1
|
Masson LC, Kanagasabai AS, Márquez BT, Tourbina-Kolomiets J, Charron F, Watt AJ, McKinney RA. Alterations in the Na +/H + Exchanger NHE6 and Glutamate Transporters may Influence Purkinje Cell Fate in ARSACS. CEREBELLUM (LONDON, ENGLAND) 2025; 24:99. [PMID: 40372562 PMCID: PMC12081547 DOI: 10.1007/s12311-025-01850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Patterned cell death is a common feature of many neurodegenerative diseases. This is apparent in cerebellar Purkinje cells (PCs) in patients and mouse models of Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). In ARSACS, PCs in the anterior cerebellar vermis are vulnerable to degeneration while those in the posterior vermis are resilient. As the mechanisms underpinning cerebellar pathophysiology in ARSACS are not fully understood, we chose to investigate two important regulatory pathways for cellular health in neurons: (1) the autophagy-lysosome pathway which is important for the trafficking of cargo essential for proper neuronal function, as well as (2) excitatory amino acid transporters (EAATs) that regulate extracellular glutamate levels. Using a mouse model of ARSACS (Sacs-/-), we found a significant decrease in the Na+/H+ exchanger 6 (NHE6) in the PCs in the vulnerable anterior but not resilient posterior cerebellum. We looked at two EAATs that are highly expressed in the cerebellum: EAAT1 and EAAT4. Glial EAAT1 levels were significantly reduced in both anterior and posterior lobules, which could lead to excitotoxicity. However, the neuronal EAAT4 protein was elevated only in the resilient posterior PCs, likely counteracting the effects of reduced EAAT1 in posterior cerebellum. These results point to possible impairment in the endocytic pathway in the ARSACS cerebellum, and an elevation of EAAT4 glutamate transporters in the resilient posterior lobules of the cerebellar vermis that may contribute to neuroprotection.
Collapse
Affiliation(s)
- Louis-Charles Masson
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Atchaya S Kanagasabai
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | | | - Francois Charron
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC, Canada.
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Woida PJ, Lamason RL. Pathogen-induced rerouting of host membrane trafficking. Curr Opin Cell Biol 2025; 94:102520. [PMID: 40262416 DOI: 10.1016/j.ceb.2025.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
Eukaryotic cell membranes are protective barriers that precisely control cargo import, trafficking, and export. In defiance of this control, intracellular bacterial pathogens forcefully invade host cells and establish intracellular niches. These pathogens require remarkable membrane remodeling events to support their large size, and a significant amount of work has examined how these pathogens co-opt cytoskeleton dynamics to remodel host membranes. Until recently, less attention was given to where the membranes came from to support remodeling around the pathogens at each stage of infection. In this review, we highlight recent examples of how bacterial pathogens reroute membrane trafficking to provide the membranes needed during invasion, intracellular growth, and eventual dissemination through host tissues. The examples discussed underscore emerging themes and areas for continued investigation rather than provide a survey of the entire field. We hope that highlighting these open questions will inspire researchers across disciplines to recognize the importance of pathogens as tools to understand both mechanisms of bacterial virulence and membrane trafficking.
Collapse
Affiliation(s)
- Patrick J Woida
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Xu P, Yue J. Protocol for monitoring the endosomal trafficking of membrane proteins in mammalian cells. STAR Protoc 2025; 6:103686. [PMID: 40057947 PMCID: PMC11928761 DOI: 10.1016/j.xpro.2025.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Here, we present a protocol to study epidermal growth factor (EGF) receptor (EGFR) or transferrin trafficking in mammalian cells. We describe steps for using fluorescent ligands or antibodies, confocal imaging, and quantitative analysis to track their movement. We detail procedures for cell culture preparation, labeling membrane proteins, optimizing imaging, and isolating cell lysates for the biochemical analysis of EGFR degradation after EGF treatment. This protocol is adaptable to various cell types and for assessing genetic or pharmacological impacts on endosomal trafficking. For complete details on the use and execution of this protocol, please refer to Ye et al.,1 Ye et al.,2 and Wang et al.3.
Collapse
Affiliation(s)
- Peng Xu
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Global Health Research Center, Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan 215316, China.
| | - Jianbo Yue
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Global Health Research Center, Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan 215316, China.
| |
Collapse
|
4
|
Zimmerman SP, DeGraw LB, Counter CM. The essential clathrin adapter protein complex-2 is tumor suppressive specifically in vivo. Nat Commun 2025; 16:2254. [PMID: 40050266 PMCID: PMC11885535 DOI: 10.1038/s41467-025-57521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
The microenvironment is a rich source of new cancer targets. We thus used a targeted single-guide RNA library to screen a panel of human pancreatic cancer lines for genes uniquely affecting tumorigenesis. Here we show inactivation of the Adapter Protein complex-2 of clathrin-mediated endocytosis reduces cell growth in vitro, but completely oppositely, promotes tumor growth in vivo. In culture, loss of the complex reduces transferrin endocytosis and iron import required for cell fitness. In tumors, alternative iron transport pathways allow pro-tumor effects of Adapter Protein complex-2 loss to manifest. In the most sensitive case, this is attributed to reprogramming the plasma membrane proteome, retaining integrins on the surface leading to Focal Adhesion Kinase phosphorylation and induction of proliferative signals. Adapter Protein complex-2 function in tumorigenesis is thus dependent upon the microenvironment, behaving as a common essential gene in culture via iron import, but as a tumor suppressor in tumors via integrin trafficking.
Collapse
Affiliation(s)
- Seth P Zimmerman
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Lili B DeGraw
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
5
|
Huang X, Tang Y. Unveiling the complex double-edged sword role of exosomes in nasopharyngeal carcinoma. PeerJ 2025; 13:e18783. [PMID: 39822977 PMCID: PMC11737332 DOI: 10.7717/peerj.18783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelium of the nasopharynx. Given its late diagnosis, NPC raises serious considerations in Southeast Asia. In addition to resistance to conventional treatment that combines chemotherapy and radiation, NPC has high rates of metastasis and frequent recurrence. Exosomes are small membrane vesicles at the nanoscale that transport physiologically active compounds from their source cell and have a crucial function in signal transmission and intercellular message exchange. The exosomes detected in the tissues of NPC patients have recently emerged as a potential non-invasive liquid biopsy biomarker that plays a role in controlling the tumor pathophysiology. Here, we take a look back at what we know so far about the complex double-edged sword role of exosomes in NPC. Exosomes could serve as biomarkers and therapeutic agents, as well as the molecular mechanisms by which they promote cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance, and chemotherapy resistance in NPC. Furthermore, we go over some of the difficulties and restrictions associated with exosome use. It is anticipated that this article would provide the reference for the apply of exosomes in clinical practice.
Collapse
Affiliation(s)
- Xueyan Huang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yuedi Tang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Roberto GM, Boutet A, Keil S, Del Guidice E, Duramé E, Tremblay MG, Moss T, Therrien M, Emery G. Tao and Rap2l ensure proper Misshapen activation and levels during Drosophila border cell migration. Dev Cell 2025; 60:119-132.e6. [PMID: 39393350 DOI: 10.1016/j.devcel.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024]
Abstract
Collective cell migration is fundamental in development, wound healing, and metastasis. During Drosophila oogenesis, border cells (BCs) migrate collectively inside the egg chamber, controlled by the Ste20-like kinase Misshapen (Msn). Msn coordinates the restriction of protrusion formation and contractile forces within the cluster. Here, we demonstrate that Tao acts as an upstream activator of Msn in BCs. Depleting Tao significantly impedes BC migration, producing a phenotype similar to Msn loss of function. Furthermore, we show that the localization of Msn relies on its citron homology (CNH) domain, which interacts with the small GTPase Rap2l. Rap2l promotes the trafficking of Msn to the endolysosomal pathway. Depleting Rap2l elevates Msn levels by reducing its trafficking into late endosomes and increases overall contractility. These data suggest that Tao promotes Msn activation, while global Msn protein levels are controlled via Rap2l and the endolysosomal degradation pathway. Thus, two mechanisms ensure appropriate Msn levels and activation in BCs.
