1
|
Jahangir S, Bosch W, Esrafilian A, Mononen ME, Tanska P, Stenroth L, Henriksen M, Alkjær T, Korhonen RK. Effect of uncertainties in musculoskeletal modeling inputs on sensitivity of knee joint finite element simulations. Med Eng Phys 2025; 138:104313. [PMID: 40180526 DOI: 10.1016/j.medengphy.2025.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Musculoskeletal finite element modeling is used to estimate mechanical responses of knee joint tissues but involves uncertainties in muscle activations, marker locations, cartilage stiffness, maximum isometric forces, and gait parameter personalization. This study investigates how these uncertainties affect cartilage mechanical responses in knee joint finite element models during walking. We selected three subjects and constructed five musculoskeletal models for each, representing different variations of modeling assumptions, along with a reference model using conventional assumptions. We then ran finite element simulations of knee joints using both personalized gait inputs (motion and loading boundary conditions) and non-personalized gait inputs from literature. Our results demonstrated that varying modeling assumptions, such as optimization function for muscle activation patterns, knee marker position, knee cartilage stiffness, and maximum isometric force, produced highly subject-specific effects. Differences between the reference and altered models ranged from 3% to 30% in musculoskeletal modeling and from 1% to 61% in finite element modeling results. The largest effects occurred with non-personalized gait data, resulting in up to 6- and 2-fold changes in musculoskeletal and finite element modeling results, respectively. This study highlights the sensitivity of knee mechanics to different modeling assumptions and underscores the importance of applying personalized gait parameters for accurate finite element simulations.
Collapse
Affiliation(s)
- Sana Jahangir
- Department of Technical Physics, University of Eastern Finland, Finland.
| | - Will Bosch
- Department of Technical Physics, University of Eastern Finland, Finland.
| | - Amir Esrafilian
- Department of Technical Physics, University of Eastern Finland, Finland
| | - Mika E Mononen
- Department of Technical Physics, University of Eastern Finland, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Finland
| | - Lauri Stenroth
- Department of Technical Physics, University of Eastern Finland, Finland
| | - Marius Henriksen
- The Parker Institute, Copenhagen University Hospital, Bispebjerg, Frederiksberg, Denmark
| | - Tine Alkjær
- The Parker Institute, Copenhagen University Hospital, Bispebjerg, Frederiksberg, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Finland.
| |
Collapse
|
2
|
Rasheed B, Bjelland Ø, Dalen AF, Schaathun HG. Hyperelastic meniscal material characterization via inverse parameter identification for knee arthroscopic simulations. J Biomech 2025; 183:112627. [PMID: 40117873 DOI: 10.1016/j.jbiomech.2025.112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Understanding the complex behavior of menisci is of growing interest in many fields including sports medicine, surgical simulation, and implant design. The selection of an appropriate material model and accurate model parameters contribute to identifying the degree of degeneration of the meniscus. Incorporating patient-specific material parameters could further improve the safe handling of tissue during probing in knee arthroscopy simulations, supporting more informed intraoperative decision-making. The objective of this study is to identify hyperelastic material parameters of individual human menisci based on an inverse parameter identification approach using optimization and demonstrate a real-time interactive surgical simulation using identified parameters. Mechanical tests were conducted in indentation of the anterior, mid-body, and posterior regions of five lateral and medial menisci to obtain experimental force-displacement data. An inverse parameter identification based on these tests and finite element (FE) models was employed to minimize the differences between the experimental and simulated force. The region-specific FE models considered the predominant collagen fiber orientation of the meniscus. Anisotropic hyperelastic material parameters were optimized using a particle swarm optimization algorithm. Finally, the optimized parameters were used in simulation open framework architecture (SOFA) and demonstrated a real-time probe-meniscus interaction during the arthroscopic meniscus examination. The optimized values revealed subject-specific characteristics, along with anatomical and regional variations, with high shear modulus observed in the anterior region of the medial meniscus (0.76 ± 0.28 MPa for 1 mm indentation). Additionally, an increase in shear modulus was observed with increased indentation depth (p<0.05 except for the mid-body of the medial meniscus).
Collapse
Affiliation(s)
- Bismi Rasheed
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway; Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway.
| | - Øystein Bjelland
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway; Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway
| | - Andreas F Dalen
- Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway; Department of Orthopaedic Surgery, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway
| | - Hans Georg Schaathun
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology -NTNU, Å lesund, 6025, Norway
| |
Collapse
|
3
|
Mao Z, Yang Q, Meng X, Jiang D, Zhao F. Dynamic biomechanical effects of medial meniscus tears on the knee joint: a finite element analysis. J Orthop Surg Res 2025; 20:26. [PMID: 39780245 PMCID: PMC11715105 DOI: 10.1186/s13018-024-05401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking. METHODS Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP). The seven models applied a 1000 N axial static load and a human walking load, as defined by the ISO14243-1 standard. RESULTS Compared with the results under static loading, the axial load ratio of the medial and lateral compartments was redistributed (ranging from 0.7:1 to 2.9:1). The stress concentration was in the middle and posterior portions of the lateral compartment, not in the anterior and middle portions of the medial compartment under dynamic analysis. Compared with that of the IMM, the maximum von Mises stress on the medial meniscus increased by approximately 24.68-57.14% in the RUTA, RUTM, and RSTM models, with a greater difference observed in the hoop stress on both sides of the radial tear. The peak radial tear gap appeared at GC6 and GC44, and the tear gap remained at a high level from GC30-GC60. CONCLUSIONS Radial tears should be considered for repair, and reinforced sutures should be placed on the anterior or middle regions of the meniscus. Greater attention should be given to the dynamic biomechanical effects on the knee joint during preoperative diagnosis and postoperative rehabilitation.
Collapse
Affiliation(s)
- Zuming Mao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Qiang Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiangyu Meng
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China.
| | - Feng Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
4
|
Jahangir S, Esrafilian A, Ebrahimi M, Stenroth L, Alkjær T, Henriksen M, Englund M, Mononen ME, Korhonen RK, Tanska P. Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties. J Biomech 2023; 160:111800. [PMID: 37797566 DOI: 10.1016/j.jbiomech.2023.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Fibril-reinforced poroviscoelastic material models are considered state-of-the-art in modeling articular cartilage biomechanics. Yet, cartilage material parameters are often based on bovine tissue properties in computational knee joint models, although bovine properties are distinctly different from those of humans. Thus, we aimed to investigate how cartilage mechanical responses are affected in the knee joint model during walking when fibril-reinforced poroviscoelastic properties of cartilage are based on human data instead of bovine. We constructed a finite element knee joint model in which tibial and femoral cartilages were modeled as fibril-reinforced poroviscoelastic material using either human or bovine data. Joint loading was based on subject-specific gait data. The resulting mechanical responses of knee cartilage were compared between the knee joint models with human or bovine fibril-reinforced poroviscoelastic cartilage properties. Furthermore, we conducted a sensitivity analysis to determine which fibril-reinforced poroviscoelastic material parameters have the greatest impact on cartilage mechanical responses in the knee joint during walking. In general, bovine cartilage properties yielded greater maximum principal stresses and fluid pressures (both up to 30%) when compared to the human cartilage properties during the loading response in both femoral and tibial cartilage sites. Cartilage mechanical responses were very sensitive to the collagen fibril-related material parameter variations during walking while they were unresponsive to proteoglycan matrix or fluid flow-related material parameter variations. Taken together, human cartilage material properties should be accounted for when the goal is to compare absolute mechanical responses of knee joint cartilage as bovine material parameters lead to substantially different cartilage mechanical responses.
Collapse
Affiliation(s)
- Sana Jahangir
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Amir Esrafilian
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Lauri Stenroth
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine Alkjær
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; The Parker Institute, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Marius Henriksen
- The Parker Institute, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Martin Englund
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mika E Mononen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Simkheada T, Orozco GA, Korhonen RK, Tanska P, Mononen ME. Comparison of constitutive models for meniscus and their effect on the knee joint biomechanics during gait. Comput Methods Biomech Biomed Engin 2023; 26:2008-2021. [PMID: 36645841 DOI: 10.1080/10255842.2022.2163587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
Mechanical behavior of meniscus can be modeled using constitutive material models of varying complexity, such as isotropic elastic or fibril reinforced poroelastic (FRPE). However, the FRPE material is complex to implement, computationally demanding in 3D geometries, and simulation is time-consuming. Hence, we aimed to quantify the most suitable and efficient constitutive model of meniscus for simulation of cartilage responses in the knee joint during walking. We showed that simpler constitutive material models can reproduce similar cartilage responses to a knee model with the FRPE meniscus, but only knee models that consider orthotropic elastic meniscus can also reproduce meniscus responses adequately.
