1
|
Pan CY, Kijamnajsuk P, Chen JJ. Portable loop-mediated isothermal amplification device with spectrometric detection for rapid pathogen identification. Anal Biochem 2024; 694:115615. [PMID: 39002745 DOI: 10.1016/j.ab.2024.115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
With the rise in extreme weather due to global warming, coupled with globalization facilitating the spread of infectious diseases, there's a pressing need for portable testing platforms offering simplicity, low cost, and remote transmission, particularly beneficial in resource-limited and non-urban areas. We have developed a portable device using loop-mediated isothermal amplification (LAMP) with spectrometric detection to identify Salmonella Typhimurium DNA. The device utilizes the LinkIt 7697 microcontroller and a microspectrometer to capture and transmit spectral signals in real-time, allowing for improved monitoring and analysis of the reaction progress. We built a hand-held box containing a microspectrometer, thermoelectric cooler, ultraviolet LED, disposable reaction tube, and homemade thermal module, all powered by rechargeable batteries. Additionally, we conducted thorough experiments to ensure temperature accuracy within 1 °C under thermal control, developed a heating module with a LinkIt 7697 IoT development board to heat the DNA mixture to the reaction temperature within 3 min, and integrated foam insulation and a 3D-printed frame to enhance the device's thermal stability. We successfully demonstrated the amplification of Salmonella Typhimurium DNA with an impressive sensitivity of 2.83 × 10-4 ng/μL. A remote webpage interface allows for monitoring the temperature and fluorescence during the LAMP process, improving usability. This portable LAMP device with real-time detection offers a cost-effective solution for detecting Salmonella Typhimurium in food products. Its unique design and capabilities make it a promising tool for ensuring food safety.
Collapse
Affiliation(s)
- Chun Yu Pan
- Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| | - Puchong Kijamnajsuk
- Department of Physics, Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok, 10900, Thailand.
| | - Jyh Jian Chen
- Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| |
Collapse
|
2
|
Lim J, Han W, Thang LTH, Lee YW, Shin JH. Customizable Nichrome Wire Heaters for Molecular Diagnostic Applications. BIOSENSORS 2024; 14:152. [PMID: 38534259 DOI: 10.3390/bios14030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Accurate sample heating is vital for nucleic acid extraction and amplification, requiring a sophisticated thermal cycling process in nucleic acid detection. Traditional molecular detection systems with heating capability are bulky, expensive, and primarily designed for lab settings. Consequently, their use is limited where lab systems are unavailable. This study introduces a technique for performing the heating process required in molecular diagnostics applicable for point-of-care testing (POCT), by presenting a method for crafting customized heaters using freely patterned nichrome (NiCr) wire. This technique, fabricating heaters by arranging protrusions on a carbon black-polydimethylsiloxane (PDMS) cast and patterning NiCr wire, utilizes cost-effective materials and is not constrained by shape, thereby enabling customized fabrication in both two-dimensional (2D) and three-dimensional (3D). To illustrate its versatility and practicality, a 2D heater with three temperature zones was developed for a portable device capable of automatic thermocycling for polymerase chain reaction (PCR) to detect Escherichia coli (E. coli) O157:H7 pathogen DNA. Furthermore, the detection of the same pathogen was demonstrated using a customized 3D heater surrounding a microtube for loop-mediated isothermal amplification (LAMP). Successful DNA amplification using the proposed heater suggests that the heating technique introduced in this study can be effectively applied to POCT.
Collapse
Affiliation(s)
- Juhee Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Won Han
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Le Tran Huy Thang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Yong Wook Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- School of Electrical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Joong Ho Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Bio-actuated microvalve in microfluidics using sensing and actuating function of Mimosa pudica. Sci Rep 2022; 12:7653. [PMID: 35606389 PMCID: PMC9126872 DOI: 10.1038/s41598-022-11637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Bio-actuators and sensors are increasingly employed in microscale devices for numerous applications. Unlike other artificial devices actuated by living cells or tissues, here we introduce a microvalve system actuated by the stimuli-responsive action plant, Mimosa pudica (sleepy plant). This system realizes the control of the valve to open and close by dropping and recovering responses of Mimosa pudica branch upon external physical stimulations. The results showed that one matured single uncut Mimosa pudica branch produced average force of 15.82 ± 0.7 mN. This force was sufficient for actuating and keeping the valve open for 8.46 ± 1.33 min in a stimulation-recovering cycle of 30 min. Additionally, two separately cut Mimosa pudica branches were able to keep the valve open for 2.28 ± 0.63 min in a stimulating-recovering cycle of 20min. The pressure resistance and the response time of the valve were 4.2 kPa and 1.4 s, respectively. This demonstration of plant-microfluidics integration encourages exploiting more applications of microfluidic platforms that involve plant science and plant energy harvesting.
