1
|
Kim J, Zhang K, Canton G, Balu N, Meyer K, Saber R, Paydarfar D, Yuan C, Sacks MS. In Vivo Deformation of the Human Basilar Artery. Ann Biomed Eng 2025; 53:83-98. [PMID: 39240472 DOI: 10.1007/s10439-024-03605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
An estimated 6.8 million people in the United States have an unruptured intracranial aneurysms, with approximately 30,000 people suffering from intracranial aneurysms rupture each year. Despite the development of population-based scores to evaluate the risk of rupture, retrospective analyses have suggested the limited usage of these scores in guiding clinical decision-making. With recent advancements in imaging technologies, artery wall motion has emerged as a promising biomarker for the general study of neurovascular mechanics and in assessing the risk of intracranial aneurysms. However, measuring arterial wall deformations in vivo itself poses several challenges, including how to image local wall motion and deriving the anisotropic wall strains over the cardiac cycle. To overcome these difficulties, we first developed a novel in vivo MRI-based imaging method to acquire cardiac gated images of the human basilar artery (BA) over the cardiac cycle. Next, complete BA endoluminal surfaces from each frame were segmented, producing high-resolution point clouds of the endoluminal surfaces. From these point clouds we developed a novel B-spline-based surface representation, then exploited the local support nature of B-splines to determine the local endoluminal surface strains. Results indicated distinct regional and temporal variations in BA wall deformation, highlighting the heterogeneous nature BA function. These included large circumferential strains (up to ∼ 20 % ), and small longitudinal strains, which were often contractile and out of phase with the circumferential strains patterns. Of particular interest was the temporal phase lag in the maximum circumferential perimeter length, which indicated that the BA deforms asynchronously over the cardiac cycle. In summary, the proposed method enabled local deformation analysis, allowing for the successful reproduction of local features of the BA, such as regional principal stretches, areal changes, and pulsatile motion. Integrating the proposed method into existing population-based scores has the potential to improve our understanding of mechanical properties of human BA and enhance clinical decision-making.
Collapse
Affiliation(s)
- Jaemin Kim
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kaiyu Zhang
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Gador Canton
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kenneth Meyer
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Reza Saber
- Department of Neurology, Dell School of Medicine, University of Texas, Austin, TX, USA
| | - David Paydarfar
- Department of Neurology, Dell School of Medicine, University of Texas, Austin, TX, USA
| | - Chun Yuan
- Vascular Imaging Lab, Department of Radiology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Gullberg GT, Shrestha UM, Veress AI, Segars WP, Liu J, Ordovas K, Seo Y. Novel Methodology for Measuring Regional Myocardial Efficiency. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1711-1725. [PMID: 33690114 PMCID: PMC8325923 DOI: 10.1109/tmi.2021.3065219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Our approach differs from the usual global measure of cardiac efficiency by using PET/MRI to measure efficiency of small pieces of cardiac tissue whose limiting size is equal to the spatial resolution of the PET scanner. We initiated a dynamic cardiac PET study immediately prior to the injection of 15.1 mCi of 11C-acetate acquiring data for 25 minutes while simultaneously acquiring MRI cine data. 1) A 3D finite element (FE) biomechanical model of the imaged heart was constructed by utilizing nonrigid deformable image registration to alter the Dassault Systèmes FE Living Heart Model (LHM) to fit the geometry in the cardiac MRI cine data. The patient specific FE cardiac model with estimates of stress, strain, and work was transformed into PET/MRI format. 2) A 1-tissue compartment model was used to calculate wash-in (K1) and the linear portion of the decay in the PET 11C-acetate time activity curve (TAC) was used to calculate the wash-out k2(mono) rate constant. K1 was used to calculate blood flow and k2(mono) was used to calculate myocardial volume oxygen consumption ( MVO2 ). 3) Estimates of stress and strain were used to calculate Myocardial Equivalent Minute Work ( MEMW ) and Cardiac Efficiency = MEMW/MVO2 was then calculated for 17 tissue segments of the left ventricle. The global MBF was 0.96 ± 0.15 ml/min/gm and MVO2 ranged from 8 to 17 ml/100gm/min. Six central slices of the MRI cine data provided a range of MEMW of 0.1 to 0.4 joules/gm/min and a range of Cardiac Efficiency of 6 to 18%.
Collapse
|
3
|
An image registration framework to estimate 3D myocardial strains from cine cardiac MRI in mice. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2021; 12738:273-284. [PMID: 34263263 DOI: 10.1007/978-3-030-78710-3_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate and efficient quantification of cardiac motion offers promising biomarkers for non-invasive diagnosis and prognosis of structural heart diseases. Cine cardiac magnetic resonance imaging remains one of the most advanced imaging tools to provide image acquisitions needed to assess and quantify in-vivo heart kinematics. The majority of cardiac motion studies are focused on human data, and there remains a need to develop and implement an image-registration pipeline to quantify full three-dimensional (3D) cardiac motion in mice where ideal image acquisition is challenged by the subject size and heart rate and the possibility of traditional tagged imaging is hampered. In this study, we used diffeomorphic image registration to estimate strains in the left ventricular wall in two wild-type mice and one diabetic mouse. Our pipeline resulted in a continuous and fully 3D strain map over one cardiac cycle. The estimation of 3D regional and transmural variations of strains is a critical step towards identifying mechanistic biomarkers for improved diagnosis and phenotyping of structural left heart diseases including heart failure with reduced or preserved ejection fraction.