Collapse
Affiliation(s)
- Tulashi Simkheada
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Gustavo A Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Raju V, Koorata PK. Computational assessment on the impact of collagen fiber orientation in cartilages on healthy and arthritic knee kinetics/kinematics. Med Eng Phys 2023; 117:103997. [PMID: 37331751 DOI: 10.1016/j.medengphy.2023.103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND The inhomogeneous distribution of collagen fiber in cartilage can substantially influence the knee kinematics. This becomes vital for understanding the mechanical response of soft tissues, and cartilage deterioration including osteoarthritis (OA). Though the conventional computational models consider geometrical heterogeneity along with fiber reinforcements in the cartilage model as material heterogeneity, the influence of fiber orientation on knee kinetics and kinematics is not fully explored. This work examines how the collagen fiber orientation in the cartilage affects the healthy (intact knee) and arthritic knee response over multiple gait activities like running and walking. METHODS A 3D finite element knee joint model is used to compute the articular cartilage response during the gait cycle. A fiber-reinforced porous hyper elastic (FRPHE) material is used to model the soft tissue. A split-line pattern is used to implement the fiber orientation in femoral and tibial cartilage. Four distinct intact cartilage models and three OA models are simulated to assess the impact of the orientation of collagen fibers in a depth wise direction. The cartilage models with fibers oriented in parallel, perpendicular, and inclined to the articular surface are investigated for multiple knee kinematics and kinetics. FINDINGS The comparison of models with fiber orientation parallel to articulating surface for walking and running gait has the highest elastic stress and fluid pressure compared with inclined and perpendicular fiber-oriented models. Also, the maximum contact pressure is observed to be higher in the case of intact models during the walking cycle than for OA models. In contrast, the maximum contact pressure is higher during running in OA models than in intact models. Additionally, parallel-oriented models produce higher maximum stresses and fluid pressure for walking and running gait than proximal-distal-oriented models. Interestingly, during the walking cycle, the maximum contact pressure with intact models is approximately three times higher than on OA models. In contrast, the OA models exhibit higher contact pressure during the running cycle. INTERPRETATION Overall, the study indicates that collagen orientation is crucial for tissue responsiveness. This investigation provides insights into the development of tailored implants.
Collapse
Affiliation(s)
- Vaishakh Raju
- Applied Solid Mechanics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India
| | - Poornesh Kumar Koorata
- Applied Solid Mechanics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.
| |
Collapse
|
7
|
A numerical model for fibril remodeling in articular cartilage. Knee 2023; 41:83-96. [PMID: 36642036 DOI: 10.1016/j.knee.2022.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/05/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Collagen fibrils of articular cartilage have a distinct organization in mature human knee joints. It seems that a mechanobiological process drives the remodeling of newborn collagen fibrils with maturation. Therefore, the goal of the present study was to develop a collagen fibril remodeling algorithm that describes the unique collagen fibril organization in a 3D knee model. METHOD A fibril-reinforced, biphasic cartilage model was used with a cuboid and a 3D human knee joint geometries. An isotropic collagen fibril distribution was assigned to the cartilage at the start of the analysis. Each fibril was rotated towards the direction that resulted in a maximum stretch at each time increment of the loading cycle. RESULTS The resulting pattern for the collagen fibrils was compared with split line patterns of porcine knee joint cartilage and also data published in the literature. Fibrils on the articular surface had a radial pattern towards the geometrical centroid of the tibial and femoral cartilage. In the tibiofemoral contact regions of superficial zone, fibrils were oriented circumferentially and randomly. In the porcine samples, the split-line patterns were similar to those obtained theoretically. Depth-wise organization of fibril network was characterized by fibrils perpendicular to the subchondral bone in the deeper layers, and fibrils parallel to the surface of cartilage in the superficial zone. CONCLUSIONS The maximum stretch criterion, coupled with a biphasic constitutive model, successfully predicted the collagen fibril organization observed in the articular cartilage throughout the depth and on the articular surface.
Collapse
|
8
|
Liu W, Sun X, Liu W, Liu H, Zhai H, Zhang D, Tian F. Finite element study of a partial meniscectomy of a complete discoid lateral meniscus in adults. Med Eng Phys 2022; 107:103855. [DOI: 10.1016/j.medengphy.2022.103855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
|
9
|
Raju V, Koorata PK. Influence of material heterogeneity on the mechanical response of articulated cartilages in a knee joint. Proc Inst Mech Eng H 2022; 236:1340-1348. [DOI: 10.1177/09544119221116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structurally, the articular cartilages are heterogeneous owing to nonuniform distribution and orientation of its constituents. The oversimplification of this soft tissue as a homogeneous material is generally considered in the simulation domain to estimate contact pressure along with other physical responses. Hence, there is a need for investigating knee cartilages for their actual response to external stimuli. In this article, impact of material and geometrical heterogeneity of the cartilage is resolved using well known material models. The findings are compared with conventional homogeneous models. The results indicate vital differences in contact pressure distribution and tissue deformation. Further, this study paves way for standardizing material models to extract maximum information possible for investigating knee mechanics with variable geometry and case specific parameters.
Collapse
Affiliation(s)
- Vaishakh Raju
- Applied Solid Mechanics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India
| | - Poornesh Kumar Koorata
- Applied Solid Mechanics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India
| |
Collapse
|
10
|
Zhang X, He J, Qiao L, Wang Z, Zheng Q, Xiong C, Yang H, Li K, Lu C, Li S, Chen H, Hu X. 3D
printed
PCLA
scaffold with nano‐hydroxyapatite coating doped green tea
EGCG
promotes bone growth and inhibits multidrug‐resistant bacteria colonization. Cell Prolif 2022; 55:e13289. [PMID: 35791492 PMCID: PMC9528762 DOI: 10.1111/cpr.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Jian He
- College of Medical, Henan University of Science and Technology Luoyang China
| | - Liang Qiao
- The First Affiliated Hospital College of Clinical Medicine of Henan University of Science and Technology Luoyang People's Republic of China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu Sichuan China
| | - Hui Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology Sichuan University Chengdu China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University Chengdu China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Sanqiang Li
- College of Medical, Henan University of Science and Technology Luoyang China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University Chengdu China
| |
Collapse
|
11
|
Rapid X-Ray-Based 3-D Finite Element Modeling of Medial Knee Joint Cartilage Biomechanics During Walking. Ann Biomed Eng 2022; 50:666-679. [PMID: 35262835 PMCID: PMC9079039 DOI: 10.1007/s10439-022-02941-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
Finite element (FE) modeling is becoming an increasingly popular method for analyzing knee joint mechanics and biomechanical mechanisms leading to osteoarthritis (OA). The most common and widely available imaging method for knee OA diagnostics is planar X-ray imaging, while more sophisticated imaging methods, e.g., magnetic resonance imaging (MRI) and computed tomography (CT), are seldom used. Hence, the capability to produce accurate biomechanical knee joint models directly from X-ray imaging would bring FE modeling closer to clinical use. Here, we extend our atlas-based framework by generating FE knee models from X-ray images (N = 28). Based on measured anatomical landmarks from X-ray and MRI, knee joint templates were selected from the atlas library. The cartilage stresses and strains of the X-ray-based model were then compared with the MRI-based model during the stance phase of the gait. The biomechanical responses were statistically not different between MRI- vs. X-ray-based models when the template obtained from X-ray imaging was the same as the MRI template. However, if this was not the case, the peak values of biomechanical responses were statistically different between X-ray and MRI models. The developed X-ray-based framework may pave the way for a clinically feasible approach for knee joint FE modeling.