Collapse
Affiliation(s)
- Gabriela Molinari Roberto
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Alison Boutet
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Sarah Keil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Emmanuelle Del Guidice
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Michel G Tremblay
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Québec, QC, Canada
| | - Tom Moss
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada; Cancer Research Centre, Laval University, Québec, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
7
|
Begley M, Aragon M, Baker RW. A structure-based mechanism for initiation of AP-3 coated vesicle formation. Proc Natl Acad Sci U S A 2024; 121:e2411974121. [PMID: 39705307 DOI: 10.1073/pnas.2411974121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 12/22/2024] Open
Abstract
Adaptor protein complex-3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 adopts a constitutively open conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy. Similar to yeast AP-3, human AP-3 is in a constitutively open conformation. To reconstitute AP-3 activation by adenosine di-phosphate (ADP)-ribosylation factor 1 (Arf1), a small guanosine tri-phosphate (GTP)ase, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures showing the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane recruitment is driven by one of two predicted Arf1 binding sites, which flexibly tethers AP-3 to the membrane. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher-order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3-mediated vesicle coat assembly.
Collapse
Affiliation(s)
- Matthew Begley
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
| | - Mahira Aragon
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Richard W Baker
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Rader AG, Cloherty APM, Patel KS, Almandawi DDA, Pajkrt D, Wolthers KC, Sridhar A, van Piggelen S, Baaij LE, Schreurs RRCE, Ribeiro CMS. HIV-1 exploits LBPA-dependent intraepithelial trafficking for productive infection of human intestinal mucosa. PLoS Pathog 2024; 20:e1012714. [PMID: 39729509 DOI: 10.1371/journal.ppat.1012714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/01/2024] [Indexed: 12/29/2024] Open
Abstract
The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions. Our data demonstrate that apical exposure of intestinal epithelium to HIV-1 results in viral internalization, with subsequent basolateral shedding of replication-competent viruses, in a manner that is impervious to antiretroviral treatment. Incorporation of subepithelial dendritic cells resulted in HIV-1 luminal sampling and amplification of residual viral replication of lab-adapted and transmitted-founder (T/F) HIV-1 variants. Markedly, intraepithelial viral capture ensued an altered distribution of specialized endosomal pathways alongside durable sequestration of infectious HIV-1 within lysobisphosphatidic acid (LPBA)-rich vesicles. Therapeutic neutralization of LBPA-dependent trafficking limited productive HIV-1 infection, and thereby demonstrated the pivotal role of intraepithelial multivesicular endosomes as niches for virulent HIV-1 within the intestinal mucosa. Our study showcases the application of primary human 2D immune-competent organoid cultures in uncovering mechanisms of intestinal HIV-1 disease as well as a platform for preclinical antiviral drug discovery.
Collapse
Affiliation(s)
- Anusca G Rader
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Alexandra P M Cloherty
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Kharishma S Patel
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Dima D A Almandawi
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Amsterdam UMC, location University of Amsterdam, Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Katja C Wolthers
- Amsterdam UMC, location University of Amsterdam, Medical Microbiology, Amsterdam, The Netherlands
| | - Adithya Sridhar
- Amsterdam UMC, location University of Amsterdam, Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Medical Microbiology, Amsterdam, The Netherlands
| | - Sterre van Piggelen
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Liselotte E Baaij
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Renée R C E Schreurs
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Pieretti JC, Horne TL, García-Villasante N, Seabra AB, Muntané J. Zinc-Based Nanoparticles, but Not Silicon-Based Nanoparticles, Accumulate in Mitochondria and Promote Cell Death in Liver Cancer Cells. Int J Nanomedicine 2024; 19:12409-12420. [PMID: 39606560 PMCID: PMC11600939 DOI: 10.2147/ijn.s474643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/28/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the main hepatic primary malignancy. Patients with advanced HCC receiving the recommended therapies have a poor outcome. In different settings, nanotechnology has gained attraction as a potential alternative strategy for improving therapeutic effectiveness. Among several nanoparticles (NPs), inorganic NPs, such as zinc and silicon oxides (ZnO and SiO2), are mainly chosen as drug nanocarriers, as both present great adsorption properties and biocompatibility. Aim The objective is to identify the molecular mechanisms underlying the proapoptotic effects of ZnO and SiO2 NPs in differentiated hepatoblastoma cells (HepG2) and mesenchymal liver cancer cells (SNU449). Methods Dose-dependent induction of cell cytotoxicity by ZnO and SiO2 NPs (5 to 50 µg/mL) was determined in HepG2 and SNU449 cells. NPs intracellular localization was assessed using transmission electron microscopy (TEM). Cell death was determined by trypan blue staining and caspase-3 and -8 activities. Cell respiration was determined using MitroStress assay (Seahorse, Agilent). Results ZnO NPs, but not SiO2 NPs, reduced cell viability in HepG2 and SNU449. Interestingly, SNU449 appeared to be more susceptible than HepG2 to ZnO NPs (IC50 of 27.4 ± 1.4 µg/mL and 41.8 ± 0.4 µg/mL, respectively). SiO2 NPs tended to be localized in lysosomes in both cell lines, while ZnO NPs demonstrated a random distribution with a high presence in mitochondria and related structures. As expected, SiO2 NPs did not reduce cell survival and cell respiration, while ZnO NPs promoted cell death and decreased oxygen consumption rate. ZnO NPs mitochondrial accumulation was associated with increased apoptosis in HepG2, while necroapoptosis was mainly involved in ZnO-induced cell death in SNU449. Conclusion SiO2 demonstrated no cytotoxic profile against liver cancer cells. ZnO NPs demonstrated to accumulate in mitochondria impacting cell respiration and cell death in liver cancer cells. ZnO induced apoptosis and necroptosis in HepG2 and SNU449, respectively.
Collapse
Affiliation(s)
- Joana C Pieretti
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, Seville, Spain
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Thaissa L Horne
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, Seville, Spain
| | - Natalia García-Villasante
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, Seville, Spain
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University “Virgen del Rocío”/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| |
Collapse
|
10
|
Farinha D, Sarmento-Ribeiro AB, Faneca H. Combination of Gene Therapy and Chemotherapy in a New Targeted Hybrid Nanosystem to Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:12505-12527. [PMID: 39606562 PMCID: PMC11598603 DOI: 10.2147/ijn.s474665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Hepatocellular carcinoma is the most frequent liver cancer and constitutes one of the main causes of cancer mortality. The combination of targeted therapy drugs, such as selumetinib and perifosine that inhibit cell signaling pathways involved in cell survival and proliferation, with the expression of tumor suppressor transgenes, such as PTEN, may result in an efficient therapeutic approach against HCC. Thus, the main objective of this work was to develop a new lipid-polymer hybrid nanosystem (HNP), composed of a PLGA core coated with a pH-sensitive lipid bilayer functionalized with the targeting ligand GalNAc, in order to specifically and efficiently deliver this novel combination of therapeutic agents in HCC cells. Methods Transmission electron microscopy, zeta potential, Fourier transform infrared spectroscopy, and dynamic light scattering were used to determine the physicochemical properties of hybrid nanosystems and their components. The biological activity and specificity of nanosystems were evaluated using luminescence and flow cytometry. A variety of techniques were used to assess the therapeutic activity of hybrid nanosystems, including the Alamar Blue assay for cell viability; flow cytometry for cell death mechanisms, mitochondrial membrane potential and cell cycle; luminescence for caspase activity; flow cytometry and fluorescence microscopy for cell proliferation; and Western blot for molecular targets levels. Results The obtained results showed that this new hybrid nanosystem not only has a high loading capacity of both drugs, but also allows for substantial expression of the PTEN transgene. In addition, the developed formulation has high stability, adequate physicochemical properties and high specificity to HCC cells. Moreover, the achieved data revealed that this innovative nanosystem presents a high antitumor effect, demonstrated not only by the enhancement on the programmed cell death, but also by the reduction in cell proliferation capacity. Conclusion The generated formulation shows a high anticancer effect, demonstrating a high translational potential for future clinical application in HCC treatment.