Collapse
|
4
|
Perotti LE, Verzhbinsky IA, Moulin K, Cork TE, Loecher M, Balzani D, Ennis DB. Estimating cardiomyofiber strain in vivo by solving a computational model. Med Image Anal 2021; 68:101932. [PMID: 33383331 PMCID: PMC7956226 DOI: 10.1016/j.media.2020.101932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Since heart contraction results from the electrically activated contraction of millions of cardiomyocytes, a measure of cardiomyocyte shortening mechanistically underlies cardiac contraction. In this work we aim to measure preferential aggregate cardiomyocyte ("myofiber") strains based on Magnetic Resonance Imaging (MRI) data acquired to measure both voxel-wise displacements through systole and myofiber orientation. In order to reduce the effect of experimental noise on the computed myofiber strains, we recast the strains calculation as the solution of a boundary value problem (BVP). This approach does not require a calibrated material model, and consequently is independent of specific myocardial material properties. The solution to this auxiliary BVP is the displacement field corresponding to assigned values of myofiber strains. The actual myofiber strains are then determined by minimizing the difference between computed and measured displacements. The approach is validated using an analytical phantom, for which the ground-truth solution is known. The method is applied to compute myofiber strains using in vivo displacement and myofiber MRI data acquired in a mid-ventricular left ventricle section in N=8 swine subjects. The proposed method shows a more physiological distribution of myofiber strains compared to standard approaches that directly differentiate the displacement field.
Collapse
Affiliation(s)
- Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA.
| | - Ilya A Verzhbinsky
- Department of Radiology, Stanford University, Stanford, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, USA
| | - Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel Balzani
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Zou H, Leng S, Xi C, Zhao X, Koh AS, Gao F, Tan JL, Tan RS, Allen JC, Lee LC, Genet M, Zhong L. Three-dimensional biventricular strains in pulmonary arterial hypertension patients using hyperelastic warping. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105345. [PMID: 31982668 PMCID: PMC7198336 DOI: 10.1016/j.cmpb.2020.105345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Evaluation of biventricular function is an essential component of clinical management in pulmonary arterial hypertension (PAH). This study aims to examine the utility of biventricular strains derived from a model-to-image registration technique in PAH patients in comparison to age- and gender-matched normal controls. METHODS A three-dimensional (3D) model was reconstructed from cine short- and long-axis cardiac magnetic resonance (CMR) images and subsequently partitioned into right ventricle (RV), left ventricle (LV) and septum. The hyperelastic warping method was used to register the meshed biventricular finite element model throughout the cardiac cycle and obtain the corresponding biventricular circumferential, longitudinal and radial strains. RESULTS Intra- and inter-observer reproducibility of biventricular strains was excellent with all intra-class correlation coefficients > 0.84. 3D biventricular longitudinal, circumferential and radial strains for RV, LV and septum were significantly decreased in PAH patients compared with controls. Receiver operating characteristic (ROC) analysis showed that the 3D biventricular strains were better early markers (Area under the ROC curve = 0.96 for RV longitudinal strain) of ventricular dysfunction than conventional parameters such as two-dimensional strains and ejection fraction. CONCLUSIONS Our highly reproducible methodology holds potential for extending CMR imaging to characterize 3D biventricular strains, eventually leading to deeper understanding of biventricular mechanics in PAH.