Collapse
|
12
|
Mohamadi A, Momenzadeh K, Masoudi A, Walley KC, Ierardi K, Ramappa A, DeAngelis JP, Nazarian A. Evolution of knowledge on meniscal biomechanics: a 40 year perspective. BMC Musculoskelet Disord 2021; 22:625. [PMID: 34266442 PMCID: PMC8283839 DOI: 10.1186/s12891-021-04492-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Knowledge regarding the biomechanics of the meniscus has grown exponentially throughout the last four decades. Numerous studies have helped develop this knowledge, but these studies have varied widely in their approach to analyzing the meniscus. As one of the subcategories of mechanical phenomena Medical Subject Headings (MeSH) terms, mechanical stress was introduced in 1973. This study aims to provide an up-to-date chronological overview and highlights the evolutionary comprehension and understanding of meniscus biomechanics over the past forty years. Methods A literature review was conducted in April 2021 through PubMed. As a result, fifty-seven papers were chosen for this narrative review and divided into categories; Cadaveric, Finite element (FE) modeling, and Kinematic studies. Results Investigations in the 1970s and 1980s focused primarily on cadaveric biomechanics. These studies have generated the fundamental knowledge basis for the emergence of FE model studies in the 1990s. As FE model studies started to show comparable results to the gold standard cadaveric models in the 2000s, the need for understanding changes in tissue stress during various movements triggered the start of cadaveric and FE model studies on kinematics. Conclusion This study focuses on a chronological examination of studies on meniscus biomechanics in order to introduce concepts, theories, methods, and developments achieved over the past 40 years and also to identify the likely direction for future research. The biomechanics of intact meniscus and various types of meniscal tears has been broadly studied. Nevertheless, the biomechanics of meniscal tears, meniscectomy, or repairs in the knee with other concurrent problems such as torn cruciate ligaments or genu-valgum or genu-varum have not been extensively studied.
Collapse
Affiliation(s)
- Amin Mohamadi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA.,Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA.,Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aidin Masoudi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA
| | - Kempland C Walley
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA.,Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kenny Ierardi
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA
| | - Arun Ramappa
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph P DeAngelis
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA. .,Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. .,Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
13
|
Kwok AT, Mohamed NS, Plate JF, Yammani RR, Rosas S, Bateman TA, Livingston E, Moore JE, Kerr BA, Lee J, Furdui CM, Tan L, Bouxsein ML, Ferguson VL, Stodieck LS, Zawieja DC, Delp MD, Mao XW, Willey JS. Spaceflight and hind limb unloading induces an arthritic phenotype in knee articular cartilage and menisci of rodents. Sci Rep 2021; 11:10469. [PMID: 34006989 PMCID: PMC8131644 DOI: 10.1038/s41598-021-90010-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Reduced knee weight-bearing from prescription or sedentary lifestyles are associated with cartilage degradation; effects on the meniscus are unclear. Rodents exposed to spaceflight or hind limb unloading (HLU) represent unique opportunities to evaluate this question. This study evaluated arthritic changes in the medial knee compartment that bears the highest loads across the knee after actual and simulated spaceflight, and recovery with subsequent full weight-bearing. Cartilage and meniscal degradation in mice were measured via microCT, histology, and proteomics and/or biochemically after: (1) ~ 35 days on the International Space Station (ISS); (2) 13-days aboard the Space Shuttle Atlantis; or (3) 30 days of HLU, followed by a 49-day weight-bearing readaptation with/without exercise. Cartilage degradation post-ISS and HLU occurred at similar spatial locations, the tibial-femoral cartilage-cartilage contact point, with meniscal volume decline. Cartilage and meniscal glycosaminoglycan content were decreased in unloaded mice, with elevated catabolic enzymes (e.g., matrix metalloproteinases), and elevated oxidative stress and catabolic molecular pathway responses in menisci. After the 13-day Shuttle flight, meniscal degradation was observed. During readaptation, recovery of cartilage volume and thickness occurred with exercise. Reduced weight-bearing from either spaceflight or HLU induced an arthritic phenotype in cartilage and menisci, and exercise promoted recovery.
Collapse
Affiliation(s)
- Andy T Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Nequesha S Mohamed
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Johannes F Plate
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Raghunatha R Yammani
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel Rosas
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Eric Livingston
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph E Moore
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Bethany A Kerr
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Li Tan
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mary L Bouxsein
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado At Boulder, Boulder, CO, USA
| | - Louis S Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado At Boulder, Boulder, CO, USA
| | - David C Zawieja
- Department of Medical Physiology, Texas A&M University Medical School, Bryan, TX, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Xiao W Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA. .,Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
14
|
Mohammadi A, Myller KAH, Tanska P, Hirvasniemi J, Saarakkala S, Töyräs J, Korhonen RK, Mononen ME. Rapid CT-based Estimation of Articular Cartilage Biomechanics in the Knee Joint Without Cartilage Segmentation. Ann Biomed Eng 2020; 48:2965-2975. [PMID: 33179182 PMCID: PMC7723937 DOI: 10.1007/s10439-020-02666-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022]
Abstract
Knee osteoarthritis (OA) is a painful joint disease, causing disabilities in daily activities. However, there is no known cure for OA, and the best treatment strategy might be prevention. Finite element (FE) modeling has demonstrated potential for evaluating personalized risks for the progression of OA. Current FE modeling approaches use primarily magnetic resonance imaging (MRI) to construct personalized knee joint models. However, MRI is expensive and has lower resolution than computed tomography (CT). In this study, we extend a previously presented atlas-based FE modeling framework for automatic model generation and simulation of knee joint tissue responses using contrast agent-free CT. In this method, based on certain anatomical dimensions measured from bone surfaces, an optimal template is selected and scaled to generate a personalized FE model. We compared the simulated tissue responses of the CT-based models with those of the MRI-based models. We show that the CT-based models are capable of producing similar tensile stresses, fibril strains, and fluid pressures of knee joint cartilage compared to those of the MRI-based models. This study provides a new methodology for the analysis of knee joint and cartilage mechanics based on measurement of bone dimensions from native CT scans.
Collapse
Affiliation(s)
- Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
| | - Katariina A H Myller
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,Department of Medical Physics, Turku University Central Hospital, 20500, Turku, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Jukka Hirvasniemi
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| |
Collapse
|
15
|
Identification of locations susceptible to osteoarthritis in patients with anterior cruciate ligament reconstruction: Combining knee joint computational modelling with follow-up T 1ρ and T 2 imaging. Clin Biomech (Bristol, Avon) 2020; 79:104844. [PMID: 31439361 DOI: 10.1016/j.clinbiomech.2019.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Finite element modelling can be used to evaluate altered loading conditions and failure locations in knee joint tissues. One limitation of this modelling approach has been experimental comparison. The aims of this proof-of-concept study were: 1) identify areas susceptible to osteoarthritis progression in anterior cruciate ligament reconstructed patients using finite element modelling; 2) compare the identified areas against changes in T2 and T1ρ values between 1-year and 3-year follow-up timepoints. METHODS Two patient-specific finite element models of knee joints with anterior cruciate ligament reconstruction were created. The knee geometry was based on clinical magnetic resonance imaging and joint loading was obtained via motion capture. We evaluated biomechanical parameters linked with cartilage degeneration and compared the identified risk areas against T2 and T1ρ maps. FINDINGS The risk areas identified by the finite element models matched the follow-up magnetic resonance imaging findings. For Patient 1, excessive values of maximum principal stresses and shear strains were observed in the posterior side of the lateral tibial and femoral cartilage. For Patient 2, high values of maximum principal stresses and shear strains of cartilage were observed in the posterior side of the medial joint compartment. For both patients, increased T2 and T1ρ values between the follow-up times were observed in the same areas. INTERPRETATION Finite element models with patient-specific geometries and motions and relatively simple material models of tissues were able to identify areas susceptible to post-traumatic knee osteoarthritis. We suggest that the methodology presented here may be applied in large cohort studies.
Collapse
|
16
|
Gupta S, Sharma A, Vasantha Kumar J, Sharma V, Gupta PK, Verma RS. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. Int J Biol Macromol 2020; 162:1358-1371. [PMID: 32777410 DOI: 10.1016/j.ijbiomac.2020.07.238] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Failure of bioengineered meniscus implant after transplantation is a major concern owing to mechanical failure, lack of chondrogenic capability and patient specific design. In this article, we have, for the first time, fabricated a 3D printed scaffold with carbohydrate based self-healing interpenetrating network (IPN) hydrogels-based monolith construct for load bearing meniscus tissue. 3D printed PLA scaffold was surface functionalized and embedded with self-healing IPN hydrogel for interfacial bonding further characterized by micro CT. Using collagen (C), alginate (A) and oxidized alginate (ADA), we developed self-healing IPN hydrogels with dual crosslinking (Ca2+ based ionic crosslinking and Schiff base (A-A, A-ADA)) capability and studied their physicochemical properties. Further, we studied human stem cells behaviour and chondrogenic differentiation potential within these IPN hydrogels. In-vivo heterotopic implantation confirmed biocompatibility of the monolith showing the feasibility of using carbohydrate based IPN hydrogel embedded in 3D printed scaffold for meniscal tissue development.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - J Vasantha Kumar
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Vineeta Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Piyush Kumar Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
17
|
Constitutive modeling of menisci tissue: a critical review of analytical and numerical approaches. Biomech Model Mechanobiol 2020; 19:1979-1996. [PMID: 32572727 DOI: 10.1007/s10237-020-01352-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Menisci are fibrocartilaginous disks consisting of soft tissue with a complex biomechanical structure. They are critical determinants of the kinematics as well as the stability of the knee joint. Several studies have been carried out to formulate tissue mechanical behavior, leading to the development of a wide spectrum of constitutive laws. In addition to developing analytical tools, extensive numerical studies have been conducted on menisci modeling. This study reviews the developments of the most widely used continuum models of the meniscus mechanical properties in conjunction with emerging analytical and numerical models used to study the meniscus. The review presents relevant approaches and assumptions used to develop the models and includes discussions regarding strengths, weaknesses, and discrepancies involved in the presented models. The study presents a comprehensive coverage of relevant publications included in Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, Springer, and Scopus databases. This review aims at opening novel avenues for improving menisci modeling within the framework of constitutive modeling through highlighting the needs for further research directed toward determining key factors in gaining insight into the biomechanics of menisci which is crucial for the elaborate design of meniscal replacements.