Collapse
|
4
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Portable Molecular Diagnostics Device for Identification of Asini Corii Colla by Loop-Mediated Isothermal Amplification. INVENTIONS 2021. [DOI: 10.3390/inventions6030051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Asini Corii Colla (ACC; donkey-hide glue) is one of the most valuable tonic traditional Chinese medicines. Because of the large demand for gelatinous Chinese medicines, bovine or swine skin was sometimes used to make adulterated gelatine in recent decades. Food chemicals can greatly harm people’s health, and detecting chemicals in foods is extremely important. A loop-mediated isothermal amplification (LAMP) device with smartphone detection is demonstrated in this study for detecting the DNA of Asini Corii Colla. The complete system is composed of a hand-held box equipped with a smartphone, a cartridge heater, an ultraviolet LED, a disposable reaction tube, and a homemade thermal module. All the processes are powered by a set of rechargeable batteries. Comprehensive experiments of measuring temperature profiles are presented, which showed the accuracy of temperature under thermal control is less than 0.5 °C. By implementing one heating module with an ATmega328p-au microcontroller in the device, the DNA mixture is heated directly up to the reaction temperature within 5 min. Next, a DNA segment of Asini Corii Colla is utilized to evaluate the sensitivity of the DNA amplification in the portable device. A limit of detection to a concentration of 10−4 ng/μL is achieved. Real-time detection of Asini Corii Colla by a smartphone camera can be achieved using this portable device. The unique architecture utilized in this device is ideal for a low-cost DNA analysis system.
Collapse
|
6
|
Zhou C, Ni Y, Liu W, Tan B, Yao M, Fang L, Lu C, Xu Z. Near-Infrared Light-Induced Sequential Shape Recovery and Separation of Assembled Temperature Memory Polymer Microparticles. Macromol Rapid Commun 2020; 41:e2000043. [PMID: 32180278 DOI: 10.1002/marc.202000043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 01/27/2023]
Abstract
Light-induced, shape-changing polymeric microparticles have many applications. Here, the near-infrared (NIR)-light-triggered sequential recovery and separation of assembled large and small polymer microparticles using cross-linked blends of poly(ethylene-vinyl acetate) and trans-polyisoprene as temperature memory polymers as well as two NaYF4 based up-conversion nanoparticles (UCPs) to provide luminescent and photothermal effects are reported. Under irradiation of NIR light with a low light power density, small particles assembled onto the compressed large one recover first due to the low switching temperature (Tsw ) arising from the temperature-memory effect. The small particles can separate from the underlying large particle in flowing aqueous media. The recovery of the large particle occurs at a high power density. Two UCPs of NaYF4 : 20Yb, 0.2Tm, 5Gd and NaYF4 : 18Yb, 2Er, 5Gd facilitate the detection of small and large microparticles via providing blue and green light emissions, respectively. This work can expand the applications of light-induced shape-changing polymer microparticles in the biomedical field, controlled catalysis, microfluidic devices, and so on.