Collapse
Affiliation(s)
- Hua Zou
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Ce Xi
- Department of Mechanical Engineering, Michigan State University, MI, United States
| | - Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Angela S Koh
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Fei Gao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Ju Le Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | | | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, MI, United States
| | - Martin Genet
- Mechanics Department & Solid Mechanics Laboratory, École Polytechnique (Paris-Saclay University), Palaiseau, France; M3DISIM research team, INRIA (Paris-Saclay University), Palaiseau, France
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|
6
|
Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, Chordia MD, Roy RJ, Patrie JT, Davogustto GE, Kramer CM, Epstein FH, Carey RM, Taegtmeyer H, Keller SR, Kundu BK. Metabolic Changes in Spontaneously Hypertensive Rat Hearts Precede Cardiac Dysfunction and Left Ventricular Hypertrophy. J Am Heart Assoc 2020; 8:e010926. [PMID: 30764689 PMCID: PMC6405673 DOI: 10.1161/jaha.118.010926] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Sustained pressure overload leads to changes in cardiac metabolism, function, and structure. Both time course and causal relationships between these changes are not fully understood. Therefore, we studied spontaneously hypertensive rats (SHR) during early hypertension development and compared them to control Wistar Kyoto rats. Methods and Results We serially evaluated myocardial glucose uptake rates (Ki) with dynamic 2‐[18F] fluoro‐2‐deoxy‐D‐glucose positron emission tomography, and ejection fraction and left ventricular mass to body weight ratios with cardiac magnetic resonance imaging in vivo, determined glucose uptake and oxidation rates in isolated perfused hearts, and analyzed metabolites, mammalian target of rapamycin activity and endoplasmic reticulum stress in dissected hearts. When compared with Wistar Kyoto rats, SHR demonstrated increased glucose uptake rates (Ki) in vivo, and reduced ejection fraction as early as 2 months of age when hypertension was established. Isolated perfused SHR hearts showed increased glucose uptake and oxidation rates starting at 1 month. Cardiac metabolite analysis at 2 months of age revealed elevated pyruvate, fatty acyl‐ and branched chain amino acid‐derived carnitines, oxidative stress, and inflammation. Mammalian target of rapamycin activity increased in SHR beginning at 2 months. Left ventricular mass to body weight ratios and endoplasmic reticulum stress were elevated in 5 month‐old SHR. Conclusions Thus, in a genetic hypertension model, chronic cardiac pressure overload promptly leads to increased myocardial glucose uptake and oxidation, and to metabolite abnormalities. These coincide with, or precede, cardiac dysfunction while left ventricular hypertrophy develops only later. Myocardial metabolic changes may thus serve as early diagnostic markers for hypertension‐induced left ventricular hypertrophy.
Collapse
Affiliation(s)
- Jie Li
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - Brandon A Kemp
- 2 Division of Endocrinology and Metabolism Department of Medicine University of Virginia Charlottesville VA
| | - Nancy L Howell
- 2 Division of Endocrinology and Metabolism Department of Medicine University of Virginia Charlottesville VA
| | - James Massey
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA.,3 Department of Biomedical Engineering University of Virginia Charlottesville VA
| | - Krzysztof Mińczuk
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - Qiao Huang
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - Mahendra D Chordia
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - R Jack Roy
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - James T Patrie
- 4 Department of Public Health Sciences University of Virginia Charlottesville VA
| | - Giovanni E Davogustto
- 5 McGovern Medical School University of Texas Health Science Center in Houston Houston TX
| | - Christopher M Kramer
- 6 Department of Cardiovascular Medicine University of Virginia Charlottesville VA
| | - Frederick H Epstein
- 3 Department of Biomedical Engineering University of Virginia Charlottesville VA
| | - Robert M Carey
- 2 Division of Endocrinology and Metabolism Department of Medicine University of Virginia Charlottesville VA
| | - Heinrich Taegtmeyer
- 5 McGovern Medical School University of Texas Health Science Center in Houston Houston TX
| | - Susanna R Keller
- 2 Division of Endocrinology and Metabolism Department of Medicine University of Virginia Charlottesville VA
| | - Bijoy K Kundu
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA.,3 Department of Biomedical Engineering University of Virginia Charlottesville VA.,7 Cardiovascular Research Center University of Virginia Charlottesville VA
| |
Collapse
|
7
|
Boyle JJ, Soepriatna A, Damen F, Rowe RA, Pless RB, Kovacs A, Goergen CJ, Thomopoulos S, Genin GM. Regularization-Free Strain Mapping in Three Dimensions, With Application to Cardiac Ultrasound. J Biomech Eng 2019; 141:2705368. [PMID: 30267039 PMCID: PMC6298532 DOI: 10.1115/1.4041576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/21/2018] [Indexed: 12/17/2022]
Abstract
Quantifying dynamic strain fields from time-resolved volumetric medical imaging and microscopy stacks is a pressing need for radiology and mechanobiology. A critical limitation of all existing techniques is regularization: because these volumetric images are inherently noisy, the current strain mapping techniques must impose either displacement regularization and smoothing that sacrifices spatial resolution, or material property assumptions that presuppose a material model, as in hyperelastic warping. Here, we present, validate, and apply the first three-dimensional (3D) method for estimating mechanical strain directly from raw 3D image stacks without either regularization or assumptions about material behavior. We apply the method to high-frequency ultrasound images of mouse hearts to diagnose myocardial infarction. We also apply the method to present the first ever in vivo quantification of elevated strain fields in the heart wall associated with the insertion of the chordae tendinae. The method shows promise for broad application to dynamic medical imaging modalities, including high-frequency ultrasound, tagged magnetic resonance imaging, and confocal fluorescence microscopy.