Collapse
|
18
|
Development of robust finite element models of porcine tibiofemoral joints loaded under varied flexion angles and tibial freedoms. J Mech Behav Biomed Mater 2020; 109:103797. [PMID: 32347215 DOI: 10.1016/j.jmbbm.2020.103797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/20/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
The successful development of cartilage repair treatments for the knee requires understanding of the biomechanical environment within the joint. Computational finite element models play an important role in non-invasively understanding knee mechanics, but it is important to compare model findings to experimental data. The purpose of this study was to develop a methodology for generating subject-specific finite element models of porcine tibiofemoral joints that was robust and valid over multiple different constraint scenarios. Computational model predictions of two knees were compared to experimental studies on corresponding specimens loaded under several different constraint scenarios using a custom designed experimental rig, with variations made to the femoral flexion angle and level of tibial freedom. For both in vitro specimens, changing the femoral flexion angle had a marked effect on the contact distribution observed experimentally. With the tibia fixed, the majority of the contact region shifted to the medial plateau as flexion was increased. This did not occur when the tibia was free to displace and rotate in response to applied load. These trends in contact distribution across the medial and lateral plateaus were replicated in the computational models. In an additional model with the meniscus removed, contact pressures were elevated by a similar magnitude to the increase seen when the meniscus was removed experimentally. Overall, the models were able to capture specimen-specific trends in contact distribution under a variety of different loads, providing the potential to investigate subject-specific outcomes for knee interventions.
Collapse
|
19
|
Cooper RJ, Wilcox RK, Jones AC. Finite element models of the tibiofemoral joint: A review of validation approaches and modelling challenges. Med Eng Phys 2019; 74:1-12. [DOI: 10.1016/j.medengphy.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
|
20
|
Liukkonen MK, Mononen ME, Vartiainen P, Kaukinen P, Bragge T, Suomalainen JS, Malo MKH, Venesmaa S, Käkelä P, Pihlajamäki J, Karjalainen PA, Arokoski JP, Korhonen RK. Evaluation of the Effect of Bariatric Surgery-Induced Weight Loss on Knee Gait and Cartilage Degeneration. J Biomech Eng 2019; 140:2662611. [PMID: 29101403 DOI: 10.1115/1.4038330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 12/16/2022]
Abstract
The objective of the study was to investigate the effects of bariatric surgery-induced weight loss on knee gait and cartilage degeneration in osteoarthritis (OA) by combining magnetic resonance imaging (MRI), gait analysis, finite element (FE) modeling, and cartilage degeneration algorithm. Gait analyses were performed for obese subjects before and one-year after the bariatric surgery. FE models were created before and after weight loss for those subjects who did not have severe tibio-femoral knee cartilage loss. Knee cartilage degenerations were predicted using an adaptive cartilage degeneration algorithm which is based on cumulative overloading of cartilage, leading to iteratively altered cartilage properties during OA. The average weight loss was 25.7±11.0 kg corresponding to a 9.2±3.9 kg/m2 decrease in body mass index (BMI). External knee rotation moment increased, and minimum knee flexion angle decreased significantly (p < 0.05) after weight loss. Moreover, weight loss decreased maximum cartilage degeneration by 5±23% and 13±11% on the medial and lateral tibial cartilage surfaces, respectively. Average degenerated volumes in the medial and lateral tibial cartilage decreased by 3±31% and 7±32%, respectively, after weight loss. However, increased degeneration levels could also be observed due to altered knee kinetics. The present results suggest that moderate weight loss changes knee kinetics and kinematics and can slow-down cartilage degeneration for certain patients. Simulation results also suggest that prediction of cartilage degeneration is subject-specific and highly depend on the altered gait loading, not just the patient's weight.
Collapse
Affiliation(s)
- Mimmi K Liukkonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland e-mail:
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland e-mail:
| | - Paavo Vartiainen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland e-mail:
| | - Päivi Kaukinen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Physical and Rehabilitation Medicine, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland e-mail:
| | - Timo Bragge
- Charles River Discovery Research Services, Microkatu 1, Kuopio FI-70210, Finland e-mail:
| | - Juha-Sampo Suomalainen
- Department of Clinical Radiology, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland e-mail:
| | - Markus K H Malo
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland e-mail:
| | - Sari Venesmaa
- Department of Surgery, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Gastrointestinal Surgery, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland e-mail:
| | - Pirjo Käkelä
- Department of Surgery, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Gastrointestinal Surgery, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland e-mail:
| | - Jussi Pihlajamäki
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Clinical Nutrition and Obesity Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland e-mail:
| | - Pasi A Karjalainen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland e-mail:
| | - Jari P Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, P.O. Box 349, Helsinki FI-00029, Finland; University of Helsinki, P.O. Box 3, Helsinki FI-00014, Finland e-mail:
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland e-mail:
| |
Collapse
|
21
|
Abstract
BACKGROUND In order to determine whether treatments are effective in the treatment of meniscus tears, it is first necessary to understand the natural history of meniscus tears. The purpose of this paper is to review the literature to ascertain the natural history of meniscus tears in children and adolescents. METHODS A search of the Pubmed and Embase databases was performed using the search terms "meniscus tears," "natural history of meniscus tears," "knee meniscus," "discoid meniscus," and "natural history of discoid meniscus tears." RESULTS A total of 2567 articles on meniscus tears, 28 articles on natural history of meniscus tears, 8065 articles on "menisci," 396 articles on "discoid meniscus," and only 2 on the "natural history of discoid meniscus" were found. After reviewing the titles of these articles and reviewing the abstracts of 237 articles, it was clear that there was little true long-term natural history data of untreated meniscus tears nor whether treating meniscus tears altered the natural history. Twenty-five articles were chosen as there was some mention of natural history in their studies. CONCLUSIONS There are few long-term data on untreated meniscal tears or discoid meniscus, or tears in children and adolescents. The literature suggests that there is a higher incidence of chondral injury and subsequent osteoarthritis, but there are many confounding variables which are not controlled for in these relatively short-term papers.
Collapse
|
22
|
Murphy CA, Garg AK, Silva-Correia J, Reis RL, Oliveira JM, Collins MN. The Meniscus in Normal and Osteoarthritic Tissues: Facing the Structure Property Challenges and Current Treatment Trends. Annu Rev Biomed Eng 2019; 21:495-521. [DOI: 10.1146/annurev-bioeng-060418-052547] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The treatment of meniscus injuries has recently been facing a paradigm shift toward the field of tissue engineering, with the aim of regenerating damaged and diseased menisci as opposed to current treatment techniques. This review focuses on the structure and mechanics associated with the meniscus. The meniscus is defined in terms of its biological structure and composition. Biomechanics of the meniscus are discussed in detail, as an understanding of the mechanics is fundamental for the development of new meniscal treatment strategies. Key meniscal characteristics such as biological function, damage (tears), and disease are critically analyzed. The latest technologies behind meniscal repair and regeneration are assessed.