Collapse
Affiliation(s)
- Cihui Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yaru Ni
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Wenting Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Bin Tan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Mengchen Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Liang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Zhongzi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 210009, P. R. China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
7
|
Tanaka Y, Funano SI, Noguchi Y, Yalikun Y, Kamamichi N. A valve powered by earthworm muscle with both electrical and 100% chemical control. Sci Rep 2019; 9:8042. [PMID: 31285453 PMCID: PMC6614428 DOI: 10.1038/s41598-019-44116-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Development of bio-microactuators combining microdevices and cellular mechanical functions has been an active research field owing to their desirable properties including high mechanical integrity and biocompatibility. Although various types of devices were reported, the use of as-is natural muscle tissue should be more effective. An earthworm muscle-driven valve has been created. Long-time (more than 2 min) and repeatable displacement was observed by chemical (acetylcholine) stimulation. The generated force of the muscle (1 cm × 3 cm) was 1.57 mN on average for 2 min by the acetylcholine solution (100 mM) stimulation. We demonstrated an on-chip valve that stopped the constant pressure flow by the muscle contraction. For electrical control, short pulse stimulation was used for the continuous and repeatable muscle contraction. The response time was 3 s, and the pressure resistance was 3.0 kPa. Chemical stimulation was then used for continuous muscle contraction. The response time was 42 s, and the pressure resistance was 1.5 kPa. The ON (closed) state was kept for at least 2 min. An on-chip valve was demonstrated that stopped the constant pressure flow by the muscle contraction. This is the first demonstration of the muscle-based valve that is 100% chemically actuated and controlled.
Collapse
Affiliation(s)
- Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shun-Ichi Funano
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Noguchi
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Robotics and Mechatronics, Tokyo Denki University, 5 Senju-asahi-cho, Adachi-ku, Tokyo, 120-8551, Japan
| | - Yaxiaer Yalikun
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norihiro Kamamichi
- Department of Robotics and Mechatronics, Tokyo Denki University, 5 Senju-asahi-cho, Adachi-ku, Tokyo, 120-8551, Japan
| |
Collapse
|
8
|
Gorgannezhad L, Stratton H, Nguyen NT. Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. MICROMACHINES 2019; 10:E408. [PMID: 31248141 PMCID: PMC6630468 DOI: 10.3390/mi10060408] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective bacterial detection is a hot topic, because the progress in this research area has had a broad range of applications. Novel and innovative strategies for detection and identification of bacterial nucleic acids are important for practical applications. Microfluidics is an emerging technology that only requires small amounts of liquid samples. Microfluidic devices allow for rapid advances in microbiology, enabling access to methods of amplifying nucleic acid molecules and overcoming difficulties faced by conventional. In this review, we summarize the recent progress in microfluidics-based polymerase chain reaction devices for the detection of nucleic acid biomarkers. The paper also discusses the recent development of isothermal nucleic acid amplification and droplet-based microfluidics devices. We discuss recent microfluidic techniques for sample preparation prior to the amplification process.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| |
Collapse
|
9
|
Trinh TND, Lee NY. A foldable isothermal amplification microdevice for fuchsin-based colorimetric detection of multiple foodborne pathogens. LAB ON A CHIP 2019; 19:1397-1405. [PMID: 30847458 DOI: 10.1039/c8lc01389f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study, we have developed a foldable microdevice fully integrating DNA purification, amplification, and detection processes for detecting multiple foodborne pathogens. Specifically, the loop-mediated isothermal amplification (LAMP) technique was combined with a fuchsin-based direct DNA colorimetric detection method. The microdevice was composed of three parts: a sample zone, reaction zone, and detection zone. A sealing film attached to the sample, reaction, and detection zones served as a bottom layer to make the microdevice foldable. The detection zone was made up of paper strips attached to the sticky side of the sealing film, and fuchsin-stained lines were drawn on the paper strips. The microdevice can be folded to directly transfer the DNA template solution from the sample chambers to the reaction chambers. In this manner, fluid manipulation was readily realized and the use of a bulky instrument such as a pump or rotator was completely dispensed with. After the LAMP reaction, the detection zone was folded so that the fuchsin-stained lines were completely soaked into the reaction chambers. Genomic DNAs of Salmonella spp. and Escherichia coli O157:H7 were first successfully purified from thermally-lysed milk using polydopamine-coated paper, amplified by LAMP, and directly identified by the naked eye using fuchsin within 65 min. Using this microdevice, approximately 102 CFU per mL of Salmonella spp. was detected. These results indicate the significant potential of this microdevice for the sample-in-answer-out genetic analysis of multiple foodborne pathogens in resource-limited environments.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | | |
Collapse
|
10
|