Collapse
Affiliation(s)
- John J. Boyle
- Department of Biomedical Engineering,
Washington University in St. Louis,
St. Louis, MO 63130;
Department of Orthopaedic Surgery,Columbia University,
Black Building 1406, 650 W 168 Street,
New York, NY 10032
e-mail:
| | - Arvin Soepriatna
- Weldon School of Biomedical Engineering,
Purdue University,
206 S. Martin Jischke Drive, Room 3025,
West Lafayette, IN 47907
e-mail:
| | - Frederick Damen
- Weldon School of Biomedical Engineering,
Purdue University,
206 S. Martin Jischke Drive, Room 3025,
West Lafayette, IN 47907
e-mail:
| | - Roger A. Rowe
- Department of Mechanical Engineering and
Materials Science,
Washington University in St. Louis,
Jolley Hall, CB 1185, 1 Brookings Drive,
St. Louis, MO 63130
e-mail:
| | - Robert B. Pless
- Department of Computer Science,
George Washington University,
800 22nd Street NW Room 4000,
Washington, DC 20052
e-mail:
| | - Attila Kovacs
- Department of Internal Medicine,
Cardiovascular Division,
Washington University School of Medicine,
660 S. Euclid Avenue, CB 8086,
St. Louis, MO 63110
e-mail:
| | - Craig J. Goergen
- Mem. ASME
Weldon School of Biomedical Engineering,
Purdue University,
206 S. Martin Jischke Drive, Room 3025,
West Lafayette, IN 47907
e-mail:
| | - Stavros Thomopoulos
- Mem. ASMEDepartment of Orthopaedic Surgery,
Columbia University,
New York, NY 10032;
Department of Biomedical Engineering,Columbia University,
Black Building 1408, 650 W 168 Street,
New York, NY 10032
e-mail:
| | - Guy M. Genin
- Fellow ASME
Department of Biomedical Engineering,
Washington University in St. Louis,
St. Louis, MO 63130;
Department of Mechanical Engineering and
Materials Science,
Washington University in St. Louis,
St. Louis, MO 63130;
NSF Science and Technology Center
for Engineering Mechanobiology,
Washington University in St. Louis,
Green Hall, CB 1099, 1 Brookings Drive,
St. Louis, MO 63130
e-mail:
| |
Collapse
|
8
|
Gomez AD, Knutsen AK, Xing F, Lu YC, Chan D, Pham DL, Bayly P, Prince JL. 3-D Measurements of Acceleration-Induced Brain Deformation via Harmonic Phase Analysis and Finite-Element Models. IEEE Trans Biomed Eng 2018; 66:1456-1467. [PMID: 30296208 DOI: 10.1109/tbme.2018.2874591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To obtain dense spatiotemporal measurements of brain deformation from two distinct but complementary head motion experiments: linear and rotational accelerations. METHODS This study introduces a strategy for integrating harmonic phase analysis of tagged magnetic resonance imaging (MRI) and finite-element models to extract mechanically representative deformation measurements. The method was calibrated using simulated as well as experimental data, demonstrated in a phantom including data with image artifacts, and used to measure brain deformation in human volunteers undergoing rotational and linear acceleration. RESULTS Evaluation methods yielded a displacement error of 1.1 mm compared to human observers and strain errors between [Formula: see text] for linear acceleration and [Formula: see text] for rotational acceleration. This study also demonstrates an approach that can reduce error by 86% in the presence of corrupted data. Analysis of results shows consistency with 2-D motion estimation, agreement with external sensors, and the expected physical behavior of the brain. CONCLUSION Mechanical regularization is useful for obtaining dense spatiotemporal measurements of in vivo brain deformation under different loading regimes. SIGNIFICANCE The measurements suggest that the brain's 3-D response to mild accelerations includes distinct patterns observable using practical MRI resolutions. This type of measurement can provide validation data for computer models for the study of traumatic brain injury.
Collapse
|
9
|
Maas SA, LaBelle SA, Ateshian GA, Weiss JA. A Plugin Framework for Extending the Simulation Capabilities of FEBio. Biophys J 2018; 115:1630-1637. [PMID: 30297132 DOI: 10.1016/j.bpj.2018.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022] Open
Abstract
The FEBio software suite is a set of software tools for nonlinear finite element analysis in biomechanics and biophysics. FEBio employs mixture theory to account for the multiconstituent nature of biological materials, integrating the field equations for irreversible thermodynamics, solid mechanics, fluid mechanics, mass transport with reactive species, and electrokinetics. This communication describes the development and application of a new "plugin" framework for FEBio. Plugins are dynamically linked libraries that allow users to add new features and to couple FEBio with other domain-specific software applications without modifying the source code directly. The governing equations and simulation capabilities of FEBio are reviewed. The implementation, structure, use, and application of the plugin framework are detailed. Several example plugins are described in detail to illustrate how plugins enrich, extend, and leverage existing capabilities in FEBio, including applications to deformable image registration, constitutive modeling of biological tissues, coupling to an external software package that simulates angiogenesis using a discrete computational model, and a nonlinear reaction-diffusion solver. The plugin feature facilitates dissemination of new simulation methods, reproduction of published results, and coupling of FEBio with other domain-specific simulation approaches such as compartmental modeling, agent-based modeling, and rigid-body dynamics. We anticipate that the new plugin framework will greatly expand the range of applications for the FEBio software suite and thus its impact.