Collapse
Affiliation(s)
- Dina Farinha
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Henrique Faneca
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Guajardo-Contreras GI, Abdalla AL, Chen A, Niu M, Beauchamp E, Berthiaume LG, Cochrane AW, Mouland AJ. HIV-1 N-myristoylation-dependent hijacking of late endosomes/lysosomes to drive Gag assembly in macrophages. J Cell Sci 2024; 137:jcs263588. [PMID: 39439384 DOI: 10.1242/jcs.263588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages represent an important viral reservoir in HIV-1-infected individuals. Different from T cells, HIV-1 assembly in macrophages occurs at intracellular compartments termed virus-containing compartments (VCCs). Our previous research in HeLa cells - in which assembly resembles that found in infected T cells - suggested that late endosomes/lysosomes (LELs) play a role in HIV-1 trafficking towards its assembly sites. However, the role of LELs during assembly at VCCs is not fully understood. Herein, we used the HIV-1-inducible cell line THP-1 GagZip as a model to study HIV-1 Gag intracellular trafficking and assembly in macrophages. We demonstrated LEL involvement at VCCs using various microscopy techniques and biochemical approaches. Live-cell imaging revealed that HIV-1 repositions LELs towards the plasma membrane and modulates their motility. We showed that Arl8b-mediated LEL repositioning is not responsible for Gag trafficking to VCCs. Additionally, the inhibition of myristoylation by PCLX-001 decreased the presence of Gag on endosomes and inhibited VCC formation in both the THP-1 cell line and primary macrophages. In conclusion, we present evidence supporting the idea that HIV-1 manipulates the LEL trajectory to guide Gag to VCCs in an N-myristoylation-dependent manner.
Collapse
Affiliation(s)
- Gabriel I Guajardo-Contreras
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Ana L Abdalla
- Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alex Chen
- The Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Meijuan Niu
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | | | - Luc G Berthiaume
- Pacylex Pharmaceuticals Inc., Edmonton, AB T5J 4P6, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Alan W Cochrane
- The Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew J Mouland
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
12
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024; 18:618-644. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
13
|
Bogaciu CA, Rizzoli SO. Membrane trafficking of synaptic adhesion molecules. J Physiol 2024. [PMID: 39322997 DOI: 10.1113/jp286401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse. This review focuses on the current status of this topic, summarizing general findings on the membrane trafficking of the most prominent synaptic adhesion molecules. Remarkably, evidence for endocytosis processes has been obtained for many synaptic adhesion proteins, including dystroglycans, latrophilins, calsyntenins, netrins, teneurins, neurexins, neuroligins and neuronal pentraxins. Less evidence has been obtained on their recycling, possibly because of the lack of specific assays. We conclude that the trafficking of the synaptic adhesion molecules is an important topic, which should receive more attention in the future.
Collapse
Affiliation(s)
- Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Chen P, Cabral H. Enhancing Targeted Drug Delivery through Cell-Specific Endosomal Escape. ChemMedChem 2024; 19:e202400274. [PMID: 38830827 DOI: 10.1002/cmdc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Endosome is a major barrier in the intracellular delivery of drugs, especially for biologics, such as proteins, peptides, and nucleic acids. After being endocytosed, these cargos will be trapped inside the endosomal compartments and finally degraded in the lysosomes. Thus, various strategies have been developed to facilitate the escape of cargos from the endosomes to improve the intracellular delivery efficiency. While the majority of the studies are focusing on strengthening the endosomal escape capability to maximize the delivery outcome, recent evidence suggests that a careful control of the endosomal escape process could provide opportunity for targeted drug delivery. In this concept review, we examined current delivery systems that can sense intra-endosomal factors or external stimuli for controlling endosomal escape toward a targeted intracellular delivery of cargos. Furthermore, the prospects and challenges of such strategies are discussed.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Horacio Cabral
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
15
|
Wu Y, Li J, Liu L, Chu X, Zhong M, Li H, Zhao C, Fu H, Sun Y, Li Y. Hyaluronic acid nanoparticles for targeted oral delivery of doxorubicin: Lymphatic transport and CD44 engagement. Int J Biol Macromol 2024; 273:133063. [PMID: 38880443 DOI: 10.1016/j.ijbiomac.2024.133063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
The oral delivery of doxorubicin (DOX), an anti-cancer drug, encounters multiple hurdles such as limited gastrointestinal permeability, P-glycoprotein-mediated efflux, brief intestinal residence, and rapid degradation. This study introduced a novel approach utilizing hyaluronic acid (HA)-grafted fatty acid monoglycerides (HGD) to encapsulate DOX, forming HGD-DOX nanoparticles, aimed at enhancing its oral bioavailability. Drug encapsulated by HGD provided several advantages, including extended drug retention in the gastrointestinal tract, controlled release kinetics, and promotion of lymphatic absorption in the intestine. Additionally, HGD-DOX nanoparticles could specifically target CD44 receptors, potentially increasing therapeutic efficacy. The uptake mechanism of HGD-DOX nanoparticles primarily involved clathrin-mediated, caveolin-mediated and macropinocytosis endocytosis. Pharmacokinetic analysis further revealed that HGD significantly prolonged the in vivo residence time of DOX. In vivo imaging and pharmacodynamic studies indicated that HGD possessed tumor-targeting capabilities and exhibited a significant inhibitory effect on tumor growth, while maintaining an acceptable safety profile. Collectively, these findings position HGD-DOX nanoparticles as a promising strategy to boost the oral bioavailability of DOX, offering a potential avenue for improved cancer treatment.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liang Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinhong Chu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Min Zhong
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
16
|
Hodeify R, Kreydiyyeh S, Zaid LMJ. Identified and potential internalization signals involved in trafficking and regulation of Na +/K + ATPase activity. Mol Cell Biochem 2024; 479:1583-1598. [PMID: 37634170 PMCID: PMC11254989 DOI: 10.1007/s11010-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
The sodium-potassium pump (NKA) or Na+/K+ ATPase consumes around 30-40% of the total energy expenditure of the animal cell on the generation of the sodium and potassium electrochemical gradients that regulate various electrolyte and nutrient transport processes. The vital role of this protein entails proper spatial and temporal regulation of its activity through modulatory mechanisms involving its expression, localization, enzymatic activity, and protein-protein interactions. The residence of the NKA at the plasma membrane is compulsory for its action as an antiporter. Despite the huge body of literature reporting on its trafficking between the cell membrane and intracellular compartments, the mechanisms controlling the trafficking process are by far the least understood. Among the molecular determinants of the plasma membrane proteins trafficking are intrinsic sequence-based endocytic motifs. In this review, we (i) summarize previous reports linking the regulation of Na+/K+ ATPase trafficking and/or plasma membrane residence to its activity, with particular emphasis on the endocytic signals in the Na+/K+ ATPase alpha-subunit, (ii) map additional potential internalization signals within Na+/K+ ATPase catalytic alpha-subunit, based on canonical and noncanonical endocytic motifs reported in the literature, (iii) pinpoint known and potential phosphorylation sites associated with NKA trafficking, (iv) highlight our recent studies on Na+/K+ ATPase trafficking and PGE2-mediated Na+/K+ ATPase modulation in intestine, liver, and kidney cells.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Leen Mohammad Jamal Zaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
17
|
Sun M, Chen Z. Unveiling the Complex Role of Exosomes in Alzheimer's Disease. J Inflamm Res 2024; 17:3921-3948. [PMID: 38911990 PMCID: PMC11193473 DOI: 10.2147/jir.s466821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative illness, characterized by memory loss and cognitive decline, accounting for 60-80% of dementia cases. AD is characterized by senile plaques made up of amyloid β (Aβ) protein, intracellular neurofibrillary tangles caused by hyperphosphorylation of tau protein linked with microtubules, and neuronal loss. Currently, therapeutic treatments and nanotechnological developments are effective in treating the symptoms of AD, but a cure for the illness has not yet been found. Recently, the increased study of extracellular vesicles (EVs) has led to a growing awareness of their significant involvement in neurodegenerative disorders, including AD. Exosomes are small extracellular vesicles that transport various components including messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive compounds from one cell to another, facilitating information transmission and material movement. There is growing evidence indicating that exosomes have complex functions in AD. Exosomes may have a dual role in Alzheimer's disease by contributing to neuronal death and also helping to alleviate the pathological progression of the disease. Therefore, the primary aim of this review is to outline the updated understandings on exosomes biogenesis and many functions of exosomes in the generation, conveyance, distribution, and elimination of hazardous proteins related to Alzheimer's disease. This review is intended to provide novel insights for understanding the development, specific treatment, and early detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Zhuoyou Chen
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| |
Collapse
|
18
|
Begley M, Aragon M, Baker RW. A structure-based mechanism for initiation of AP-3 coated vesicle formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597630. [PMID: 38895279 PMCID: PMC11185636 DOI: 10.1101/2024.06.05.597630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Adaptor protein complex 3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 is in a constitutively open, active conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted the core of human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy (cryo-EM). Similar to yeast AP-3, human AP-3 is in a constitutively open conformation, with the cargo-binding domain of the μ3 subunit conformationally free. To reconstitute AP-3 activation by the small GTPase Arf1, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures that show the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane-recruitment is driven by one of two predicted Arf1 binding sites on AP-3. In this conformation, AP-3 is flexibly tethered to the membrane and its cargo binding domain remains conformationally dynamic. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3 mediated vesicle coat assembly.