Chylewska A, Ogryzek M, Makowski M. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection. Curr Med Chem 2019; 26:121-165. [DOI: 10.2174/0929867324666171023164813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/20/2017] [Accepted: 05/20/2016] [Indexed: 11/22/2022]
Abstract
Background:Analytical chemistry and biotechnology as an interdisciplinary fields of science have been developed during many years and are experiencing significant growth, to cover a wide range of microorganisms separation techniques and methods, utilized for medical therapeutic and diagnostic purposes. Currently scientific reports contribute by introducing electrophoretical and immunological methods and formation of devices applied in food protection (avoiding epidemiological diseases) and healthcare (safety ensuring in hospitals).Methods:Electrophoretic as well as nucleic-acid-based or specific immunological methods have contributed tremendously to the advance of analyses in recent three decades, particularly in relation to bacteria, viruses and fungi identifications, especially in medical in vitro diagnostics, as well as in environmental or food protection.Results:The paper presents the pathogen detection competitiveness of these methods against conventional ones, which are still too time consuming and also labor intensive. The review is presented in several parts following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis.Discussion:Part one, consists of elemental knowledge about microorganisms as an introduction to their characterization: descriptions of divisions, sizes, membranes (cells) components. Second section includes the development, new technological and practical solution descriptions used in electrophoretical procedures during microbes analyses, with special attention paid to bio-samples analyses like blood, urine, lymph or wastewater. Third part covers biomolecular areas that have created a basis needed to identify the progress, limitations and challenges of nucleic-acid-based and immunological techniques discussed to emphasize the advantages of new separative techniques in selective fractionating of microorganisms.
Collapse
Affiliation(s)
- Agnieszka Chylewska
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Małgorzata Ogryzek
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Mariusz Makowski
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| |
Collapse
|
11
|
Shang Y, Sun J, Ye Y, Zhang J, Zhang Y, Sun X. Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection. Crit Rev Food Sci Nutr 2018; 60:201-224. [DOI: 10.1080/10408398.2018.1518897] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuting Shang
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology School of Food Science National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Trinh TND, Lee NY. A rapid and eco-friendly isothermal amplification microdevice for multiplex detection of foodborne pathogens. LAB ON A CHIP 2018; 18:2369-2377. [PMID: 29923578 DOI: 10.1039/c8lc00424b] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, a plastic microdevice based on loop-mediated isothermal amplification (LAMP) was fabricated for the amplification and on-chip fluorescence detection of multiple pathogens. Papers infused with LAMP reagents and specific primers were embedded inside the multiple reaction chambers of the microdevice. A solution containing the target pathogens was injected into the sample chamber, located in the center of the microdevice, and evenly distributed to the reaction chambers simultaneously via centrifugal force. For detection, fisetin, a plant-derived fluorophore, was used as the DNA-intercalating dye. Purified DNAs of Escherichia coli O157:H7 (E. coli O157:H7), Salmonella spp., Staphylococcus aureus (S. aureus), and Cochlodinium polykrikoides were successfully amplified and directly detected on the microdevice, where as low as 0.13 and 0.12 ng μL-1 of the DNA of E. coli O157:H7 and S. aureus, respectively, were identified. In addition, the potential of this microdevice for point-of-care testing was further examined by incorporating on-chip sample purification module and testing using a real sample - milk spiked with Salmonella spp. The thermally lysed milk sample was filtered using polydopamine-coated paper embedded inside a sample chamber and seamlessly transported into the reaction chambers by centrifugal force for subsequent LAMP followed by direct on-chip detection inside the reaction chambers in which fisetin-soaked papers were embedded. The limit of detection for Salmonella spp. was determined to be approximately 1.7 × 102 CFU mL-1 using the microdevice. This microdevice is safe, easy to use, selective, and sensitive enough for point-of-care testing to identify foodborne pathogens as well as environmentally harmful microorganisms.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | | |
Collapse
|
13
|
Abstract
Microfluidic cassettes ("chips") for processing and analysis of clinical specimens and other sample types facilitate point-of-care (POC) immunoassays and nucleic acid based amplification tests. These single-use test chips can be self-contained and made amenable to autonomous operation-reducing or eliminating supporting instrumentation-by incorporating laminated, pliable "pouch" and membrane structures for fluid storage, pumping, mixing, and flow control. Materials and methods for integrating flexible pouch compartments and diaphragm valves into hard plastic (e.g., acrylic and polycarbonate) microfluidic "chips" for reagent storage, fluid actuation, and flow control are described. We review several versions of these pouch chips for immunoassay and nucleic acid amplification tests, and describe related fabrication techniques. These protocols thus offer a "toolbox" of methods for storage, pumping, and flow control functions in microfluidic devices.