Collapse
Affiliation(s)
- Caroline A. Murphy
- Stokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, Limerick V94 PC82, Ireland
| | - Atul K. Garg
- Manufacturing Technology and Innovation Global Supply Chain, Johnson & Johnson, Bridgewater, New Jersey 08807, USA
| | - Joana Silva-Correia
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Maurice N. Collins
- Stokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, Limerick V94 PC82, Ireland
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
23
|
Utilizing Atlas-Based Modeling to Predict Knee Joint Cartilage Degeneration: Data from the Osteoarthritis Initiative. Ann Biomed Eng 2018; 47:813-825. [DOI: 10.1007/s10439-018-02184-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
|
24
|
Bolcos PO, Mononen ME, Mohammadi A, Ebrahimi M, Tanaka MS, Samaan MA, Souza RB, Li X, Suomalainen JS, Jurvelin JS, Töyräs J, Korhonen RK. Comparison between kinetic and kinetic-kinematic driven knee joint finite element models. Sci Rep 2018; 8:17351. [PMID: 30478347 PMCID: PMC6255758 DOI: 10.1038/s41598-018-35628-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Use of knee joint finite element models for diagnostic purposes is challenging due to their complexity. Therefore, simpler models are needed for studies where a high number of patients need to be analyzed, without compromising the results of the model. In this study, more complex, kinetic (forces and moments) and simpler, kinetic-kinematic (forces and angles) driven finite element models were compared during the stance phase of gait. Patella and tendons were included in the most complex model, while they were absent in the simplest model. The greatest difference between the most complex and simplest models was observed in the internal-external rotation and axial joint reaction force, while all other rotations, translations and joint reaction forces were similar to one another. In terms of cartilage stresses and strains, the simpler models behaved similarly with the more complex models in the lateral joint compartment, while minor differences were observed in the medial compartment at the beginning of the stance phase. We suggest that it is feasible to use kinetic-kinematic driven knee joint models with a simpler geometry in studies with a large cohort size, particularly when analyzing cartilage responses and failures related to potential overloads.
Collapse
Affiliation(s)
- Paul O Bolcos
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Matthew S Tanaka
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
| | - Michael A Samaan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
- Dept. of Kinesiology & Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - Richard B Souza
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, 94158, USA
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, 94158, San Francisco, USA
- Program of Advanced Musculoskeletal Imaging (PAMI), Department of Biomedical Engineering, Cleveland Clinic, OH, 44195, Cleveland, USA
| | - Juha-Sampo Suomalainen
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, QLD-4072, Brisbane, Australia
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FI-70029, KUH, Kuopio, Finland
| |
Collapse
|
25
|
Kroker A, Manske SL, Mohtadi N, Boyd SK. A study of the relationship between meniscal injury and bone microarchitecture in ACL reconstructed knees. Knee 2018; 25:746-756. [PMID: 30115589 DOI: 10.1016/j.knee.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/03/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears increase the risk of developing knee osteoarthritis. This risk increases further with concurrent meniscus injury. The role of bone changes during knee osteoarthritis development are not well-understood, but may be important to its etiology. PURPOSE To explore the effects of ACL tears on bone mineral density (BMD) and bone microarchitecture at five years post-op and their relationship to meniscal pathology, using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS Twenty-eight participants with unilateral ACL reconstructions five years prior and no evidence of clinical or radiographic osteoarthritis were recruited. All participants represented one of three meniscus statuses: meniscus intact, meniscus repair, or meniscectomy. BMD and bone microarchitecture of the subchondral bone plate and adjacent trabecular bone were assessed using HR-pQCT, and percent-differences between the injured and contralateral knee were determined. RESULTS Subchondral bone plate thickness in the lateral femoral condyle was higher in the reconstructed knee (9.0%, p = 0.002), driven by the meniscus repair and meniscectomy groups (15.2% to 15.4%, p < 0.05). Trabecular BMD was lower in the reconstructed knee in the medial femoral condyle (-4.8% to -7.6%, p < 0.05), driven by all meniscus statuses. In the lateral compartments, few differences in trabecular bone were found. However, accounting for meniscus status, the meniscus intact group had lower trabecular BMD throughout both femur and tibia. CONCLUSIONS Five years post-op, reconstructed knees demonstrated detectable differences in BMD and bone microarchitecture, despite having normal radiographs. Meniscus damage affected primarily the lateral compartment, warranting further investigation to determine if these changes relate to osteoarthritis development.
Collapse
Affiliation(s)
- Andres Kroker
- Department of Radiology, Cumming School of Medicine, University of Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada.
| | - Sarah L Manske
- Department of Radiology, Cumming School of Medicine, University of Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada.
| | - Nicholas Mohtadi
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada.
| | - Steven K Boyd
- Department of Radiology, Cumming School of Medicine, University of Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Canada.
| |
Collapse
|
26
|
Mononen ME, Tanska P, Isaksson H, Korhonen RK. New algorithm for simulation of proteoglycan loss and collagen degeneration in the knee joint: Data from the osteoarthritis initiative. J Orthop Res 2018; 36:1673-1683. [PMID: 29150953 DOI: 10.1002/jor.23811] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is a harmful joint disease but prediction of disease progression is problematic. Currently, there is only one modeling framework which can be applied to predict the progression of knee osteoarthritis but it only considers degenerative changes in the collagen fibril network. Here, we have developed the framework further by considering all of the major tissue changes (proteoglycan content, fluid flow, and collagen fibril network) occurring in osteoarthritis. While excessive levels of tissue stresses controlled degeneration of the collagen fibril network, excessive levels of tissue strains controlled the decrease in proteoglycan content and the increase in permeability. We created four knee joint models with increasing degrees of complexity based on the depth-wise composition. Models were tested for normal and abnormal, physiologically relevant, loading conditions in the knee. Finally, the predicted depth-wise compositional changes from each model were compared against experimentally observed compositional changes in vitro. The model incorporating the typical depth-wise composition of cartilage produced the best match with experimental observations. Consistent with earlier in vitro experiments, this model simulated the greatest proteoglycan depletion in the superficial and middle zones, while the collagen fibril degeneration was located mostly in the superficial zone. The presented algorithm can be used for predicting simultaneous collagen degeneration and proteoglycan loss during the development of knee osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1673-1683, 2018.
Collapse
Affiliation(s)
- Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio, 70211, Finland.,Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
27
|
Klets O, Mononen ME, Liukkonen MK, Nevalainen MT, Nieminen MT, Saarakkala S, Korhonen RK. Estimation of the Effect of Body Weight on the Development of Osteoarthritis Based on Cumulative Stresses in Cartilage: Data from the Osteoarthritis Initiative. Ann Biomed Eng 2018; 46:334-344. [PMID: 29280031 PMCID: PMC5844567 DOI: 10.1007/s10439-017-1974-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
Evaluation of the subject-specific biomechanical effects of obesity on the progression of OA is challenging. The aim of this study was to create 3D MRI-based finite element models of the knee joints of seven obese subjects, who had developed OA at 4-year follow-up, and of seven normal weight subjects, who had not developed OA at 4-year follow-up, to test the sensitivity of cumulative maximum principal stresses in cartilage in quantitative risk evaluation of the initiation and progression of knee OA. Volumes of elements with cumulative stresses over 5 MPa in tibial cartilage were significantly (p < 0.05) larger in obese subjects as compared to normal weight subjects. Locations of high peak cumulative stresses at the baseline in most of the obese subjects showed a good agreement with the locations of the cartilage loss and MRI scoring at follow-up. Simulated weight loss (to body mass index 24 kg/m2) in obese subjects led to significant reduction of the highest cumulative stresses in tibial and femoral cartilages. The modeling results suggest that an analysis of cumulative stresses could be used to evaluate subject-specific effects of obesity and weight loss on cartilage responses and potential risks for the progression of knee OA.
Collapse
Affiliation(s)
- Olesya Klets
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 8000, 90014, Oulu, Finland.
