostonMAUSA
| | - Guangda Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Lemke C, Benýšek J, Brajtenbach D, Breuer C, Jílková A, Horn M, Buša M, Ulrychová L, Illies A, Kubatzky KF, Bartz U, Mareš M, Gütschow M. An Activity-Based Probe for Cathepsin K Imaging with Excellent Potency and Selectivity. J Med Chem 2021; 64:13793-13806. [PMID: 34473502 DOI: 10.1021/acs.jmedchem.1c01178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cysteine protease cathepsin K is a target for the treatment of diseases associated with high bone turnover. Cathepsin K is mainly expressed in osteoclasts and responsible for the destruction of the proteinaceous components of the bone matrix. We designed various fluorescent activity-based probes (ABPs) and their precursors that bind to and inactivate cathepsin K. ABP 25 exhibited extraordinary potency (kinac/Ki = 35,300 M-1s-1) and selectivity for human cathepsin K. Crystal structures of cathepsin K in complex with ABP 25 and its nonfluorescent precursor 21 were determined to characterize the binding mode of this new type of acrylamide-based Michael acceptor with the particular orientation of the dibenzylamine moiety to the primed subsite region. The cyanine-5 containing probe 25 allowed for sensitive detection of cathepsin K, selective visualization in complex proteomes, and live cell imaging of a human osteosarcoma cell line, underlining its applicability in a pathophysiological environment.
Collapse
Affiliation(s)
- Carina Lemke
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Jakub Benýšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic.,First Faculty of Medicine, Charles University, Kateřinská 32, Prague 12108, Czech Republic
| | - Dominik Brajtenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Christian Breuer
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany.,Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Adéla Jílková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic
| | - Lenka Ulrychová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Annika Illies
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| |
Collapse
|
9
|
Wang B, Bai S, Wang J, Ren N, Xie R, Cheng G, Yu Y. TPCA-1 negatively regulates inflammation mediated by NF-κB pathway in mouse chronic periodontitis model. Mol Oral Microbiol 2021; 36:192-201. [PMID: 33768683 DOI: 10.1111/omi.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
The dysregulation of immune system plays a crucial function in periodontitis development. Pro-inflammatory cytokines are thought to be critical for the generation and development of periodontitis. The enhanced activity of osteoclasts contributes to periodontitis pathogenesis. Nuclear factor-κB (NF-κB) signaling pathway directly enhances osteoclast differentiation and maturation. 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) is a IκB kinases (IKK) inhibitor. This research aimed to investigate whether TPCA-1 had influence on the pathogenesis of chronic periodontitis. Mouse chronic periodontitis was induced by an in vivo ligature-induced periodontitis model. TPCA-1 was intravenously injected into mice after chronic periodontitis induction. Bone marrow-derived macrophages were cultured in macrophage colony-stimulating factor (M-CSF)-conditioned media with receptor activator of nuclear factor-kappa B ligand (RANKL) induce in vitro osteoclast differentiation. Western blot was used to analyze protein levels and mRNA levels were analyzed through qRT-PCR. TPCA-1 promoted osteoclastogenesis and osteoclast-related gene expression in vitro. The production of pro-inflammatory cytokines in osteoclasts induced by lipopolysaccharides was inhibited by TPCA-1 in vitro. In vitro TPCA-1 treatment inhibited Aggregatibacter actinomycetemcomitans (A.a)-induced expression of pro-inflammatory cytokines and NF-κB signal activation in osteoclasts. The induction of chronic periodontitis was inhibited by the absence of IKKb in mice. This research demonstrates that the treatment of TPCA-1 negatively regulates inflammation response and inhibits the osteoclastogenesis through the inactivation of NF-κB pathway in mouse chronic periodontitis model.