Collapse
|
14
|
Hongwarittorrn I, Chaichanawongsaroj N, Laiwattanapaisal W. Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta 2017; 175:135-142. [DOI: 10.1016/j.talanta.2017.07.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022]
|
15
|
de Oliveira KG, Borba JC, Bailão AM, de Almeida Soares CM, Carrilho E, Duarte GRM. Loop-mediated isothermal amplification in disposable polyester-toner microdevices. Anal Biochem 2017; 534:70-77. [DOI: 10.1016/j.ab.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
16
|
Basha IHK, Ho ETW, Yousuff CM, Hamid NHB. Towards Multiplex Molecular Diagnosis-A Review of Microfluidic Genomics Technologies. MICROMACHINES 2017; 8:E266. [PMID: 30400456 PMCID: PMC6190060 DOI: 10.3390/mi8090266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.
Collapse
Affiliation(s)
- Ismail Hussain Kamal Basha
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Eric Tatt Wei Ho
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Caffiyar Mohamed Yousuff
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Nor Hisham Bin Hamid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
17
|
Mauk M, Song J, Bau HH, Gross R, Bushman FD, Collman RG, Liu C. Miniaturized devices for point of care molecular detection of HIV. LAB ON A CHIP 2017; 17:382-394. [PMID: 28092381 PMCID: PMC5285266 DOI: 10.1039/c6lc01239f] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The HIV pandemic affects 36.7 million people worldwide, predominantly in resource-poor settings. Nucleic acid-based molecular detection of HIV plays a significant role in antiretroviral treatment monitoring for HIV patients, as well as diagnosis of HIV infection in infants. Currently available molecular diagnostic methods are complex, time-consuming and relatively expensive, thus limiting their use in resource-poor settings. Recent advances in microfluidics technology have made possible low-cost integrated miniaturized devices for molecular detection and quantification of HIV at the point of care. We review recent technical advances in molecular testing of HIV using microfluidic technology, with a focus on assays based on isothermal nucleic acid amplification. Microfluidic components for sample preparation, isothermal amplification and result detection are discussed and compared. We also discuss the challenges and future directions for developing an integrated "sample-to-result" microfluidic platform for HIV molecular detection.
Collapse
Affiliation(s)
- Michael Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Robert Gross
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
18
|
Ahrberg CD, Manz A, Chung BG. Polymerase chain reaction in microfluidic devices. LAB ON A CHIP 2016; 16:3866-3884. [PMID: 27713993 DOI: 10.1039/c6lc00984k] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The invention of the polymerase chain reaction (PCR) has caused a revolution in molecular biology, giving access to a method of amplifying deoxyribonucleic acid (DNA) molecules across several orders of magnitude. Since the first application of PCR in a microfluidic device was developed in 1998, an increasing number of researchers have continued the development of microfluidic PCR systems. In this review, we introduce recent developments in microfluidic-based space and time domain devices as well as discuss various designs integrated with multiple functions for sample preparation and detection. The development of isothermal nucleic acid amplification and digital PCR microfluidic devices within the last five years is also highlighted. Furthermore, we introduce various commercial microfluidic PCR devices.
Collapse
Affiliation(s)
| | - Andreas Manz
- Microfluidics group, KIST-Europe, Saarbrücken, Germany and Mechanotronics Department, Universität des Saarlandes, Saarbrücken, Germany
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
19
|
Yang K, Peretz-Soroka H, Liu Y, Lin F. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. LAB ON A CHIP 2016; 16:943-58. [PMID: 26899264 PMCID: PMC5142836 DOI: 10.1039/c5lc01524c] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.