- Medical Research Center Oulu, University of Oulu, P.O. Box 8000, Oulu, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, PL 1627, Kuopio, Finland
| | - Mimmi K Liukkonen
- Department of Applied Physics, University of Eastern Finland, PL 1627, Kuopio, Finland
| | - Mika T Nevalainen
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, Oulu, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 8000, 90014, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, P.O. Box 8000, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 8000, 90014, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, P.O. Box 8000, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, PL 1627, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, P.O. Box 100, Kuopio, Finland
| |
Collapse
|
28
|
Monibi FA, Bozynski CC, Kuroki K, Stoker AM, Pfeiffer FM, Sherman SL, Cook JL. Development of a Micronized Meniscus Extracellular Matrix Scaffold for Potential Augmentation of Meniscal Repair and Regeneration. Tissue Eng Part C Methods 2017; 22:1059-1070. [PMID: 27824291 DOI: 10.1089/ten.tec.2016.0276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decellularized scaffolds composed of extracellular matrix (ECM) hold promise for repair and regeneration of the meniscus, given the potential for ECM-based biomaterials to aid in stem cell recruitment, infiltration, and differentiation. The objectives of this study were to decellularize canine menisci to fabricate a micronized, ECM-derived scaffold and to determine the cytocompatibility and repair potential of the scaffold ex vivo. Menisci were decellularized with a combination of physical agitation and chemical treatments. For scaffold fabrication, decellularized menisci were cryoground into a powder and the size and morphology of the ECM particles were evaluated using scanning electron microscopy. Histologic and biochemical analyses of the scaffold confirmed effective decellularization with loss of proteoglycan from the tissue but no significant reduction in collagen content. When washed effectively, the decellularized scaffold was cytocompatible to meniscal fibrochondrocytes, synoviocytes, and whole meniscal tissue based on the resazurin reduction assay and histologic evaluation. In an ex vivo model for meniscal repair, radial tears were augmented with the scaffold delivered with platelet-rich plasma as a carrier, and compared to nonaugmented (standard-of-care) suture techniques. Histologically, there was no evidence of cellular migration or proliferation noted in any of the untreated or standard-of-care treatment groups after 40 days of culture. Conversely, cellular infiltration and proliferation were noted in scaffold-augmented repairs. These data suggest the potential for the scaffold to promote cellular survival, migration, and proliferation ex vivo. Further investigations are necessary to examine the potential for the scaffold to induce cellular differentiation and functional meniscal fibrochondrogenesis.
Collapse
Affiliation(s)
- Farrah A Monibi
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Chantelle C Bozynski
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Keiichi Kuroki
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri
| | - Aaron M Stoker
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - Ferris M Pfeiffer
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri.,3 Department of Bioengineering, University of Missouri , Columbia, Missouri
| | - Seth L Sherman
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| | - James L Cook
- 1 Thompson Laboratory for Regenerative Orthopaedics (formerly Comparative Orthopaedic Laboratory), Missouri Orthopaedic Institute, University of Missouri , Columbia, Missouri.,2 Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri
| |
Collapse
|
29
|
Liukkonen MK, Mononen ME, Tanska P, Saarakkala S, Nieminen MT, Korhonen RK. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint. Comput Methods Biomech Biomed Engin 2017; 20:1453-1463. [PMID: 28895760 DOI: 10.1080/10255842.2017.1375477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.
Collapse
Affiliation(s)
- Mimmi K Liukkonen
- a Department of Applied Physics , University of Eastern Finland , Kuopio , Finland.,b Diagnostic Imaging Centre , Kuopio University Hospital , Kuopio , Finland
| | - Mika E Mononen
- a Department of Applied Physics , University of Eastern Finland , Kuopio , Finland
| | - Petri Tanska
- a Department of Applied Physics , University of Eastern Finland , Kuopio , Finland
| | - Simo Saarakkala
- c Research Unit of Medical Imaging, Physics and Technology , University of Oulu , Oulu , Finland.,d Medical Research Center Oulu , University of Oulu , Oulu , Finland.,e Department of Diagnostic Radiology , Oulu University Hospital , Oulu , Finland
| | - Miika T Nieminen
- c Research Unit of Medical Imaging, Physics and Technology , University of Oulu , Oulu , Finland.,d Medical Research Center Oulu , University of Oulu , Oulu , Finland.,e Department of Diagnostic Radiology , Oulu University Hospital , Oulu , Finland
| | - Rami K Korhonen
- a Department of Applied Physics , University of Eastern Finland , Kuopio , Finland.,b Diagnostic Imaging Centre , Kuopio University Hospital , Kuopio , Finland
| |
Collapse
|
30
|
Liukkonen MK, Mononen ME, Klets O, Arokoski JP, Saarakkala S, Korhonen RK. Simulation of Subject-Specific Progression of Knee Osteoarthritis and Comparison to Experimental Follow-up Data: Data from the Osteoarthritis Initiative. Sci Rep 2017; 7:9177. [PMID: 28835668 PMCID: PMC5569023 DOI: 10.1038/s41598-017-09013-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/21/2017] [Indexed: 01/05/2023] Open
Abstract
Economic costs of osteoarthritis (OA) are considerable. However, there are no clinical tools to predict the progression of OA or guide patients to a correct treatment for preventing OA. We tested the ability of our cartilage degeneration algorithm to predict the subject-specific development of OA and separate groups with different OA levels. The algorithm was able to predict OA progression similarly with the experimental follow-up data and separate subjects with radiographical OA (Kellgren-Lawrence (KL) grade 2 and 3) from healthy subjects (KL0). Maximum degeneration and degenerated volumes within cartilage were significantly higher (p < 0.05) in OA compared to healthy subjects, KL3 group showing the highest degeneration values. Presented algorithm shows a great potential to predict subject-specific progression of knee OA and has a clinical potential by simulating the effect of interventions on the progression of OA, thus helping decision making in an attempt to delay or prevent further OA symptoms.
Collapse
Affiliation(s)
- Mimmi K Liukkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Olesya Klets
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jari P Arokoski
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
31
|
Meng Q, Fisher J, Wilcox R. The effects of geometric uncertainties on computational modelling of knee biomechanics. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170670. [PMID: 28879008 PMCID: PMC5579124 DOI: 10.1098/rsos.170670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models.
Collapse
Affiliation(s)
- Qingen Meng
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
32
|
Monibi FA, Cook JL. Tissue-Derived Extracellular Matrix Bioscaffolds: Emerging Applications in Cartilage and Meniscus Repair. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:386-398. [DOI: 10.1089/ten.teb.2016.0431] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Farrah A. Monibi
- Thompson Laboratory for Regenerative Orthopedics, Department of Orthopedic Surgery, Missouri Orthopedic Institute, University of Missouri, Columbia, Missouri
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopedics, Department of Orthopedic Surgery, Missouri Orthopedic Institute, University of Missouri, Columbia, Missouri
| |
Collapse
|
33
|
Crane DM, Oliver KS, Bayes MC. Orthobiologics and Knee Osteoarthritis. Phys Med Rehabil Clin N Am 2016; 27:985-1002. [DOI: 10.1016/j.pmr.2016.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Klets O, Mononen ME, Tanska P, Nieminen MT, Korhonen RK, Saarakkala S. Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI). J Biomech 2016; 49:3891-3900. [PMID: 27825602 DOI: 10.1016/j.jbiomech.2016.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
The intricate properties of articular cartilage and the complexity of the loading environment are some of the key challenges in developing models for biomechanical analysis of the knee joint. Fibril-reinforced poroelastic (FRPE) material models have been reported to accurately capture characteristic responses of cartilage during dynamic and static loadings. However, high computational and time costs associated with such advanced models limit applicability of FRPE models when multiple subjects need to be analyzed. If choosing simpler material models, it is important to show that they can still produce truthful predictions. Therefore, the aim of this study was to compare depth-dependent maximum principal stresses and strains within articular cartilage in the 3D knee joint between FRPE material models and simpler isotropic elastic (IE), isotropic poroelastic (IPE) and transversely isotropic poroelastic (TIPE) material models during simulated gait cycle. When cartilage-cartilage contact pressures were matched between the models (15% allowed difference), maximum principal stresses in the IE, IPE and TIPE models were substantially lower than those in the FRPE model (by more than 50%, TIPE model being closest to the FRPE model), and stresses occurred only in compression in the IE model. Additional simulations were performed to find material parameters for the TIPE model (due to its anisotropic nature) that would yield maximum principal stresses similar to the FRPE model. The modified homogeneous TIPE model was in a better agreement with the homogeneous FRPE model, and the average and maximum differences in maximum principal stresses throughout the depth of cartilage were 7% and 9%, respectively, in the lateral compartment and 9% and 11% in the medial compartment. This study revealed that it is possible to match simultaneously maximum principal stresses and strains of cartilage between non-fibril-reinforced and fibril-reinforced knee joint models during gait. Depending on the research question (such as analysis of fibril strain necessitates the use of fibril-reinforced material models) or clinical demand (fast simulations with simpler material models), the choice of the material model should be done carefully.