Collapse
Affiliation(s)
- Bo Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Department of Stomatology, Xi'an People's Hospital, Xi'an, Shaanxi, China
| | - Shizhu Bai
- Digital Center, The Hospital of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiang Wang
- Department of General Dentistry & Emergency, The Hospital of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Nan Ren
- Digital Center, The Hospital of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Xie
- Digital Center, The Hospital of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Geng Cheng
- Digital Center, The Hospital of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Chen Y, Wei B, Xu P, Tang H, Yang L, Wang Y, Fu Y, Yang X, Mao Y. Schistosoma japonicum cystatin suppresses osteoclastogenesis via manipulating the NF‑κB signaling pathway. Mol Med Rep 2021; 23:273. [PMID: 33576450 PMCID: PMC7893784 DOI: 10.3892/mmr.2021.11912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 11/06/2022] Open
Abstract
Abnormal osteoclastic activation and secretion of cysteine proteinases result in excessive bone resorption, which is one of the primary factors in the development of bone metabolic disorders, such as rheumatoid arthritis and osteoporosis. Mammalian cystatins have been demonstrated to restrain osteoclastic bone resorption and to alleviate severe osteolytic destruction via blocking the activity of cysteine proteinases. However, the specific effects of parasite cystatins on the formation and function of osteoclasts remain unclear. The purpose of the current study was to explore the effects of cystatins from Schistosoma japonicum (Sj‑Cys) on macrophage colony‑stimulating factor (M‑CSF) and receptor activator of NF‑κB ligand (RANKL)‑induced osteoclast differentiation, as well as the underlying molecular mechanisms. Recombinant Sj‑Cys (rSj‑Cys) dose‑dependently restrained osteoclast formation, with a half‑maximal inhibitory concentration (IC50) value of 0.3 µM, and suppressed osteoclastic bone resorptive capability in vitro. The findings were based on tartrate resistant acid phosphatase (TRAP) staining and bone resorption assays, respectively. However, the cell viability assay showed that the repression of rSj‑Cys on osteoclast formation did not depend on effects on cell viability or apoptosis. Based on the results of reverse transcription‑quantitative PCR and western blot analysis, it was found that rSj‑Cys downregulated the expression levels of osteoclastogenesis‑related genes and proteins, by interfering with M‑CSF and RANKL‑induced NF‑κB signaling and downstream transcription factors during early‑phase osteoclastogenesis. Overall, the results of the present study revealed that rSj‑Cys exerted an inhibitory role in osteoclast differentiation and could be a prospective biotherapeutic candidate for the treatment and prevention of bone metabolic disorders.
Collapse
Affiliation(s)
- Yu Chen
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Bangguo Wei
- Key Laboratory of Anhui Province for Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Panpan Xu
- Key Laboratory of Anhui Province for Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Huadong Tang
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Langlang Yang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yuhang Wang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yingxiao Fu
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Xiaodi Yang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|
11
|
Menger MM, Bremer P, Scheuer C, Rollmann MF, Braun BJ, Herath SC, Orth M, Später T, Pohlemann T, Menger MD, Histing T. Pantoprazole impairs fracture healing in aged mice. Sci Rep 2020; 10:22376. [PMID: 33361800 PMCID: PMC7758334 DOI: 10.1038/s41598-020-79605-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Proton pump inhibitors (PPIs) belong to the most common medication in geriatric medicine. They are known to reduce osteoclast activity and to delay fracture healing in young adult mice. Because differentiation and proliferation in fracture healing as well as pharmacologic actions of drugs markedly differ in the elderly compared to the young, we herein studied the effect of the PPI pantoprazole on bone healing in aged mice using a murine fracture model. Bone healing was analyzed by biomechanical, histomorphometric, radiological and protein biochemical analyses. The biomechanical analysis revealed a significantly reduced bending stiffness in pantoprazole-treated animals when compared to controls. This was associated with a decreased amount of bone tissue within the callus, a reduced trabecular thickness and a higher amount of fibrous tissue. Furthermore, the number of osteoclasts in pantoprazole-treated animals was significantly increased at 2 weeks and decreased at 5 weeks after fracture, indicating an acceleration of bone turnover. Western blot analysis showed a lower expression of the bone morphogenetic protein-4 (BMP-4), whereas the expression of the pro-angiogenic parameters was higher when compared to controls. Thus, pantoprazole impairs fracture healing in aged mice by affecting angiogenic and osteogenic growth factor expression, osteoclast activity and bone formation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany. .,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| | - Philipp Bremer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Tina Histing
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| |
Collapse
|
12
|
Jin H, Wang Q, Chen K, Xu K, Pan H, Chu F, Ye Z, Wang Z, Tickner J, Qiu H, Wang C, Kenny J, Xu H, Wang T, Xu J. Astilbin prevents bone loss in ovariectomized mice through the inhibition of RANKL-induced osteoclastogenesis. J Cell Mol Med 2019; 23:8355-8368. [PMID: 31603626 PMCID: PMC6850941 DOI: 10.1111/jcmm.14713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is the most common osteolytic disease characterized by excessive osteoclast formation and resultant bone loss, which afflicts millions of patients around the world. Astilbin, a traditional herb, is known to have anti-inflammatory, antioxidant and antihepatic properties, but its role in osteoporosis treatment has not yet been confirmed. In our study, astilbin was found to have an inhibitory effect on the RANKL-induced formation and function of OCs in a dose-dependent manner without cytotoxicity. These effects were attributed to its ability to suppress the activity of two transcription factors (NFATc1 and c-Fos) indispensable for osteoclast formation, followed by inhibition of the expression of bone resorption-related genes and proteins (Acp5/TRAcP, CTSK, V-ATPase-d2 and integrin β3). Furthermore, we examined the underlying mechanisms and found that astilbin repressed osteoclastogenesis by blocking Ca2+ oscillations and the NF-κB and MAPK pathways. In addition, the therapeutic effect of MA on preventing bone loss in vivo was further confirmed in an ovariectomized mouse model. Therefore, considering its ability to inhibit RANKL-mediated osteoclastogenesis and the underlying mechanisms, astilbin might be a potential candidate for treating osteolytic bone diseases.