Collapse
Affiliation(s)
- Matthew Begley
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
| | - Mahira Aragon
- New York Structural Biology Center; New York, NY 10027, USA
| | - Richard W. Baker
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
- UNC Lineberger Comprehensive Cancer Center. UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
| |
Collapse
|
19
|
Zhu G, Zhang H, Xia M, Liu Y, Li M. EH domain-containing protein 2 (EHD2): Overview, biological function, and therapeutic potential. Cell Biochem Funct 2024; 42:e4016. [PMID: 38613224 DOI: 10.1002/cbf.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hu Zhang
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingyong Li
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
Roh EH, Sullivan MO, Epps TH. Which Lipid Nanoparticle (LNP) Designs Work? A Simple Kinetic Model Linking LNP Chemical Structure to In Vivo Delivery Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13399-13410. [PMID: 38466900 DOI: 10.1021/acsami.3c15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Although lipid nanoparticles (LNPs) are the predominant nanocarriers for short-interfering RNA (siRNA) delivery, most therapies use nearly identical formulations that have taken 30 years to design but lack the diverse property ranges necessary for versatile application. This dearth in variety and the extended timeline for implementation are attributed to a limited understanding of how LNP properties facilitate overcoming biological barriers. Herein, a simple kinetic model was developed by using major rate-limiting steps for siRNA delivery, and this model enabled the identification of a critical parameter to predict LNP efficacy without extensive experimental testing. A volume-averaged log D, the "solubility" of charged molecules as a function of pH weighted by component volume fractions, resulted in a good correlation between LNP composition and siRNA delivery. Both the effects of modifying the structures of ionizable lipids and LNP composition on gene silencing were easily captured in the model predictions. Thus, this approach provides a robust LNP structure-activity relationship to dramatically accelerate the realization of effective LNP formulations.
Collapse
Affiliation(s)
- Esther H Roh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
22
|
Jiang S, Han X, Liu T, He Y, Zhao Z, Liu T, Cheng S, Zhang J, Duan L, Liu Y, Cheng T, Liu Y, Ye Q, Gao S. HUNK inhibits cargo uptake and lysosomal traffic in the caveolar pathway via the AGAP3/ARF6. Sci Bull (Beijing) 2024; 69:173-178. [PMID: 38071109 DOI: 10.1016/j.scib.2023.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Siyuan Jiang
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Xiaoqi Han
- Medical School of Guizhou University, Guiyang 550025, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tihui Liu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Ying He
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Zidong Zhao
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Tongfeng Liu
- Medical School of Guizhou University, Guiyang 550025, China
| | - Shuwen Cheng
- Nanjing University Medical School, Nanjing 210046, China
| | - Jihang Zhang
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Medical School of Guizhou University, Guiyang 550025, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yajuan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tianyou Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.
| |
Collapse
|
23
|
Jarzab M, Skorko-Glonek J. There Are No Insurmountable Barriers: Passage of the Helicobacter pylori VacA Toxin from Bacterial Cytoplasm to Eukaryotic Cell Organelle. MEMBRANES 2023; 14:11. [PMID: 38248700 PMCID: PMC10821523 DOI: 10.3390/membranes14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
The Gram-negative bacterium Helicobacter pylori is a very successful pathogen, one of the most commonly identified causes of bacterial infections in humans worldwide. H. pylori produces several virulence factors that contribute to its persistence in the hostile host habitat and to its pathogenicity. The most extensively studied are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA). VacA is present in almost all H. pylori strains. As a secreted multifunctional toxin, it assists bacterial colonization, survival, and proliferation during long-lasting infections. To exert its effect on gastric epithelium and other cell types, VacA undergoes several modifications and crosses multiple membrane barriers. Once inside the gastric epithelial cell, VacA disrupts many cellular-signaling pathways and processes, leading mainly to changes in the efflux of various ions, the depolarization of membrane potential, and perturbations in endocytic trafficking and mitochondrial function. The most notable effect of VacA is the formation of vacuole-like structures, which may lead to apoptosis. This review focuses on the processes involved in VacA secretion, processing, and entry into host cells, with a particular emphasis on the interaction of the mature toxin with host membranes and the formation of transmembrane pores.
Collapse
Affiliation(s)
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
24
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery. Int J Mol Sci 2023; 25:312. [PMID: 38203483 PMCID: PMC10779336 DOI: 10.3390/ijms25010312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Polymeric nanoparticles (NPs) are widely used as drug delivery systems in nanomedicine. Despite their widespread application, a comprehensive understanding of their intracellular trafficking remains elusive. In the present study, we focused on exploring the impact of a 20 nm difference in size on NP performance, including drug delivery capabilities and intracellular trafficking. For that, poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PLGA-PEG) NPs with sizes of 50 and 70 nm were precisely tailored. To assess their prowess in encapsulating and releasing therapeutic agents, we have employed doxorubicin (Dox), a well-established anticancer drug widely utilized in clinical settings, as a model drug. Then, the beneficial effect of the developed nanoformulations was evaluated in breast cancer cells. Finally, we performed a semiquantitative analysis of both NPs' uptake and intracellular localization by immunostaining lysosomes, early endosomes, and recycling endosomes. The results show that the smaller NPs (50 nm) were able to reduce the metabolic activity of cancer cells more efficiently than NPs of 70 nm, in a time and concentration-dependent manner. These findings are corroborated by intracellular trafficking studies that reveal an earlier and higher uptake of NPs, with 50 nm compared to the 70 nm ones, by the breast cancer cells. Consequently, this study demonstrates that NP size, even in small increments, has an important impact on their therapeutic effect.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (S.G.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| |
Collapse
|
25
|
Jiao D, Chen Y, Liu X, Tang X, Chen J, Liu Y, Jiang C, Chen Q. Targeting MET endocytosis or degradation to overcome HGF-induced gefitinib resistance in EGFR-sensitive mutant lung adenocarcinoma. Biochem Biophys Res Commun 2023; 682:371-380. [PMID: 37844446 DOI: 10.1016/j.bbrc.2023.10.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
The overexpression of hepatic growth factor(HGF) is one of the important reasons for the development of gefitinib resistance in EGFR-sensitive mutant lung adenocarcinoma cells. Targeting the HGF receptor MET through endocytosis inhibition or degradation induction has been proposed as a potential strategy to overcome this resistance. However, the effectiveness of this approach remains needs to be evaluated. In this study, we observed that MET receptors undergo persistent endocytosis but rarely enter the degradation pathway in HGF-overexpressing cells. We showed that MET endocytosis can be inhibited by using gene silence method or MET inhibitors. CHC or DNM2 gene silence slightly increases the sensitivity of resistant cells to gefitinib without affecting MET activity, while GRB2 gene silence can simultaneously inhibit MET endocytosis and reduce MET activity, resulting in a significant reversal effect of gefitinib resistance. Similarly, MET inhibitors significantly reverse drug resistance, accompanied by simultaneous inhibition of MET endocytosis and activity, highlighting the importance of both endocytosis and activity in HGF-induced gefitinib resistance. Additionally, we demonstrated that promoting MET degradation through deubiquitinase (USP8 or USP32) gene silence is another effective method for reversing drug resistance. Overall, our findings suggest that targeting MET receptor endocytosis and degradation is an attractive strategy for overcoming HGF-induced gefitinib resistance in EGFR-sensitive mutant lung adenocarcinoma.
Collapse
Affiliation(s)
- Demin Jiao
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Yu Chen
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Xiang Liu
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Xiali Tang
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China
| | - Yongyang Liu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chunyan Jiang
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China.
| | - Qingyong Chen
- Department of Respiratory and Critical Care Medicine, The 903rd Hospital of PLA (Xihu Hospital Affiliated to Hangzhou Medical College), Hangzhou, 310013, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
26
|
Tang D, Liu Y, Wang C, Li L, Al-Farraj SA, Chen X, Yan Y. Invasion by exogenous RNA: cellular defense strategies and implications for RNA inference. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:573-584. [PMID: 38045546 PMCID: PMC10689678 DOI: 10.1007/s42995-023-00209-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Exogenous RNA poses a continuous threat to genome stability and integrity across various organisms. Accumulating evidence reveals complex mechanisms underlying the cellular response to exogenous RNA, including endo-lysosomal degradation, RNA-dependent repression and innate immune clearance. Across a variety of mechanisms, the natural anti-sense RNA-dependent defensive strategy has been utilized both as a powerful gene manipulation tool and gene therapy strategy named RNA-interference (RNAi). To optimize the efficiency of RNAi silencing, a comprehensive understanding of the whole life cycle of exogenous RNA, from cellular entry to its decay, is vital. In this paper, we review recent progress in comprehending the recognition and elimination of foreign RNA by cells, focusing on cellular entrance, intracellular transportation, and immune-inflammatory responses. By leveraging these insights, we highlight the potential implications of these insights for advancing RNA interference efficiency, underscore the need for future studies to elucidate the pathways and fates of various exogenous RNA forms, and provide foundational information for more efficient RNA delivery methods in both genetic manipulation and therapy in different organisms.