Collapse
Affiliation(s)
- Steve A Maas
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Steven A LaBelle
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
10
|
Zou H, Xi C, Zhao X, Koh AS, Gao F, Su Y, Tan RS, Allen J, Lee LC, Genet M, Zhong L. Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method. Front Physiol 2018; 9:1295. [PMID: 30283352 PMCID: PMC6156386 DOI: 10.3389/fphys.2018.01295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/28/2018] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) imposes a major global health care burden on society and suffering on the individual. About 50% of HF patients have preserved ejection fraction (HFpEF). More intricate and comprehensive measurement-focused imaging of multiple strain components may aid in the diagnosis and elucidation of this disease. Here, we describe the development of a semi-automated hyperelastic warping method for rapid comprehensive assessment of biventricular circumferential, longitudinal, and radial strains that is physiological meaningful and reproducible. We recruited and performed cardiac magnetic resonance (CMR) imaging on 30 subjects [10 HFpEF, 10 HF with reduced ejection fraction patients (HFrEF) and 10 healthy controls]. In each subject, a three-dimensional heart model including left ventricle (LV), right ventricle (RV), and septum was reconstructed from CMR images. The hyperelastic warping method was used to reference the segmented model with the target images and biventricular circumferential, longitudinal, and radial strain-time curves were obtained. The peak systolic strains are then measured and analyzed in this study. Intra- and inter-observer reproducibility of the biventricular peak systolic strains was excellent with all ICCs > 0.92. LV peak systolic circumferential, longitudinal, and radial strain, respectively, exhibited a progressive decrease in magnitude from healthy control→HFpEF→HFrEF: control (-15.5 ± 1.90, -15.6 ± 2.06, 41.4 ± 12.2%); HFpEF (-9.37 ± 3.23, -11.3 ± 1.76, 22.8 ± 13.1%); HFrEF (-4.75 ± 2.74, -7.55 ± 1.75, 10.8 ± 4.61%). A similar progressive decrease in magnitude was observed for RV peak systolic circumferential, longitudinal and radial strain: control (-9.91 ± 2.25, -14.5 ± 2.63, 26.8 ± 7.16%); HFpEF (-7.38 ± 3.17, -12.0 ± 2.45, 21.5 ± 10.0%); HFrEF (-5.92 ± 3.13, -8.63 ± 2.79, 15.2 ± 6.33%). Furthermore, septum peak systolic circumferential, longitudinal, and radial strain magnitude decreased gradually from healthy control to HFrEF: control (-7.11 ± 1.81, 16.3 ± 3.23, 18.5 ± 8.64%); HFpEF (-6.11 ± 3.98, -13.4 ± 3.02, 12.5 ± 6.38%); HFrEF (-1.42 ± 1.36, -8.99 ± 2.96, 3.35 ± 2.95%). The ROC analysis indicated LV peak systolic circumferential strain to be the most sensitive marker for differentiating HFpEF from healthy controls. Our results suggest that the hyperelastic warping method with the CMR-derived strains may reveal subtle impairment in HF biventricular mechanics, in particular despite a "normal" ventricular ejection fraction in HFpEF.
Collapse
Affiliation(s)
- Hua Zou
- National Heart Centre Singapore, Singapore, Singapore
| | - Ce Xi
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Xiaodan Zhao
- National Heart Centre Singapore, Singapore, Singapore
| | - Angela S Koh
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Gao
- National Heart Centre Singapore, Singapore, Singapore
| | - Yi Su
- Institute of High Performance Computing, A∗STAR, Singapore, Singapore
| | - Ru-San Tan
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - John Allen
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Martin Genet
- Mechanics Department and Solid Mechanics Laboratory, École Polytechnique, C.N.R.S., Université Paris-Saclay, Palaiseau, France.,M3DISIM Team, I.N.R.I.A, Université Paris-Saclay, Palaiseau, France
| | - Liang Zhong
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Ko KY, Wu YW, Liu CW, Cheng MF, Yen RF, Yang WS. Longitudinal evaluation of myocardial glucose metabolism and contractile function in obese type 2 diabetic db/db mice using small-animal dynamic 18F-FDG PET and echocardiography. Oncotarget 2017; 8:87795-87808. [PMID: 29152121 PMCID: PMC5675673 DOI: 10.18632/oncotarget.21202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 02/02/2023] Open
Abstract
The aim was to evaluate sequential changes of myocardial glucose utilization and LV systolic function in db/db mice. Eight db/db and eight wild-type mice underwent plasma substrate analysis and dynamic 18F-FDG PET at week 8 (W8), W10, W12, W14, and W16. 18F-FDG uptake constant Ki and the rate of myocardial glucose uptake (MRGlu) were derived via Patlak graphic analysis. Another 8 db/db and 8 wild-type mice received echocardiography at W8, W12, and W16 and LV structure and function were measured. The db/db mice showed increased weights and glucose levels as they aged. The index of homeostasis model assessment-estimated insulin resistance, insulin, and free fatty acid concentrations were higher in db/db mice compared with wild-type. MRGlu of db/db mice across all time points was markedly higher than that of wild-type. An age-dependent elevation of MRGlu was observed in db/db mice. Ki and MRGlu of db/db mice showed negative correlation with triglyceride levels. When two groups were pooled together, Ki and MRGlu were significantly proportional to glucose levels. No significant difference in LV structure and function was noted between db/db and control mice. In conclusion, we demonstrated altered myocardial glucose utilization preceding the onset of LV systolic dysfunction in db/db mice.