Collapse
Affiliation(s)
- Haiming Jin
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Qingqing Wang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Kai Chen
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Ke Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Hao Pan
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Feifan Chu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhen Ye
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Ziyi Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Jennifer Tickner
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Heng Qiu
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Chao Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Jacob Kenny
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Huazi Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Te Wang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jiake Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
13
|
RAŢIU CRISTIAN, BOȘCA ADINABIANCA, ILEA ARANKA, RUXANDA FLAVIA, MICLĂUŞ VIOREL. Osteoclast recruitment and polymorphism during the healing process in dental implant surgery. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.1/66.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Wu ZH, Huang KH, Liu K, Wang GT, Sun Q. DGCR5 induces osteogenic differentiation by up-regulating Runx2 through miR-30d-5p. Biochem Biophys Res Commun 2018; 505:426-431. [PMID: 30266402 DOI: 10.1016/j.bbrc.2018.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a metabolic bone disease caused by unbalance between osteoblast bone formation and osteoclast bone resorption. In this study, the moderating effect of DGCR5 on osteogenic differentiation and its role in PMOP was assessed. METHODS The expression levels of DGCR5, miR-30d-5p, and Runt-related transcription factor 2 (Runx2) mRNA and protein were determined by qRT-PCR and western blot, separately. The bone marrow human mesenchymal stem cells (hMSCs) were isolated from bone marrow of patients with PMOP or the healthy control. ALP activity and bone mineral density (BMD) were detected to reflect the osteogenic differentiation status. RIP and RNA pull-down assay were performed to explore the combination and interaction between DGCR5 and miR-30d-5p. RESULTS Compared with the healthy control group (n = 20), DGCR5 was down-regulated in hMSCs from patients with PMOP (n = 20). Overexpression of DGCR5 induced osteogenic differentiation of hMSCs. DGCR5 up-regulated the expression of Runx2 through miR-30d-5p. DGCR5 up-regulated the expression of Runx2 through miR-30d-5p to induce osteogenic differentiation of hMSCs. CONCLUSION DGCR5 negatively regulates miR-30d-5p, and it up-regulates Runx2 through miR-30d-5p, thereby inducing osteogenic differentiation of hMSCs, which may help to delay PMOP development.