Collapse
Affiliation(s)
- Danxu Tang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209 China
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yan Liu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Chundi Wang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209 China
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209 China
| | - Saleh A. Al-Farraj
- Zoology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209 China
- Suzhou Research Institute, Shandong University, Suzhou, 215123 China
| | - Ying Yan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
27
|
Kulkarni M, Patel K, Patel A, Patel S, Desai J, Patel M, Shah U, Patel A, Solanki N. Nanomaterials as drug delivery agents for overcoming the blood-brain barrier: A comprehensive review. ADMET AND DMPK 2023; 12:63-105. [PMID: 38560713 PMCID: PMC10974816 DOI: 10.5599/admet.2043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
Background and Purpose The blood-brain barrier (BBB), a critical interface of specialized endothelial cells, plays a pivotal role in regulating molecular and ion transport between the central nervous system (CNS) and systemic circulation. Experimental Approach This review aims to delve into the intricate architecture and functions of the BBB while addressing challenges associated with delivering therapeutics to the brain. Historical milestones and contemporary insights underscore the BBB's significance in protecting the CNS. Key Results Innovative approaches for enhanced drug transport include intranasal delivery exploiting olfactory and trigeminal pathways, as well as techniques like temporary BBB opening through chemicals, receptors, or focused ultrasound. These avenues hold the potential to reshape conventional drug delivery paradigms and address the limitations posed by the BBB's selectivity. Conclusion This review underscores the vital role of the BBB in maintaining CNS health and emphasizes the importance of effective drug delivery through this barrier. Nanoparticles emerge as promising candidates to overcome BBB limitations and potentially revolutionize the treatment of CNS disorders. As research progresses, the application of nanomaterials shows immense potential for advancing neurological therapeutics, albeit with careful consideration of safety aspects.
Collapse
Affiliation(s)
- Mangesh Kulkarni
- Department of Pharmaceutical Technology; L J Institute of Pharmacy; L J University; Opp. Kataria Motors; Sarkhej-Gandhinagar Highway-382210, India
| | - Krishi Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Ayush Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Swayamprakash Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Jagruti Desai
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Mehul Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Umang Shah
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Ashish Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| | - Nilay Solanki
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa 388421, India
| |
Collapse
|
28
|
Lee BT, Baker LA, Momen M, Terhaar H, Binversie EE, Sample SJ, Muir P. Identification of genetic variants associated with anterior cruciate ligament rupture and AKC standard coat color in the Labrador Retriever. BMC Genom Data 2023; 24:60. [PMID: 37884875 PMCID: PMC10605342 DOI: 10.1186/s12863-023-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Canine anterior cruciate ligament (ACL) rupture is a common complex disease. Prevalence of ACL rupture is breed dependent. In an epidemiological study, yellow coat color was associated with increased risk of ACL rupture in the Labrador Retriever. ACL rupture risk variants may be linked to coat color through genetic selection or through linkage with coat color genes. To investigate these associations, Labrador Retrievers were phenotyped as ACL rupture case or controls and for coat color and were single nucleotide polymorphism (SNP) genotyped. After filtering, ~ 697 K SNPs were analyzed using GEMMA and mvBIMBAM for multivariate association. Functional annotation clustering analysis with DAVID was performed on candidate genes. A large 8 Mb region on chromosome 5 that included ACSF3, as well as 32 additional SNPs, met genome-wide significance at P < 6.07E-7 or Log10(BF) = 3.0 for GEMMA and mvBIMBAM, respectively. On chromosome 23, SNPs were located within or near PCCB and MSL2. On chromosome 30, a SNP was located within IGDCC3. SNPs associated with coat color were also located within ADAM9, FAM109B, SULT1C4, RTDR1, BCR, and RGS7. DZIP1L was associated with ACL rupture. Several significant SNPs on chromosomes 2, 3, 7, 24, and 26 were located within uncharacterized regions or long non-coding RNA sequences. This study validates associations with the previous ACL rupture candidate genes ACSF3 and DZIP1L and identifies novel candidate genes. These variants could act as targets for treatment or as factors in disease prediction modeling. The study highlighted the importance of regulatory SNPs in the disease, as several significant SNPs were located within non-coding regions.
Collapse
Affiliation(s)
- B T Lee
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - L A Baker
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - M Momen
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - H Terhaar
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - E E Binversie
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - S J Sample
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - Peter Muir
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America.
| |
Collapse
|
29
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
30
|
Boutry M, DiGiovanni LF, Demers N, Fountain A, Mamand S, Botelho RJ, Kim PK. Arf1-PI4KIIIβ positive vesicles regulate PI(3)P signaling to facilitate lysosomal tubule fission. J Cell Biol 2023; 222:e202205128. [PMID: 37289133 PMCID: PMC10250553 DOI: 10.1083/jcb.202205128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Formation and fission of tubules from autolysosomes, endolysosomes, or phagolysosomes are required for lysosome reformation. However, the mechanisms governing these processes in these different lysosomal organelles are poorly understood. Thus, the role of phosphatidylinositol-4-phosphate (PI(4)P) is unclear as it was shown to promote the formation of tubules from phagolysosomes but was proposed to inhibit tubule formation on autolysosomes because the loss of PI4KIIIβ causes extensive lysosomal tubulation. Using super-resolution live-cell imaging, we show that Arf1-PI4KIIIβ positive vesicles are recruited to tubule fission sites from autolysosomes, endolysosomes, and phagolysosomes. Moreover, we show that PI(4)P is required to form autolysosomal tubules and that increased lysosomal tubulation caused by loss of PI4KIIIβ represents impaired tubule fission. At the site of fission, we propose that Arf1-PI4KIIIβ positive vesicles mediate a PI(3)P signal on lysosomes in a process requiring the lipid transfer protein SEC14L2. Our findings indicate that Arf1-PI4KIIIβ positive vesicles and their regulation of PI(3)P are critical components of the lysosomal tubule fission machinery.
Collapse
Affiliation(s)
- Maxime Boutry
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Laura F. DiGiovanni
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Demers
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Fountain
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Sami Mamand
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
- Polytechnic Research Center, Erbil Polytechnic University, Erbil, Kurdistan, Iraq
| | - Roberto J. Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Peter K. Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
31
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
32
|
Roberto GM, Boutet A, Keil S, Emery G. Dual regulation of Misshapen by Tao and Rap2l promotes collective cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550060. [PMID: 37503122 PMCID: PMC10370187 DOI: 10.1101/2023.07.21.550060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Collective cell migration occurs in various biological processes such as development, wound healing and metastasis. During Drosophila oogenesis, border cells (BC) form a cluster that migrates collectively inside the egg chamber. The Ste20-like kinase Misshapen (Msn) is a key regulator of BC migration coordinating the restriction of protrusion formation and contractile forces within the cluster. Here, we demonstrate that the kinase Tao acts as an upstream activator of Msn in BCs. Depletion of Tao significantly impedes BC migration and produces a phenotype similar to Msn loss-of-function. Furthermore, we show that the localization of Msn relies on its CNH domain, which interacts with the small GTPase Rap2l. Our findings indicate that Rap2l promotes the trafficking of Msn to the endolysosomal pathway. When Rap2l is depleted, the levels of Msn increase in the cytoplasm and at cell-cell junctions between BCs. Overall, our data suggest that Rap2l ensures that the levels of Msn are higher at the periphery of the cluster through the targeting of Msn to the degradative pathway. Together, we identified two distinct regulatory mechanisms that ensure the appropriate distribution and activation of Msn in BCs.