Collapse
Affiliation(s)
- Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Hospital, Yunlin Branch, Yunlin County, Taiwan.,Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Wen Wu
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,National Yang-Ming University School of Medicine, Taipei, Taiwan.,Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Cheng-Wei Liu
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Internal Medicine, Tri-Service General Hospital, Songshan Branch, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medicine and Graduate Institute of Medical Genomics & Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,R & D Branch Office, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Zan Y, Boutchko R, Huang Q, Li B, Chen K, Gullberg GT. Longitudinal Evaluation of Sympathetic Nervous System and Perfusion in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic Single-Photon Emission Computed Tomography. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yunlong Zan
- From the School of Biomedical Engineering and Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Lawrence Berkeley National Laboratory, Berkeley, CA; and Banner Good Samaritan Medical Center, Phoenix, AZ
| | - Rostyslav Boutchko
- From the School of Biomedical Engineering and Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Lawrence Berkeley National Laboratory, Berkeley, CA; and Banner Good Samaritan Medical Center, Phoenix, AZ
| | - Qiu Huang
- From the School of Biomedical Engineering and Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Lawrence Berkeley National Laboratory, Berkeley, CA; and Banner Good Samaritan Medical Center, Phoenix, AZ
| | - Biao Li
- From the School of Biomedical Engineering and Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Lawrence Berkeley National Laboratory, Berkeley, CA; and Banner Good Samaritan Medical Center, Phoenix, AZ
| | - Kewei Chen
- From the School of Biomedical Engineering and Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Lawrence Berkeley National Laboratory, Berkeley, CA; and Banner Good Samaritan Medical Center, Phoenix, AZ
| | - Grant T. Gullberg
- From the School of Biomedical Engineering and Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Lawrence Berkeley National Laboratory, Berkeley, CA; and Banner Good Samaritan Medical Center, Phoenix, AZ
| |
Collapse
|
13
|
Henderson JT, Shannon G, Veress AI, Neu CP. Direct measurement of intranuclear strain distributions and RNA synthesis in single cells embedded within native tissue. Biophys J 2014; 105:2252-61. [PMID: 24268137 DOI: 10.1016/j.bpj.2013.09.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 11/26/2022] Open
Abstract
Nuclear structure and mechanics play a critical role in diverse cellular functions, such as organizing direct access of chromatin to transcriptional regulators. Here, we use a new, to our knowledge, hybrid method, based on microscopy and hyperelastic warping, to determine three-dimensional strain distributions inside the nuclei of single living cells embedded within their native extracellular matrix. During physiologically relevant mechanical loading to tissue samples, strain was transferred to individual nuclei, resulting in submicron distributions of displacements, with compressive and tensile strain patterns approaching a fivefold magnitude increase in some locations compared to tissue-scale stimuli. Moreover, nascent RNA synthesis was observed in the interchromatin regions of the cells studied and spatially corresponded to strain patterns. Our ability to measure large strains in the interchromatin space, which reveals that movement of chromatin in the nucleus may not be due to random or biochemical mechanisms alone, but may result from the transfer of mechanical force applied at a distant tissue surface.
Collapse
Affiliation(s)
- Jonathan T Henderson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | | | | | | |
Collapse
|
14
|
Wehrl HF, Wiehr S, Divine MR, Gatidis S, Gullberg GT, Maier FC, Rolle AM, Schwenck J, Thaiss WM, Pichler BJ. Preclinical and Translational PET/MR Imaging. J Nucl Med 2014; 55:11S-18S. [PMID: 24833493 DOI: 10.2967/jnumed.113.129221] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Combined PET and MR imaging (PET/MR imaging) has progressed tremendously in recent years. The focus of current research has shifted from technologic challenges to the application of this new multimodal imaging technology in the areas of oncology, cardiology, neurology, and infectious diseases. This article reviews studies in preclinical and clinical translation. The common theme of these initial results is the complementary nature of combined PET/MR imaging that often provides additional insights into biologic systems that were not clearly feasible with just one modality alone. However, in vivo findings require ex vivo validation. Combined PET/MR imaging also triggers a multitude of new developments in image analysis that are aimed at merging and using multimodal information that ranges from better tumor characterization to analysis of metabolic brain networks. The combination of connectomics information that maps brain networks derived from multiparametric MR data with metabolic information from PET can even lead to the formation of a new research field that we would call cometomics that would map functional and metabolic brain networks. These new methodologic developments also call for more multidisciplinarity in the field of molecular imaging, in which close interaction and training among clinicians and a variety of scientists is needed.