Collapse
Affiliation(s)
- Ke Yang
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, P. O. Box 1126, Hefei, 230031, P.R. China
- University of Science and Technology of China, Hefei, 230026, P.R. China
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Yong Liu
- Institute of Applied Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, P. O. Box 1126, Hefei, 230031, P.R. China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
20
|
Hoehl MM, Bocholt ES, Kloke A, Paust N, von Stetten F, Zengerle R, Steigert J, Slocum AH. A versatile-deployable bacterial detection system for food and environmental safety based on LabTube-automated DNA purification, LabReader-integrated amplification, readout and analysis. Analyst 2015; 139:2788-98. [PMID: 24710334 DOI: 10.1039/c4an00123k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Contamination of foods is a public health hazard that episodically causes thousands of deaths and sickens millions worldwide. To ensure food safety and quality, rapid, low-cost and easy-to-use detection methods are desirable. Here, the LabSystem is introduced for integrated, automated DNA purification, amplification and detection. It consists of a disposable, centrifugally driven DNA purification platform (LabTube) and a low-cost UV/vis-reader (LabReader). For demonstration of the LabSystem in the context of food safety, purification of Escherichia coli (non-pathogenic E. coli and pathogenic verotoxin-producing E. coli (VTEC)) in water and milk and the product-spoiler Alicyclobacillus acidoterrestris (A. acidoterrestris) in apple juice was integrated and optimized in the LabTube. Inside the LabReader, the purified DNA was amplified, readout and analyzed using both qualitative isothermal loop-mediated DNA amplification (LAMP) and quantitative real-time PCR. For the LAMP-LabSystem, the combined detection limits for purification and amplification of externally lysed VTEC and A. acidoterrestris are 10(2)-10(3) cell-equivalents. In the PCR-LabSystem for E. coli cells, the quantification limit is 10(2) cell-equivalents including LabTube-integrated lysis. The demonstrated LabSystem only requires a laboratory centrifuge (to operate the disposable, fully closed LabTube) and a low-cost LabReader for DNA amplification, readout and analysis. Compared with commercial DNA amplification devices, the LabReader improves sensitivity and specificity by the simultaneous readout of four wavelengths and the continuous readout during temperature cycling. The use of a detachable eluate tube as an interface affords semi-automation of the LabSystem, which does not require specialized training. It reduces the hands-on time from about 50 to 3 min with only two handling steps: sample input and transfer of the detachable detection tube.
Collapse
Affiliation(s)
- Melanie M Hoehl
- Massachusetts Institute of Technology, MIT, Department of Mechanical Engineering, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Byrnes SA, Bishop JD, Lafleur L, Buser JR, Lutz B, Yager P. One-step purification and concentration of DNA in porous membranes for point-of-care applications. LAB ON A CHIP 2015; 15:2647-59. [PMID: 25989457 DOI: 10.1039/c5lc00317b] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The emergence of rapid, user-friendly, point-of-care (POC) diagnostic systems is paving the way for better disease diagnosis and control. Lately, there has been a strong emphasis on developing molecular-based diagnostics due to their potential for greatly increased sensitivity and specificity. One of the most critical steps in developing practical diagnostic systems is the ability to perform sample preparation, especially the purification of nucleic acids (NA), at the POC. As such, we have developed a simple-to-use, inexpensive, and disposable sample preparation system for in-membrane purification and concentration of NAs. This system couples lateral flow in a porous membrane with chitosan, a linear polysaccharide that captures NAs via anion exchange chromatography. The system can also substantially concentrate the NAs. The combination of these capabilities can be used on a wide range of sample types, which are prepared for use in downstream processes, such as qPCR, without further purification.
Collapse
Affiliation(s)
- S A Byrnes
- University of Washington, Department of Bioengineering, 3720 15th Ave NE, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Lin CL, Chang WH, Wang CH, Lee CH, Chen TY, Jan FJ, Lee GB. A microfluidic system integrated with buried optical fibers for detection of Phalaenopsis orchid pathogens. Biosens Bioelectron 2015; 63:572-579. [DOI: 10.1016/j.bios.2014.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/25/2014] [Accepted: 08/11/2014] [Indexed: 11/26/2022]
|
23
|
Moriguchi H, Kawai T, Tanaka Y. Simple bilayer on-chip valves using reversible sealability of PDMS. RSC Adv 2015. [DOI: 10.1039/c4ra10300a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simple bilayer on-chip valves exploiting the reversible sealability of PDMS were realized by patterning the non-covalent area between two parallel microchannels.