Collapse
Affiliation(s)
- Zhi-Hao Wu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Kai-Hua Huang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Kang Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Guan-Tong Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
15
|
Miron RJ, Zhang Y. Autologous liquid platelet rich fibrin: A novel drug delivery system. Acta Biomater 2018; 75:35-51. [PMID: 29772345 DOI: 10.1016/j.actbio.2018.05.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
There is currently widespread interest within the biomaterial field to locally deliver biomolecules for bone and cartilage regeneration. Substantial work to date has focused on the potential role of these biomolecules during the healing process, and the carrier system utilized is a key factor in their effectiveness. Platelet rich fibrin (PRF) is a naturally derived fibrin scaffold that is easily obtained from peripheral blood following centrifugation. Slower centrifugation speeds have led to the commercialization of a liquid formulation (liquid-PRF) resulting in an upper plasma layer composed of liquid fibrinogen/thrombin prior to clot formation that remains in its liquid phase for approximately 15 min until injected into bodily tissues. Herein, we introduce the use of liquid PRF as an advanced local delivery system for small and large biomolecules. Potential target molecules including large (growth factors/cytokines and morphogenetic/angiogenic factors), as well as small (antibiotics, peptides, gene therapy and anti-osteoporotic) molecules are considered potential candidates for enhanced bone/cartilage tissue regeneration. Furthermore, liquid-PRF is introduced as a potential carrier system for various cell types and nano-sized particles that are capable of limiting/by-passing the immune system and minimizing potential foreign body reactions within host tissues following injection. STATEMENT OF SIGNIFICANCE There is currently widespread interest within the biomaterial field to locally deliver biomolecules for bone and cartilage regeneration. This review article focuses on the use of a liquid version of platelet rich fibrin (PRF) composed of liquid fibrinogen/thrombin as a drug delivery system. Herein, we introduce the use of liquid PRF as an advanced local delivery system for small and large biomolecules including growth factors, cytokines and morphogenetic/angiogenic factors, as well as antibiotics, peptides, gene therapy and anti-osteoporotic molecules as potential candidates for enhanced bone/cartilage tissue regeneration.
Collapse
|
16
|
Song D, Cao Z, Liu Z, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Dong S, Xu J. Cistanche deserticola
polysaccharide attenuates osteoclastogenesis and bone resorption via inhibiting RANKL signaling and reactive oxygen species production. J Cell Physiol 2018; 233:9674-9684. [DOI: 10.1002/jcp.26882] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/23/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Dezhi Song
- Research Centre for Regenerative Medicine Guangxi Medical University Nanning China
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning China
- Department of Microbiology Guangxi Medical University Nanning China
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Zhen Cao
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
- Department of Biomedical Materials Science, School of Biomedical Engineering Third Military Medical University Chongqing China
| | - Zaibing Liu
- Department of Radiology People’s Hospital of Zhangqiu District Jinan China
| | - Jennifer Tickner
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Heng Qiu
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Chao Wang
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Kai Chen
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Ziyi Wang
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering Third Military Medical University Chongqing China
| | - Jiake Xu
- Division of Regenerative Medicine, School of Biomedical Sciences University of Western Australia Perth Western Australia Australia
| |
Collapse
|
17
|
Song D, Cao Z, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Guo C, Dong S, Xu J. Poria cocos polysaccharide attenuates RANKL-induced osteoclastogenesis by suppressing NFATc1 activity and phosphorylation of ERK and STAT3. Arch Biochem Biophys 2018; 647:76-83. [PMID: 29678628 DOI: 10.1016/j.abb.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
Abstract
Pathological fractures caused by osteolytic lesions seriously threaten the health of patients. Osteoclasts play important roles in bone resorption whose hyperfunction are closely related to osteolytic lesions. Studies on osteoclast differentiation and function assist in the prevention of excessive bone loss associated diseases. We screened a variety of natural compounds with anti-inflammatory effect and found that poria cocos polysaccharide (PCP) inhibited RANKL-induced osteoclast formation and bone resorption via TRAcP staining, immunofluorescence, RT-PCR and western blot. PCP down-regulated phosphorylation of STAT3, P38, ERK and JNK, and thus repressed the expression of NFAcT1 and c-Fos during RANKL-induced osteoclastogenesis. Besides, the expression of bone resorption related genes such as TRAcP and CTSK was suppressed by PCP. The results suggest that PCP can be invoked as a candidate for the treatment of osteolytic diseases by inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Dezhi Song
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China; School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Zhen Cao
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China; Department of Anatomy, Third Military Medical University, Chongqing, 400038, China; School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chunyu Guo