Collapse
|
33
|
Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1713-1730. [PMID: 37542516 DOI: 10.1080/17425247.2023.2245332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION A major challenge in treating central nervous system (CNS) disorders is to achieve adequate drug delivery across the blood-brain barrier (BBB). Receptor-mediated nanodrug delivery as a Trojan horse strategy has become an exciting approach. However, these nanodrugs do not accumulate significantly in the brain parenchyma, which greatly limits the therapeutic effect of drugs. Amplifying the efficiency of receptor-mediated nanodrug delivery across the BBB becomes the holy grail in the treatment of CNS disorders. AREAS COVERED In this review, we tend to establish links between dynamic BBB and receptor-mediated nanodrug delivery, starting with the delivery processes across the BBB, describing factors affecting nanodrug delivery efficiency, and summarizing potential strategies that may amplify delivery efficiency. EXPERT OPINION Receptor-mediated nanodrug delivery is a common approach to significantly enhance the efficiency of brain-targeting delivery. As BBB is constantly undergoing changes, it is essential to investigate the impact of diseases on the effectiveness of brain-targeting nanodrug delivery. More critically, there are several barriers to achieving brain-targeting nanodrug delivery in the five stages of receptor-mediated transcytosis (RMT), and the impacts can be conflicting, requiring intricate balance. Further studies are also needed to investigate the material toxicity of nanodrugs to address the issue of clinical translation.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
34
|
He Y, Cheng M, Yang R, Li H, Lu Z, Jin Y, Feng J, Tu L. Research Progress on the Mechanism of Nanoparticles Crossing the Intestinal Epithelial Cell Membrane. Pharmaceutics 2023; 15:1816. [PMID: 37514003 PMCID: PMC10384977 DOI: 10.3390/pharmaceutics15071816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Improving the stability of drugs in the gastrointestinal tract and their penetration ability in the mucosal layer by implementing a nanoparticle delivery strategy is currently a research focus in the pharmaceutical field. However, for most drugs, nanoparticles failed in enhancing their oral absorption on a large scale (4 folds or above), which hinders their clinical application. Recently, several researchers have proved that the intestinal epithelial cell membrane crossing behaviors of nanoparticles deeply influenced their oral absorption, and relevant reviews were rare. In this paper, we systematically review the behaviors of nanoparticles in the intestinal epithelial cell membrane and mainly focus on their intracellular mechanism. The three key complex intracellular processes of nanoparticles are described: uptake by intestinal epithelial cells on the apical side, intracellular transport and basal side exocytosis. We believe that this review will help scientists understand the in vivo performance of nanoparticles in the intestinal epithelial cell membrane and assist in the design of novel strategies for further improving the bioavailability of nanoparticles.
Collapse
Affiliation(s)
- Yunjie He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Meng Cheng
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ruyue Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Haocheng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Zhiyang Lu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
35
|
Martínez RAS, Pinky PD, Harlan BA, Brewer GJ. GTP energy dependence of endocytosis and autophagy in the aging brain and Alzheimer's disease. GeroScience 2023; 45:757-780. [PMID: 36622562 PMCID: PMC9886713 DOI: 10.1007/s11357-022-00717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Increased interest in the aging and Alzheimer's disease (AD)-related impairments in autophagy in the brain raise important questions about regulation and treatment. Since many steps in endocytosis and autophagy depend on GTPases, new measures of cellular GTP levels are needed to evaluate energy regulation in aging and AD. The recent development of ratiometric GTP sensors (GEVALS) and findings that GTP levels are not homogenous inside cells raise new issues of regulation of GTPases by the local availability of GTP. In this review, we highlight the metabolism of GTP in relation to the Rab GTPases involved in formation of early endosomes, late endosomes, and lysosomal transport to execute the autophagic degradation of damaged cargo. Specific GTPases control macroautophagy (mitophagy), microautophagy, and chaperone-mediated autophagy (CMA). By inference, local GTP levels would control autophagy, if not in excess. Additional levels of control are imposed by the redox state of the cell, including thioredoxin involvement. Throughout this review, we emphasize the age-related changes that could contribute to deficits in GTP and AD. We conclude with prospects for boosting GTP levels and reversing age-related oxidative redox shift to restore autophagy. Therefore, GTP levels could regulate the numerous GTPases involved in endocytosis, autophagy, and vesicular trafficking. In aging, metabolic adaptation to a sedentary lifestyle could impair mitochondrial function generating less GTP and redox energy for healthy management of amyloid and tau proteostasis, synaptic function, and inflammation.
Collapse
Affiliation(s)
| | - Priyanka D. Pinky
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Benjamin A. Harlan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697 USA
- MIND Institute, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
36
|
Ren X, Zhang S, Yang Y, Song A, Liang F, Zhang Y, Dong Y, Wu X, Xie Z. Ketamine Induces Delirium-Like Behavior and Interferes With Endosomal Tau Trafficking. Anesth Analg 2023; 136:779-788. [PMID: 35880774 PMCID: PMC9873837 DOI: 10.1213/ane.0000000000006146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Ketamine is an intravenous anesthetic. However, whether ketamine can induce neurotoxicity and neurobehavioral deficits remains largely unknown. Delirium is a syndrome of acute brain dysfunction associated with anesthesia and surgery in patients, and tau protein may contribute to postoperative delirium. Finally, ketamine may affect the function of the endosome, the key organelle for tau release from neurons. Therefore, we set out to determine the effects of ketamine on delirium-like behavior in mice and on tau trafficking in cultured cells. METHODS We used the buried-food test, open-field test, and Y-maze test in adult mice to assess the presence of delirium-like behavior in mice. We quantified tau amounts in the serum of mice. We used cell fraction methods to determine the effects of ketamine on tau intracellular trafficking, extracellular release, and endosome trafficking in cultured cells. RESULTS Ketamine induced delirium-like behavior in mice and increased tau amounts in serum of mice. The ketamine treatments also led to increased accumulation of endosomes, as evidenced by increased endosomal markers Rab5 and Rab7. Moreover, ketamine inhibited endosome maturation, demonstrated by decreased membrane-bound but increased cytoplasm amounts of Rab5 and Rab7. Consequently, ketamine increased tau in the endosomes of cultured cells and the cell culture medium. CONCLUSIONS These data suggest that ketamine may interfere with intracellular tau trafficking and induce delirium-like behavior, promoting future research regarding the potential neurotoxicity of anesthetics.
Collapse
Affiliation(s)
- Xinghua Ren
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Siyi Zhang
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, 114 16 Street, Charlestown, MA 02129, USA
| | - Yongyan Yang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
- Department of Anesthesiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Annie Song
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Feng Liang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| | - Xu Wu
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13 Street, Charlestown, MA 02129, USA
| |
Collapse
|
37
|
Williams T, Salmanian G, Burns M, Maldonado V, Smith E, Porter RM, Song YH, Samsonraj RM. Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications. Biochimie 2023; 207:33-48. [PMID: 36427681 DOI: 10.1016/j.biochi.2022.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent somatic cells that have been widely explored in the field of regenerative medicine. MSCs possess the ability to secrete soluble factors as well as lipid bound extracellular vesicles (EVs). MSCs have gained increased interest and attention as a result of their therapeutic properties, which are thought to be attributed to their secretome. However, while the use of MSCs as whole cells pose heterogeneity concerns and survival issues post-transplantation, such limitations are absent in cell-free EV-based treatments. EVs derived from MSCs are promising therapeutic agents for a range of clinical conditions and disorders owing to their immunomodulatory, pro-regenerative, anti-inflammatory, and antifibrotic activity. Recent successes with preclinical studies using EVs for repair and regeneration of damaged tissues such as cardiac tissue, lung, liver, pancreas, bone, skin, cornea, and blood diseases are discussed in this review. We also discuss delivery strategies of EVs using biomaterials as delivery vehicles through systemic or local administration. Despite its effectiveness in preclinical investigations, the application of MSC-EV in clinical settings will necessitate careful consideration surrounding issues such as: i) scalability and isolation, ii) biodistribution, iii) targeting specific tissues, iv) quantification and characterization, and v) safety and efficacy of dosage. The future of EVs in regenerative medicine is promising yet still needs further investigation on enhancing the efficacy, scalability, and potency for clinical applications.