Collapse
Affiliation(s)
- Hans F Wehrl
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Stefan Wiehr
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mathew R Divine
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Grant T Gullberg
- Department of Radiotracer Development and Imaging Technology, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California; and
| | - Florian C Maier
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Anna-Maria Rolle
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany Department of Nuclear Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Wolfgang M Thaiss
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Marin T, Kalayehis MM, Parages FM, Brankov JG. Numerical Surrogates for Human Observers in Myocardial Motion Evaluation From SPECT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:38-47. [PMID: 23981533 PMCID: PMC4148467 DOI: 10.1109/tmi.2013.2279517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In medical imaging, the gold standard for image-quality assessment is a task-based approach in which one evaluates human observer performance for a given diagnostic task (e.g., detection of a myocardial perfusion or motion defect). To facilitate practical task-based image-quality assessment, model observers are needed as approximate surrogates for human observers. In cardiac-gated SPECT imaging, diagnosis relies on evaluation of the myocardial motion as well as perfusion. Model observers for the perfusion-defect detection task have been studied previously, but little effort has been devoted toward development of a model observer for cardiac-motion defect detection. In this work, we describe two model observers for predicting human observer performance in detection of cardiac-motion defects. Both proposed methods rely on motion features extracted using previously reported deformable mesh model for myocardium motion estimation. The first method is based on a Hotelling linear discriminant that is similar in concept to that used commonly for perfusion-defect detection. In the second method, based on relevance vector machines (RVM) for regression, we compute average human observer performance by first directly predicting individual human observer scores, and then using multi reader receiver operating characteristic analysis. Our results suggest that the proposed RVM model observer can predict human observer performance accurately, while the new Hotelling motion-defect detector is somewhat less effective.
Collapse
Affiliation(s)
- Thibault Marin
- The Medical imaging Research Center; Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Mahdi M. Kalayehis
- The Department of Electrical Engineering and Computer Science; University of Central Florida
| | - Felipe M. Parages
- The Medical imaging Research Center; Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Jovan G. Brankov
- The Medical imaging Research Center; Illinois Institute of Technology, Chicago, IL 60616 USA
| |
Collapse
|
16
|
Veress AI, Klein G, Gullberg GT. A Comparison of Hyperelastic Warping of PET Images with Tagged MRI for the Analysis of Cardiac Deformation. Int J Biomed Imaging 2013; 2013:728624. [PMID: 23843780 PMCID: PMC3697413 DOI: 10.1155/2013/728624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/18/2013] [Accepted: 05/07/2013] [Indexed: 11/17/2022] Open
Abstract
The objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PET image datasets. Two normal human male subjects were sequentially imaged with PET and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PET images and HARP based strain analyses of the MRI images. Coefficient of determination R (2) values were computed for the comparison of circumferential and radial strain predictions produced by each methodology. There was good correspondence between the methodologies, with R (2) values of 0.78 for the radial strains of both hearts and from an R (2) = 0.81 and R (2) = 0.83 for the circumferential strains. The strain predictions were not statistically different (P ≤ 0.01). A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure. This study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.
Collapse
Affiliation(s)
- Alexander I. Veress
- Department of Mechanical Engineering, University of Washington, Seattle Washington, Stevens Way, P.O. Box 352600, Seattle, WA 98195, USA
| | | | - Grant T. Gullberg
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Radiology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Boutchko R, Sitek A, Gullberg GT. Practical implementation of tetrahedral mesh reconstruction in emission tomography. Phys Med Biol 2013; 58:3001-22. [PMID: 23588373 DOI: 10.1088/0031-9155/58/9/3001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.
Collapse
Affiliation(s)
- R Boutchko
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, MS 55R0121, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
18
|
Quintana-Villamandos B, Delgado-Martos MJ, Sánchez-Hernández JJ, Gómez de Diego JJ, Fernández-Criado MDC, Canillas F, Martos-Rodríguez A, Delgado-Baeza E. Early regression of left ventricular hypertrophy after treatment with esmolol in an experimental rat model of primary hypertension. Hypertens Res 2013; 36:408-13. [PMID: 23364336 DOI: 10.1038/hr.2012.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Certain β-adrenergic blockers have proven useful in the regression of ventricular remodeling when administered as long-term treatment. However, early regression of left ventricular hypertrophy (LVH) has not been reported, following short-term administration of these drugs. We tested the hypothesis that short-term administration of the cardioselective β-blocker esmolol induces early regression of LVH in spontaneously hypertensive rats (SHR). Fourteen-month-old male SHRs were treated i.v. with vehicle (SHR) or esmolol (SHR-E) (300 μg kg(-1) min(-1)). Age-matched vehicle-treated male Wistar-Kyoto (WKY) rats served as controls. After 48 h, left ventricular morphology and function were assessed using M-mode echocardiograms (left ventricular mass index (LVMI), ejection fraction and transmitral Doppler (early-to-atrial filling velocity ratio (E/A), E-wave deceleration time (Edec time)). The standardized uptake value (SUV) was applied to evaluate FDG (2-deoxy-2[18F]fluoro-D-glucose) uptake by the heart using PET/CT. Left ventricular subendocardial and subepicardial biopsies were taken to analyze changes in cross-sectional area (CSA) of left ventricular cardiomyocytes and the fibrosis was expressed as collagen volume fraction (CVF). LVMI was lower in SHR-E with respect to SHR (P=0.009). There were no significant differences in EF, E/A ratio or Edec time in SHR-E compared with SHR (P=0.17, 0.55 and P=0.80, respectively). PET acquisitions in SHR-E showed lower (18)F-FDG uptake than SHR (P=0.003). Interestingly, there were no significant differences in SUV in either SHR-E or WKY (P=0.63). CSA in subendocardial and subepicardial regions was minor in SHR-E with respect to SHR (P<0.001), and there were no significant differences in CVF between both groups. Esmolol reverses early LVH in the SHR model of stable compensated ventricular hypertrophy. This is the first study to associate early regression of LVH with administration of a short-term β-blocker.