- Department of Neurosurgery, Nanning Second People's Hospital, Nanning, 530031, Guangxi, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
18
|
Memmert S, Nokhbehsaim M, Damanaki A, Nogueira AVB, Papadopoulou AK, Piperi C, Basdra EK, Rath-Deschner B, Götz W, Cirelli JA, Jäger A, Deschner J. Role of cathepsin S In periodontal wound healing-an in vitro study on human PDL cells. BMC Oral Health 2018; 18:60. [PMID: 29622023 PMCID: PMC5887187 DOI: 10.1186/s12903-018-0518-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background Cathepsin S is a cysteine protease, which is expressed in human periodontal ligament (PDL) cells under inflammatory and infectious conditions. This in vitro study was established to investigate the effect of cathepsin S on PDL cell wound closure. Methods An in vitro wound healing assay was used to monitor wound closure in wounded PDL cell monolayers for 72 h in the presence and absence of cathepsin S. In addition, the effects of cathepsin S on specific markers for apoptosis and proliferation were studied at transcriptional level. Changes in the proliferation rate due to cathepsin S stimulation were analyzed by an XTT assay, and the actions of cathepsin S on cell migration were investigated via live cell tracking. Additionally, PDL cell monolayers were treated with a toll-like receptor 2 agonist in the presence and absence of a cathepsin inhibitor to examine if periodontal bacteria can alter wound closure via cathepsins. Results Cathepsin S enhanced significantly the in vitro wound healing rate by inducing proliferation and by increasing the speed of cell migration, but had no effect on apoptosis. Moreover, the toll-like receptor 2 agonist enhanced significantly the wound closure and this stimulatory effect was dependent on cathepsins. Conclusions Our findings provide original evidence that cathepsin S stimulates PDL cell proliferation and migration and, thereby, wound closure, suggesting that this cysteine protease might play a critical role in periodontal remodeling and healing. In addition, cathepsins might be exploited by periodontal bacteria to regulate critical PDL cell functions.
Collapse
Affiliation(s)
- Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany. .,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Andressa V B Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Birgit Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.,Noel Martin Visiting Chair, Faculty of Dentistry, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Mechanisms of Bone Resorption in Periodontitis. J Immunol Res 2015; 2015:615486. [PMID: 26065002 PMCID: PMC4433701 DOI: 10.1155/2015/615486] [Citation(s) in RCA: 452] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/13/2014] [Indexed: 12/18/2022] Open
Abstract
Alveolar bone loss is a hallmark of periodontitis progression and its prevention is a key clinical challenge in periodontal disease treatment. Bone destruction is mediated by the host immune and inflammatory response to the microbial challenge. However, the mechanisms by which the local immune response against periodontopathic bacteria disturbs the homeostatic balance of bone formation and resorption in favour of bone loss remain to be established. The osteoclast, the principal bone resorptive cell, differentiates from monocyte/macrophage precursors under the regulation of the critical cytokines macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. TNF-α, IL-1, and PGE2 also promote osteoclast activity, particularly in states of inflammatory osteolysis such as those found in periodontitis. The pathogenic processes of destructive inflammatory periodontal diseases are instigated by subgingival plaque microflora and factors such as lipopolysaccharides derived from specific pathogens. These are propagated by host inflammatory and immune cell influences, and the activation of T and B cells initiates the adaptive immune response via regulation of the Th1-Th2-Th17 regulatory axis. In summary, Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss through upregulated production of proinflammatory mediators and activation of the RANK-L expression pathways.
Collapse
|
20
|
Pantoprazole decreases cell viability and function of human osteoclasts in vitro. Mediators Inflamm 2015; 2015:413097. [PMID: 25873758 PMCID: PMC4385676 DOI: 10.1155/2015/413097] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022] Open
Abstract
Proton pump inhibitors (PPIs) are commonly prescribed drugs that decrease stomach acidity and are thus often used to treat gastroesophageal reflux disease and as a preventative agent for the adverse effects of nonsteroidal anti-inflammatory drugs on the stomach mucosa. In recently published literature, an association between proton pump inhibitor administration and increased fracture risk has been stated. In order to reveal the underlying pathomechanisms of these observations, the effects of pantoprazole, a representative of the proton pump inhibitors, on human osteoclasts in vitro were evaluated in this study. Osteoclasts were stimulated with increasing concentrations of pantoprazole ranging from 0 μg/mL to 10 μg/mL over a period of seven days. Cell viability and tartrate-resistant acid phosphatase (TRAP) activity assays were performed after 1 day, 3 days, and 7 days, respectively. Here, stimulated osteoclasts presented a significantly lower viability and TRAP activity than the negative controls. Osteoclast-specific gene expression was evaluated after seven days and revealed no significant differences between all samples. Overall, the bone degrading and resorptive function of osteoclasts is inhibited by the administration of proton pump inhibitors. While PPI-related fractures through “basic multicellular unit” dysfunction are unlikely, the underlying pathomechanism remains unknown.
Collapse
|