Collapse
Affiliation(s)
- Taylor Williams
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Ghazaleh Salmanian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Morgan Burns
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Vitali Maldonado
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Emma Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Ryan M Porter
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Rebekah Margaret Samsonraj
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
38
|
Jasutkar HG, Yamamoto A. Autophagy at the synapse, an early site of dysfunction in neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100631. [PMID: 36968133 PMCID: PMC10035630 DOI: 10.1016/j.cophys.2023.100631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macroautophagy, herein referred to as autophagy, has long been implicated in the pathophysiology of neurodegenerative diseases. However, an incomplete understanding of how autophagy contributes to disease pathogenesis has limited progress in acting on this potential target for the development of disease modifying therapeutics. Research in the past few decades has revealed that autophagy plays a specialized role in the synapse, a site of early dysfunction in multiple neurodegenerative diseases. In this review we discuss the evidence suggesting that inadequate autophagy at the synapse may contribute to neurodegeneration, and why the functions of autophagy may be particularly relevant for synaptic function.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
39
|
Extracellular Vesicles as Biomarkers in Head and Neck Squamous Cell Carcinoma: From Diagnosis to Disease-Free Survival. Cancers (Basel) 2023; 15:cancers15061826. [PMID: 36980712 PMCID: PMC10046514 DOI: 10.3390/cancers15061826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising from different anatomical sites present with different incidences and characteristics, which requires a personalized treatment strategy. Despite the extensive research that has conducted on this malignancy, HNSCC still has a poor overall survival rate. Many attempts have been made to improve the outcomes, but one of the bottlenecks is thought to be the lack of an effective biomarker with high sensitivity and specificity. Extracellular vesicles (EVs) are secreted by various cells and participate in a great number of intercellular communications. Based on liquid biopsy, EV detection in several biofluids, such as blood, saliva, and urine, has been applied to identify the existence and progression of a variety of cancers. In HNSCC, tumor-derived EVs exhibit many functionalities by transporting diverse cargoes, which highlights their importance in tumor screening, the determination of multidisciplinary therapy, prediction of prognosis, and evaluation of therapeutic effects. This review illustrates the classification and formation of EV subtypes, the cargoes conveyed by these vesicles, and their respective functions in HNSCC cancer biology, and discloses their potential as biomarkers during the whole process of tumor diagnosis, treatment, and follow-up.
Collapse
|
40
|
Lai YT, Sasamura T, Kuroda J, Maeda R, Nakamura M, Hatori R, Ishibashi T, Taniguchi K, Ooike M, Taguchi T, Nakazawa N, Hozumi S, Okumura T, Aigaki T, Inaki M, Matsuno K. The Drosophila AWP1 ortholog Doctor No regulates JAK/STAT signaling for left-right asymmetry in the gut by promoting receptor endocytosis. Development 2023; 150:293490. [PMID: 36861793 PMCID: PMC10112927 DOI: 10.1242/dev.201224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Many organs of Drosophila show stereotypical left-right (LR) asymmetry; however, the underlying mechanisms remain elusive. Here, we have identified an evolutionarily conserved ubiquitin-binding protein, AWP1/Doctor No (Drn), as a factor required for LR asymmetry in the embryonic anterior gut. We found that drn is essential in the circular visceral muscle cells of the midgut for JAK/STAT signaling, which contributes to the first known cue for anterior gut lateralization via LR asymmetric nuclear rearrangement. Embryos homozygous for drn and lacking its maternal contribution showed phenotypes similar to those with depleted JAK/STAT signaling, suggesting that Drn is a general component of JAK/STAT signaling. Absence of Drn resulted in specific accumulation of Domeless (Dome), the receptor for ligands in the JAK/STAT signaling pathway, in intracellular compartments, including ubiquitylated cargos. Dome colocalized with Drn in wild-type Drosophila. These results suggest that Drn is required for the endocytic trafficking of Dome, which is a crucial step for activation of JAK/STAT signaling and the subsequent degradation of Dome. The roles of AWP1/Drn in activating JAK/STAT signaling and in LR asymmetric development may be conserved in various organisms.
Collapse
Affiliation(s)
- Yi-Ting Lai
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi Sasamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Junpei Kuroda
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Reo Maeda
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mitsutoshi Nakamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Hatori
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tomoki Ishibashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kiichiro Taniguchi
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masashi Ooike
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiro Taguchi
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Naotaka Nakazawa
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shunya Hozumi
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Okumura
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Toshiro Aigaki
- Department of Biological Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Mikiko Inaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
41
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
42
|
Smits DJ, Dekker J, Schot R, Tabarki B, Alhashem A, Demmers JAA, Dekkers DHW, Romito A, van der Spek PJ, van Ham TJ, Bertoli-Avella AM, Mancini GMS. CLEC16A interacts with retromer and TRIM27, and its loss impairs endosomal trafficking and neurodevelopment. Hum Genet 2023; 142:379-397. [PMID: 36538041 PMCID: PMC9950183 DOI: 10.1007/s00439-022-02511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.
Collapse
Affiliation(s)
- Daphne J Smits
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands.
| | - Jordy Dekker
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands.
| | - Rachel Schot
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Brahim Tabarki
- Division of Pediatric Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, 12233, Saudi Arabia
| | - Amal Alhashem
- Division of Pediatric Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, 12233, Saudi Arabia
| | - Jeroen A A Demmers
- Department of Molecular Genetics, Proteomics Center, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Department of Molecular Genetics, Proteomics Center, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | | | - Peter J van der Spek
- Department of Pathology, Clinical Bioinformatics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | | | - Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Sadeqi Nezhad M. Poly (beta-amino ester) as an in vivo nanocarrier for therapeutic nucleic acids. Biotechnol Bioeng 2023; 120:95-113. [PMID: 36266918 DOI: 10.1002/bit.28269] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Therapeutic nucleic acids are an emerging class of therapy for treating various diseases through immunomodulation, protein replacement, gene editing, and genetic engineering. However, they need a vector to effectively and safely reach the target cells. Most gene and cell therapies rely on ex vivo gene delivery, which is laborious, time-consuming, and costly; therefore, devising a systematic vector for effective and safe in vivo delivery of therapeutic nucleic acids is required to target the cells of interest in an efficient manner. Synthetic nanoparticle vector poly beta amino ester (PBAE), a class of degradable polymer, is a promising candidate for in vivo gene delivery. PBAE is considered the most potent in vivo vector due to its excellent transfection performance and biodegradability. PBAE nanoparticles showed tunable charge density, diverse structural characteristics, excellent encapsulation capacity, high stability, stimuli-responsive release, site-specific delivery, potent binding to nucleic acids, flexible binding ability to various conjugates, and effective endosomal escape. These unique properties of PBAE are an essential contribution to in vivo gene delivery. The current review discusses each of the components used for PBAE synthesis and the impact of various environmental and physicochemical factors of the body on PBAE nanocarrier.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Clinical and Translational Science Institute, Translational Biomedical Science Department, University of Rochester Medical Center, Rochester, New York, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA.,Department of Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
44
|
Chen Z, Wang S, Meng Z, Ye Y, Shan G, Wang X, Zhao X, Jin Y. Tau protein plays a role in the mechanism of cognitive disorders induced by anesthetic drugs. Front Neurosci 2023; 17:1145318. [PMID: 36937655 PMCID: PMC10015606 DOI: 10.3389/fnins.2023.1145318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Cognitive disorders are mental health disorders that can affect cognitive ability. Surgery and anesthesia have been proposed to increase the incidence of cognitive dysfunction, including declines in memory, learning, attention and executive function. Tau protein is a microtubule-associated protein located in the axons of neurons and is important for microtubule assembly and stability; its biological function is mainly regulated by phosphorylation. Phosphorylated tau protein has been associated with cognitive dysfunction mediated by disrupting the stability of the microtubule structure. There is an increasing consensus that anesthetic drugs can cause cognitive impairment. Herein, we reviewed the latest literature and compared the relationship between tau protein and cognitive impairment caused by different anesthetics. Our results substantiated that tau protein phosphorylation is essential in cognitive dysfunction caused by anesthetic drugs, and the possible mechanism can be summarized as "anesthetic drugs-kinase/phosphatase-p-Tau-cognitive impairment".