Collapse
Affiliation(s)
| | - Takayuki Kawai
- Quantitative Biology Center (QBiC)
- RIKEN
- Kobe
- Japan
- Japan Science and Technology Agency
| | - Yo Tanaka
- Quantitative Biology Center (QBiC)
- RIKEN
- Kobe
- Japan
- Graduate School of Frontier Biosciences
| |
Collapse
|
24
|
Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1354-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Liu C, Mauk M, Gross R, Bushman FD, Edelstein PH, Collman RG, Bau HH. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal Chem 2013; 85:10463-70. [PMID: 24099566 PMCID: PMC3897712 DOI: 10.1021/ac402459h] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.
Collapse
Affiliation(s)
- Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert Gross
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul H. Edelstein
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronald G. Collman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
26
|
Byrnes S, Thiessen G, Fu E. Progress in the development of paper-based diagnostics for low-resource point-of-care settings. Bioanalysis 2013; 5:2821-36. [PMID: 24256361 PMCID: PMC4012918 DOI: 10.4155/bio.13.243] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This Review focuses on recent work in the field of paper microfluidics that specifically addresses the goal of translating the multistep processes that are characteristic of gold-standard laboratory tests to low-resource point-of-care settings. A major challenge is to implement multistep processes with the robust fluid control required to achieve the necessary sensitivity and specificity of a given application in a user-friendly package that minimizes equipment. We review key work in the areas of fluidic controls for automation in paper-based devices, readout methods that minimize dedicated equipment, and power and heating methods that are compatible with low-resource point-of-care settings. We also highlight a focused set of recent applications and discuss future challenges.
Collapse
Affiliation(s)
| | | | - Elain Fu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
Detection of viruses directly from the fresh leaves of a Phalaenopsis orchid using a microfluidic system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1274-82. [DOI: 10.1016/j.nano.2013.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022]
|
28
|
Chang CM, Chang WH, Wang CH, Wang JH, Mai JD, Lee GB. Nucleic acid amplification using microfluidic systems. LAB ON A CHIP 2013; 13:1225-42. [PMID: 23407669 DOI: 10.1039/c3lc41097h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the post-human-genome-project era, the development of molecular diagnostic techniques has advanced the frontiers of biomedical research. Nucleic-acid-based technology (NAT) plays an especially important role in molecular diagnosis. However, most research and clinical protocols still rely on the manual analysis of individual samples by skilled technicians which is a time-consuming and labor-intensive process. Recently, with advances in microfluidic designs, integrated micro total-analysis-systems have emerged to overcome the limitations of traditional detection assays. These microfluidic systems have the capability to rapidly perform experiments in parallel and with a high-throughput which allows a NAT analysis to be completed in a few hours or even a few minutes. These features have a significant beneficial influence on many aspects of traditional biological or biochemical research and this new technology is promising for improving molecular diagnosis. Thus, in the foreseeable future, microfluidic systems developed for molecular diagnosis using NAT will become an important tool in clinical diagnosis. One of the critical issues for NAT is nucleic acid amplification. In this review article, recent advances in nucleic acid amplification techniques using microfluidic systems will be reviewed. Different approaches for fast amplification of nucleic acids for molecular diagnosis will be highlighted.
Collapse
Affiliation(s)
- Chen-Min Chang
- Institute of Oral Medicine, National Cheng Kung University, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Zanoli LM, Spoto G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. BIOSENSORS 2013; 3:18-43. [PMID: 25587397 PMCID: PMC4263587 DOI: 10.3390/bios3010018] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/07/2012] [Accepted: 12/24/2012] [Indexed: 12/05/2022]
Abstract
Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed.