Collapse
Affiliation(s)
- Olesya Klets
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital Oulu, Finland
| |
Collapse
|
35
|
Zikria B, Hafezi-Nejad N, Roemer FW, Guermazi A, Demehri S. Meniscal Surgery: Risk of Radiographic Joint Space Narrowing Progression and Subsequent Knee Replacement-Data from the Osteoarthritis Initiative. Radiology 2016; 282:807-816. [PMID: 27697006 DOI: 10.1148/radiol.2016160092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose To investigate the risk of radiographic joint space narrowing (JSN) progression evaluated in subjects with and those without underlying osteoarthritis at baseline and knee replacement (KR) associated with meniscal surgery in subjects with and those without a reported history of preceding knee trauma. Materials and Methods The HIPAA-compliant protocol was approved by the institutional review boards of the participating centers. Written informed consent was obtained from all participants. Subjects who underwent meniscal surgery with a preceding knee trauma at baseline (n = 564) and those without (n = 147) were drawn from the Osteoarthritis Initiative cohort (n = 4796). Radiographic JSN progression was evaluated by using Osteoarthritis Research Society International grading (progression in 1st-, 2nd-, 3rd-, 4th-, 6th-, or 8th-year radiographic findings compared with baseline). KR was assessed up to the 9th year of study (days passed from inclusion to KR or last follow-up). Cox hazard analysis was used to extract the adjusted hazard ratios (HRs) with adjustments for baseline age, sex, body mass index, physical activity, symptoms, and radiographic osteoarthritis features (Kellgren and Lawrence [KL] grade). Results Meniscal surgery with a history of preceding knee trauma was not associated with radiographic progression of JSN (adjusted HR, 0.91 [95% confidence interval {CI}: 0.78, 1.07]) or KR (adjusted HR, 1.02 [95% CI: 0.79, 1.34]; P = .854). However, meniscal surgery without a history of preceding knee trauma was associated with radiographic progression of JSN (adjusted HR, 1.27 [95% CI: 1.00, 1.63]) and KR (adjusted HR, 2.09 [95% CI: 1.52, 2.89]; P < .001). Additionally, there was a higher risk of KR in subjects with radiographic KL grade of less than 2 (adjusted HR, 6.97 [95% CI: 3.56, 13.64]; P < .001) at baseline in comparison with KL grade of at least 2 (adjusted HR, 1.76 [95% CI: 1.22, 2.54]; P < .05). Conclusion In contrast to subjects without a reported preceding trauma, meniscal surgery is not independently associated with increased risk of radiographic JSN progression and KR in patients with a reported preceding trauma. © RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Bashir Zikria
- From the Department of Orthopedic Surgery (B.Z.) and Russell H. Morgan Department of Radiology and Radiological Sciences (N.H.N., S.D.), Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287; and Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (F.W.R., A.G.)
| | - Nima Hafezi-Nejad
- From the Department of Orthopedic Surgery (B.Z.) and Russell H. Morgan Department of Radiology and Radiological Sciences (N.H.N., S.D.), Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287; and Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (F.W.R., A.G.)
| | - Frank W Roemer
- From the Department of Orthopedic Surgery (B.Z.) and Russell H. Morgan Department of Radiology and Radiological Sciences (N.H.N., S.D.), Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287; and Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (F.W.R., A.G.)
| | - Ali Guermazi
- From the Department of Orthopedic Surgery (B.Z.) and Russell H. Morgan Department of Radiology and Radiological Sciences (N.H.N., S.D.), Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287; and Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (F.W.R., A.G.)
| | - Shadpour Demehri
- From the Department of Orthopedic Surgery (B.Z.) and Russell H. Morgan Department of Radiology and Radiological Sciences (N.H.N., S.D.), Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287; and Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (F.W.R., A.G.)
| |
Collapse
|
36
|
O'Reilly A, Kelly DJ. Role of oxygen as a regulator of stem cell fate during the spontaneous repair of osteochondral defects. J Orthop Res 2016; 34:1026-36. [PMID: 26595173 DOI: 10.1002/jor.23110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/20/2015] [Indexed: 02/04/2023]
Abstract
The complexity of the in vivo environment makes it is difficult to isolate the effects of specific cues on regulating cell fate during regenerative events such as osteochondral defect repair. The objective of this study was to develop a computational model to explore how joint specific environmental factors regulate mesenchymal stem cell (MSC) fate during osteochondral defect repair. To this end, the spontaneous repair process within an osteochondral defect was simulated using a tissue differentiation algorithm which assumed that MSC fate was regulated by local oxygen levels and substrate stiffness. The developed model was able to predict the main stages of tissue formation observed by a number of in vivo studies. Following this, a parametric study was conducted to better understand why interventions that modulate angiogenesis dramatically impact the outcome of osteochondral defect healing. In the simulations where angiogenesis was reduced, by week 12, the subchondral plate was predicted to remain below the native tidemark, although the chondral region was composed entirely of cartilage and fibrous tissue. In the simulations where angiogenesis was increased, more robust cell proliferation and cartilage formation were observed during the first 4 weeks, however, by week 12 the subchondral plate had advanced above the native tidemark although any remaining tissue was either hypertrophic cartilage or fibrous tissue. These results suggest that osteochondral defect repair could be enhanced by interventions where angiogenesis is promoted but confined to within the subchondral region of the defect. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1026-1036, 2016.
Collapse
Affiliation(s)
- Adam O'Reilly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Mononen ME, Tanska P, Isaksson H, Korhonen RK. A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data from the Osteoarthritis Initiative. Sci Rep 2016; 6:21415. [PMID: 26906749 PMCID: PMC4764929 DOI: 10.1038/srep21415] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05; experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0–2 years, p < 0.001) was followed by a slow or negligible degeneration (2–4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.
Collapse
Affiliation(s)
- Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Radiology, Oulu University Hospital, Oulu, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
38
|
Abstract
Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical functions of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor-intensive reproduction of model development steps can be avoided. Interested parties can immediately utilize readily available models for scientific discovery and clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes the detailed anatomical representation of the joint's major tissue structures and their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next-generation knee models is noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age groups and pathological states.
Collapse
Affiliation(s)
- Ahmet Erdemir
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
39
|
Párraga Quiroga JM, Ito K, van Donkelaar CC. Meniscus replacement: Influence of geometrical mismatches on chondroprotective capabilities. J Biomech 2015; 48:1371-6. [PMID: 25835788 DOI: 10.1016/j.jbiomech.2015.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
The chondroprotective success of meniscal transplantation is variable. Poorly controlled factors such as a geometrical mismatch of the implant may be partly responsible. Clinical data, animal studies and cadaver experiments suggest that smaller transplants perform better than oversized, but clear evidence is lacking. The hypothesis of this study is that smaller menisci outperform larger ones because they distribute stresses more effectively at those particular locations that receive the highest loads. Consequently, collagen in the adjacent cartilage is protected from damage due to overstraining. Experimentally it is not possible to measure load distribution and collagen strain inside articular cartilage (AC). Therefore, a numerical model was used to determine the mechanical conditions throughout the depth of the AC. Meniscus implants with different sizes and mechanical properties were evaluated. These were compared with healthy and with meniscectomized joints. To account for the time-dependent behavior 600s of loading was simulated; results were visualized after 1s and 600s. Simulations showed that AC's strains strongly depended on implant size and loading duration. They depended less on the stiffness of the implant material. With an oversized implant, collagen strains were particularly large in the femoral AC initially and further increased upon sustained loading. The severest compressive strains occurred after sustained loading in the meniscectomized joint. Strains with an undersized meniscus were comparable to a perfectly sized implant. In conclusion, these results support the hypothesis that an undersized implant may outperform an oversized one because it distributes stresses better in the most intensely loaded joint area.
Collapse
Affiliation(s)
- J M Párraga Quiroga
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - K Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - C C van Donkelaar
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands.
| |
Collapse
|
40
|
Tanska P, Mononen ME, Korhonen RK. A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking. J Biomech 2015; 48:1397-406. [PMID: 25795269 DOI: 10.1016/j.jbiomech.2015.02.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Mechanical signals experienced by chondrocytes (articular cartilage cells) modulate cell synthesis and cartilage health. Multi-scale modeling can be used to study how forces are transferred from joint surfaces through tissues to chondrocytes. Therefore, estimation of chondrocyte behavior during certain physical activities, such as walking, could provide information about how cells respond to normal and abnormal loading in joints. In this study, a 3D multi-scale model was developed for evaluating chondrocyte and surrounding peri- and extracellular matrix responses during gait loading within healthy and medial meniscectomy knee joints. The knee joint geometry was based on MRI, whereas the input used for gait loading was obtained from the literature. Femoral and tibial cartilages were modeled as fibril-reinforced poroviscoelastic materials, whereas menisci were considered as transversely isotropic. Fluid pressures in the chondrocyte and cartilage tissue increased up to 2MPa (an increase of 30%) in the meniscectomy joint compared to the normal, healthy joint. The elevated level of fluid pressure was observed during the entire stance phase of gait. A medial meniscectomy caused substantially larger (up to 60%) changes in maximum principal strains in the chondrocyte compared to those in the peri- or extracellular matrices. Chondrocyte volume or morphology did not change substantially due to a medial meniscectomy. Current findings suggest that during walking chondrocyte deformations are not substantially altered due to a medial meniscectomy, while abnormal joint loading exposes chondrocytes to elevated levels of fluid pressure and maximum principal strains (compared to strains in the peri- or extracellular matrices). These might contribute to cell viability and the onset of osteoarthritis.