Collapse
|
19
|
Marin T, Brankov JG. Deformable left-ventricle mesh model for motion-compensated filtering in cardiac gated SPECT. Med Phys 2010; 37:5471-81. [PMID: 21089783 PMCID: PMC2962663 DOI: 10.1118/1.3483098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 07/12/2010] [Accepted: 08/05/2010] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In this article, the authors present a motion-compensated spatiotemporal processing algorithm to reduce noise in cardiac gated SPECT. Cardiac gated SPECT data are particularly noisy because the acquired photon data are divided among a number of time frames (gates). Classical spatial reconstruction and processing techniques offer noise reduction but they are usually applied on each frame separately and fail to utilize temporal correlation between frames. METHODS In this work, the authors present a motion-compensated spatiotemporal postreconstruction filter offering noise reduction while minimizing motion-blur artifacts. The proposed method can be used regardless of the type of image-reconstruction method (analytical or iterative). The between-frame volumetric myocardium motion is estimated using a deformable mesh model based on the model of the myocardial surfaces. The estimated motion is then used to perform spatiotemporal filtering along the motion trajectories. Both the motion-estimation and spatiotemporal filtering methods seek to maintain the wall brightening seen during cardiac contraction. Wall brightening is caused by the partial volume effect, which is usually viewed as an artifact; however, wall brightening is a useful signature in clinical practice because it allows the clinician to visualize wall thickening. Therefore, the authors seek in their method to preserve the brightening effect. RESULTS The authors find that the proposed method offers better noise reduction than several existing methods as quantitatively evaluated by signal-to-noise ratio, bias-variance plots, and ejection fraction analysis as well as on tested clinical data. CONCLUSIONS The proposed method mitigates for noise in cardiac gated SPECT images using a postreconstruction motion-compensated filtering approach. Visual as well as quantitative evaluation show considerable improvement in image quality.
Collapse
Affiliation(s)
- Thibault Marin
- Department of Electrical and Computer Engineering, Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn St., Chicago, Illinois 60616, USA
| | | |
Collapse
|
20
|
Phatak NS, Maas SA, Veress AI, Pack NA, Di Bella EV, Weiss JA. Strain measurement in the left ventricle during systole with deformable image registration. Med Image Anal 2009; 13:354-61. [PMID: 18948056 PMCID: PMC2873141 DOI: 10.1016/j.media.2008.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 07/16/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
The objective of this study was to validate a deformable image registration technique, termed Hyperelastic Warping, for left ventricular strain measurement during systole using cine-gated, non-tagged MR images with strains measured from tagged MRI. The technique combines deformation from high resolution, non-tagged MR image data with a detailed computational model, including estimated myocardial material properties, fiber direction, and active fiber contraction, to provide a comprehensive description of myocardial contractile function. A normal volunteer (male, age 30) with no history of cardiac pathology was imaged with a 1.5 T Siemens Avanto clinical scanner using a TrueFISP imaging sequence and a 32-channel cardiac coil. Both tagged and non-tagged cine MR images were obtained. The Hyperelastic Warping solution was evolved using a series of non-tagged images in ten intermediate phases from end-diastole to end-systole. The solution may be considered as ten separate warping problems with multiple templates and targets. At each stage, an active contraction was initially applied to a finite element model, and then image-based warping penalty forces were utilized to generate the final registration. Warping results for circumferential strain (R(2)=0.75) and radial strain (R(2)=0.78) were strongly correlated with results obtained from tagged MR images analyzed with a Harmonic Phase (HARP) algorithm. Results for fiber stretch, LV twist, and transmural strain distributions were in good agreement with experimental values in the literature. In conclusion, Hyperelastic Warping provides a unique alternative for quantifying regional LV deformation during systole without the need for tags.
Collapse
Affiliation(s)
- Nikhil S. Phatak
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Room 2480, Salt Lake City, UT 84112-9202, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Steve A. Maas
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Room 2480, Salt Lake City, UT 84112-9202, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Alexander I. Veress
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195-2600, United States
| | - Nathan A. Pack
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Room 2480, Salt Lake City, UT 84112-9202, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Edward V.R. Di Bella
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Room 2480, Salt Lake City, UT 84112-9202, United States
- Department of Radiology, University of Utah, Salt Lake City, UT, United States
| | - Jeffrey A. Weiss
- Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Room 2480, Salt Lake City, UT 84112-9202, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|