Collapse
Affiliation(s)
- Laura Maria Zanoli
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail:
| | - Giuseppe Spoto
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail: ; Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
30
|
Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: A review. Anal Chim Acta 2012; 733:1-15. [DOI: 10.1016/j.aca.2012.04.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/10/2012] [Accepted: 04/24/2012] [Indexed: 12/19/2022]
|
31
|
De Boer SH, López MM. New grower-friendly methods for plant pathogen monitoring. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:197-218. [PMID: 22607454 DOI: 10.1146/annurev-phyto-081211-172942] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Accurate plant disease diagnoses and rapid detection and identification of plant pathogens are of utmost importance for controlling plant diseases and mitigating the economic losses they incur. Technological advances have increasingly simplified the tools available for the identification of pathogens to the extent that, in some cases, this can be done directly by growers and producers themselves. Commercially available immunoprinting kits and lateral flow devices (LFDs) for detection of selected plant pathogens are among the first tools of what can be considered grower-friendly pathogen monitoring methods. Research efforts, spurned on by point-of-care needs in the medical field, are paving the way for the further development of on-the-spot diagnostics and multiplex technologies in plant pathology. Grower-friendly methods need to be practical, robust, readily available, and cost-effective. Such methods are not restricted to on-the-spot testing but extend to laboratory services, which are sometimes more practicable for growers, extension agents, regulators, and other users of diagnostic tests.
Collapse
Affiliation(s)
- Solke H De Boer
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, C1A 5T1 Canada.
| | | |
Collapse
|
32
|
Stedtfeld RD, Tourlousse DM, Seyrig G, Stedtfeld TM, Kronlein M, Price S, Ahmad F, Gulari E, Tiedje JM, Hashsham SA. Gene-Z: a device for point of care genetic testing using a smartphone. LAB ON A CHIP 2012; 12:1454-62. [PMID: 22374412 DOI: 10.1039/c2lc21226a] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
By 2012, point of care (POC) testing will constitute roughly one third of the $59 billion in vitro diagnostics market. The ability to carry out multiplexed genetic testing and wireless connectivity are emerging as key attributes of future POC devices. In this study, an inexpensive, user-friendly and compact device (termed Gene-Z) is presented for rapid quantitative detection of multiple genetic markers with high sensitivity and specificity. Using a disposable valve-less polymer microfluidic chip containing four arrays of 15 reaction wells each with dehydrated primers for isothermal amplification, the Gene-Z enables simultaneous analysis of four samples, each for multiple genetic markers in parallel, requiring only a single pipetting step per sample for dispensing. To drastically reduce the cost and size of the real-time detector necessary for quantification, loop-mediated isothermal amplification (LAMP) was performed with a high concentration of SYTO-81, a non-inhibiting fluorescent DNA binding dye. The Gene-Z is operated using an iPod Touch, which also receives data and carries out automated analysis and reporting via a WiFi interface. This study presents data pertaining to performance of the device including sensitivity and reproducibility using genomic DNA from Escherichia coli and Staphylococcus aureus. Overall, the Gene-Z represents a significant step toward truly inexpensive and compact tools for POC genetic testing.
Collapse
Affiliation(s)
- Robert D Stedtfeld
- Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu C, Mauk MG, Hart R, Qiu X, Bau HH. A self-heating cartridge for molecular diagnostics. LAB ON A CHIP 2011; 11:2686-92. [PMID: 21734986 DOI: 10.1039/c1lc20345b] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A disposable, water-activated, self-heating, easy-to-use, polymeric cartridge for isothermal nucleic acid amplification and visual fluorescent detection of the amplification products is described. The device is self-contained and does not require any special instruments to operate. The cartridge integrates chemical, water-triggered, exothermic heating with temperature regulation facilitated with a phase-change material (PCM) and isothermal nucleic acid amplification. The water flows into the exothermic reactor by wicking through a porous paper. The porous paper's characteristics control the rate of water supply, which in turn controls the rate of exothermic reaction. The PCM material enables the cartridge to maintain a desired temperature independent of ambient temperatures in the range between 20 °C and 40 °C. The utility of the cartridge is demonstrated by amplifying and detecting Escherichia coli DNA with loop mediated isothermal amplification (LAMP). The device can detect consistently as few as 10 target molecules in the sample. With proper modifications, the cartridge also can work with other isothermal nucleic acid amplification technologies for detecting nucleic acids associated with various pathogens borne in blood, saliva, urine, and other body fluids as well as in water and food. The device is suitable for use at home, in the field, and in poor-resource settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent.
Collapse
Affiliation(s)
- Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 229 PhiladelphiaTowne, Building 220 South 33rd St, Philadelphia, Pennsylvania 19104-6315, USA
| | | | | | | | | |
Collapse
|
34
|
A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips. Biomed Microdevices 2011; 13:929-37. [DOI: 10.1007/s10544-011-9562-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|