Collapse
|
45
|
Branco LM, Amaral MP, Boekhoff H, de Lima ABF, Farias IS, Lage SL, Pereira GJS, Franklin BS, Bortoluci KR. Lysosomal cathepsins act in concert with Gasdermin-D during NAIP/NLRC4-dependent IL-1β secretion. Cell Death Dis 2022; 13:1029. [PMID: 36481780 PMCID: PMC9731969 DOI: 10.1038/s41419-022-05476-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The NAIP/NLRC4 inflammasome is classically associated with the detection of bacterial invasion to the cytosol. However, recent studies have demonstrated that NAIP/NLRC4 is also activated in non-bacterial infections, and in sterile inflammation. Moreover, in addition to the well-established model for the detection of bacterial proteins by NAIP proteins, the participation of other cytosolic pathways in the regulation of NAIP/NLRC4-mediated responses has been reported in distinct contexts. Using pharmacological inhibition and genetic deletion, we demonstrate here that cathepsins, well known for their involvement in NLRP3 activation, also regulate NAIP/NLRC4 responses to cytosolic flagellin in murine and human macrophages. In contrast to that observed for NLRP3 agonists, cathepsins inhibition did not reduce ASC speck formation or caspase-1 maturation in response to flagellin, ruling out their participation in the effector phase of NAIP/NLRC4 activation. Moreover, cathepsins had no impact on NF-κB-mediated priming of pro-IL-1β, thus suggesting these proteases act downstream of the NAIP/NLRC4 inflammasome activation. IL-1β levels secreted in response to flagellin were reduced in the absence of either cathepsins or Gasdermin-D (GSDMD), a molecule involved in the induction of pyroptosis and cytokines release. Notably, IL-1β secretion was abrogated in the absence of both GSDMD and cathepsins, demonstrating their non-redundant roles for the optimal IL-1β release in response to cytosolic flagellin. Given the central role of NAIP/NLRC4 inflammasomes in controlling infection and, also, induction of inflammatory pathologies, many efforts have been made to uncover novel molecules involved in their regulation. Thus, our findings bring together a relevant contribution by describing the role of cathepsins as players in the NAIP/NLRC4-mediated responses.
Collapse
Affiliation(s)
- Laura Migliari Branco
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo Pires Amaral
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Henning Boekhoff
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil ,grid.7497.d0000 0004 0492 0584Present Address: Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Beatriz Figueiredo de Lima
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ingrid Sancho Farias
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Silvia Lucena Lage
- grid.94365.3d0000 0001 2297 5165National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, USA
| | - Gustavo José Silva Pereira
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bernardo Simões Franklin
- grid.10388.320000 0001 2240 3300Institute of Innate Immunity, University Hospitals, Bonn, Germany
| | - Karina Ramalho Bortoluci
- grid.411249.b0000 0001 0514 7202Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
46
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
48
|
Mullapudi SS, Rahmat JN, Mahendran R, Lim YK, Ong LT, Wong KY, Chiong E, Kang ET, Neoh KG. Tumor-targeting albumin nanoparticles as an efficacious drug delivery system and potential diagnostic tool in non-muscle-invasive bladder cancer therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102600. [PMID: 36064034 DOI: 10.1016/j.nano.2022.102600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Current intravesical chemotherapy for non-muscle invasive bladder cancer (NMIBC) has limited efficacy due to loss of the instilled agent from urine voiding and the agent's lack of specificity for the tumors. We developed a nanocarrier (txCD47-HNP, ∼100 nm) based on human serum albumin conjugated with a peptide that targets the cluster of differentiation 47 receptor overexpressed on bladder cancer (BC) cells. The IC50 of gemcitabine elaidate (GEM) loaded in the txCD47-HNP was almost an order of magnitude lower than that of free GEM. In a mouse orthotopic BC model, GEM loaded in txCD47-HNP effectively reduced the tumor burden. Tumor cells in BC patients' urine can also be targeted by fluorescence-labeled txCD47-HNP resulting in >83 % of the cells exhibiting fluorescence. Thus, txCD47-HNP can potentially be a theranostic agent in NMIBC management by serving as a targeted drug delivery vehicle as well as an alternative to urine cytology.
Collapse
Affiliation(s)
- Sneha Sree Mullapudi
- Department of Biomedical Engineering, National University of Singapore, Kent Ridge 117583, Singapore
| | - Juwita Norasmara Rahmat
- Department of Biomedical Engineering, National University of Singapore, Kent Ridge 117583, Singapore
| | - Ratha Mahendran
- Department of Surgery, National University of Singapore, Kent Ridge 119228, Singapore
| | - Yew Koon Lim
- Department of Surgery, National University of Singapore, Kent Ridge 119228, Singapore
| | - Lee Ting Ong
- Department of Surgery, National University of Singapore, Kent Ridge 119228, Singapore
| | - Kah Ying Wong
- Department of Surgery, National University of Singapore, Kent Ridge 119228, Singapore
| | - Edmund Chiong
- Department of Surgery, National University of Singapore, Kent Ridge 119228, Singapore; Department of Urology, National University Hospital, Kent Ridge 119074, Singapore
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117585, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117585, Singapore.
| |
Collapse
|
49
|
Kapteijn R, Shitut S, Aschmann D, Zhang L, de Beer M, Daviran D, Roverts R, Akiva A, van Wezel GP, Kros A, Claessen D. Endocytosis-like DNA uptake by cell wall-deficient bacteria. Nat Commun 2022; 13:5524. [PMID: 36138004 PMCID: PMC9500057 DOI: 10.1038/s41467-022-33054-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Horizontal gene transfer in bacteria is widely believed to occur via conjugation, transduction and transformation. These mechanisms facilitate the passage of DNA across the protective cell wall using sophisticated machinery. Here, we report that cell wall-deficient bacteria can engulf DNA and other extracellular material via an endocytosis-like process. Specifically, we show that L-forms of the filamentous actinomycete Kitasatospora viridifaciens can take up plasmid DNA, polysaccharides (dextran) and 150-nm lipid nanoparticles. The process involves invagination of the cytoplasmic membrane, leading to formation of intracellular vesicles that encapsulate extracellular material. DNA uptake is not affected by deletion of genes homologous to comEC and comEA, which are required for natural transformation in other species. However, uptake is inhibited by sodium azide or incubation at 4 °C, suggesting the process is energy-dependent. The encapsulated materials are released into the cytoplasm upon degradation of the vesicle membrane. Given that cell wall-deficient bacteria are considered a model for early life forms, our work reveals a possible mechanism for primordial cells to acquire food or genetic material before invention of the bacterial cell wall. Horizontal gene transfer in bacteria can occur through mechanisms such as conjugation, transduction and transformation, which facilitate the passage of DNA across the cell wall. Here, Kapteijn et al. show that cell wall-deficient bacteria can take up DNA and other extracellular materials via an endocytosis-like process.
Collapse
Affiliation(s)
- Renée Kapteijn
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Shraddha Shitut
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, Leiden, The Netherlands
| | - Le Zhang
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Marit de Beer
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Deniz Daviran
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Rona Roverts
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Anat Akiva
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, Leiden, The Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
| |
Collapse
|
50
|
Torres-Vanegas JD, Cifuentes J, Puentes PR, Quezada V, Garcia-Brand AJ, Cruz JC, Reyes LH. Assessing cellular internalization and endosomal escape abilities of novel BUFII-Graphene oxide nanobioconjugates. Front Chem 2022; 10:974218. [PMID: 36186591 PMCID: PMC9521742 DOI: 10.3389/fchem.2022.974218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-penetrating agents based on functionalized nanoplatforms have emerged as a promising approach for developing more efficient and multifunctional delivery vehicles for treating various complex diseases that require reaching different intracellular compartments. Our previous work has shown that achieving full cellular coverage and high endosomal escape rates is possible by interfacing magnetite nanoparticles with potent translocating peptides such as Buforin II (BUF-II). In this work, we extended such an approach to two graphene oxide (GO)-based nanoplatforms functionalized with different surface chemistries to which the peptide molecules were successfully conjugated. The developed nanobioconjugates were characterized via spectroscopic (FTIR, Raman), thermogravimetric, and microscopic (SEM, TEM, and AFM) techniques. Moreover, biocompatibility was assessed via standardized hemocompatibility and cytotoxicity assays in two cell lines. Finally, cell internalization and coverage and endosomal escape abilities were estimated with the aid of confocal microscopy analysis of colocalization of the nanobioconjugates with Lysotracker Green®. Our findings showed coverage values that approached 100% for both cell lines, high biocompatibility, and endosomal escape levels ranging from 30 to 45% and 12–24% for Vero and THP-1 cell lines. This work provides the first routes toward developing the next-generation, carbon-based, cell-penetrating nanovehicles to deliver therapeutic agents. Further studies will be focused on elucidating the intracellular trafficking pathways of the nanobioconjugates to reach different cellular compartments.
Collapse
Affiliation(s)
- Julian Daniel Torres-Vanegas
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| |
Collapse
|