Collapse
Affiliation(s)
- Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland.
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
41
|
Guo H, Santner TJ, Chen T, Wang H, Brial C, Gilbert SL, Koff MF, Lerner AL, Maher SA. A statistically-augmented computational platform for evaluating meniscal function. J Biomech 2015; 48:1444-53. [PMID: 25757666 DOI: 10.1016/j.jbiomech.2015.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022]
Abstract
Meniscal implants have been developed in an attempt to provide pain relief and prevent pathological degeneration of articular cartilage. However, as yet there has been no systematic and comprehensive analysis of the effects of the meniscal design variables on meniscal function across a wide patient population, and there are no clear design criteria to ensure the functional performance of candidate meniscal implants. Our aim was to develop a statistically-augmented, experimentally-validated, computational platform to assess the effect of meniscal properties and patient variables on knee joint contact mechanics during the activity of walking. Our analysis used Finite Element Models (FEMs) that represented the geometry, kinematics as based on simulated gait and contact mechanics of three laboratory tested human cadaveric knees. The FEMs were subsequently programmed to represent prescribed meniscal variables (circumferential and radial/axial moduli-Ecm, Erm, stiffness of the meniscal attachments-Slpma, Slamp) and patient variables (varus/valgus alignment-VVA, and articular cartilage modulus-Ec). The contact mechanics data generated from the FEM runs were used as training data to a statistical interpolator which estimated joint contact data for untested configurations of input variables. Our data suggested that while Ecm and Erm of a meniscus are critical in determining knee joint mechanics in early and late stance (peak 1 and peak 3 of the gait cycle), for some knees that have greater laxity in the mid-stance phase of gait, the stiffness of the articular cartilage, Ec, can influence force distribution across the tibial plateau. We found that the medial meniscus plays a dominant load-carrying role in the early stance phase and less so in late stance, while the lateral meniscus distributes load throughout gait. Joint contact mechanics in the medial compartment are more sensitive to Ecm than those in the lateral compartment. Finally, throughout stance, varus-valgus alignment can overwhelm these relationships while the stiffness of meniscal attachments in the range studied have minimal effects on the knee joint mechanics. In summary, our statistically-augmented, computational platform allowed us to study how meniscal implant design variables (which can be controlled at the time of manufacture or implantation) interact with patient variables (which can be set in FEMs but cannot be controlled in patient studies) to affect joint contact mechanics during the activity of simulated walking.
Collapse
Affiliation(s)
- Hongqiang Guo
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, United States; Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY 10021, United States
| | - Thomas J Santner
- Department of Statistics, The Ohio State University, Columbus, OH 43210, United States
| | - Tony Chen
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, United States; Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY 10021, United States
| | - Hongsheng Wang
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, United States; Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY 10021, United States
| | - Caroline Brial
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, United States
| | - Susannah L Gilbert
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, United States
| | - Matthew F Koff
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, United States
| | - Amy L Lerner
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Suzanne A Maher
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, United States; Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY 10021, United States.
| |
Collapse
|
42
|
Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train 2014; 49:806-19. [PMID: 25232663 PMCID: PMC4264654 DOI: 10.4085/1062-6050-49.3.35] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the prophylactic capability of anterior cruciate ligament (ACL) reconstruction in decreasing the risk of knee osteoarthritis (OA) when compared with ACL-deficient patients, as well as the effect of a concomitant meniscectomy. We also sought to examine the influence of study design, publication date, and graft type as well as the magnitude of change in physical activity from preinjury Tegner scores in both cohorts. DATA SOURCES We searched Web of Science and PubMed databases from 1960 through 2012 with the search terms osteoarthritis, meniscectomy, anterior cruciate ligament, anterior cruciate ligament reconstruction, and anterior cruciate ligament deficient. STUDY SELECTION Articles that reported the prevalence of tibiofemoral or patellofemoral OA based on radiographic assessment were included. We calculated numbers needed to treat and relative risk reduction with associated 95% confidence intervals for 3 groups (1) patients with meniscal and ACL injury, (2) patients with isolated ACL injury, and (3) total patients (groups 1 and 2). DATA EXTRACTION A total of 38 studies met the criteria. Of these, 27 assessed the presence of tibiofemoral osteoarthritis in patients treated with anterior cruciate ligament reconstruction. DATA SYNTHESIS Overall, ACL reconstruction (ACL-R) yielded a numbers needed to treat to harm of 16 with a relative risk increase of 16%. Anterior cruciate ligament reconstruction along with meniscectomy yielded a numbers needed to treat to benefit of 15 and relative risk reduction of 11%. Isolated ACL-R showed a numbers needed to treat to harm of 8 and relative risk increase of 43%. Activity levels were decreased in both ACL-R (d = -0.90; 95% confidence interval = 0.77, 1.13) and ACL-deficient (d = -1.13; 95% confidence interval = 0.96, 1.29) patients after injury. CONCLUSIONS The current literature does not provide substantial evidence to suggest that ACL-R is an adequate intervention to prevent knee osteoarthritis. With regard to osteoarthritis prevalence, the only patients benefiting from ACL-R were those undergoing concomitant meniscectomy with reconstruction.
Collapse
Affiliation(s)
- Brittney Luc
- Neuromuscular Research Laboratory, Department of Exercise and Sports Science, University of North Carolina at Chapel Hill
| | - Phillip A. Gribble
- Musculoskeletal Research Laboratory, Department of Rehabilitation Sciences, Division of Athletic Training, University of Kentucky, Lexington
| | - Brian G. Pietrosimone
- Neuromuscular Research Laboratory, Department of Exercise and Sports Science, University of North Carolina at Chapel Hill
| |
Collapse
|
43
|
Venäläinen MS, Mononen ME, Jurvelin JS, Töyräs J, Virén T, Korhonen RK. Importance of Material Properties and Porosity of Bone on Mechanical Response of Articular Cartilage in Human Knee Joint—A Two-Dimensional Finite Element Study. J Biomech Eng 2014; 136:121005. [DOI: 10.1115/1.4028801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/15/2014] [Indexed: 11/08/2022]
Abstract
Mechanical behavior of bone is determined by the structure and intrinsic, local material properties of the tissue. However, previously presented knee joint models for evaluation of stresses and strains in joints generally consider bones as rigid bodies or linearly elastic solid materials. The aim of this study was to estimate how different structural and mechanical properties of bone affect the mechanical response of articular cartilage within a knee joint. Based on a cadaver knee joint, a two-dimensional (2D) finite element (FE) model of a knee joint including bone, cartilage, and meniscus geometries was constructed. Six different computational models with varying properties for cortical, trabecular, and subchondral bone were created, while the biphasic fibril-reinforced properties of cartilage and menisci were kept unaltered. The simplest model included rigid bones, while the most complex model included specific mechanical properties for different bone structures and anatomically accurate trabecular structure. Models with different porosities of trabecular bone were also constructed. All models were exposed to axial loading of 1.9 times body weight within 0.2 s (mimicking typical maximum knee joint forces during gait) while free varus–valgus rotation was allowed and all other rotations and translations were fixed. As compared to results obtained with the rigid bone model, stresses, strains, and pore pressures observed in cartilage decreased depending on the implemented properties of trabecular bone. Greatest changes in these parameters (up to −51% in maximum principal stresses) were observed when the lowest modulus for trabecular bone (measured at the structural level) was used. By increasing the trabecular bone porosity, stresses and strains were reduced substantially in the lateral tibial cartilage, while they remained relatively constant in the medial tibial plateau. The present results highlight the importance of long bones, in particular, their mechanical properties and porosity, in altering and redistributing forces transmitted through the knee joint.
Collapse
Affiliation(s)
- Mikko S. Venäläinen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio FI-70211, Finland e-mail:
| | - Mika E. Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio FI-70211, Finland
| | - Jukka S. Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio FI-70211, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio FI-70211, Finland
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, Kuopio FI-70029, Finland
| | - Tuomas Virén
- Cancer Center, Kuopio University Hospital, POB 100, Kuopio FI-70029, Finland
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, Kuopio FI-70211, Finland
| |
Collapse
|
44
|
Párraga Quiroga JM, Emans P, Wilson W, Ito K, van Donkelaar CC. Should a native depth-dependent distribution of human meniscus constitutive components be considered in FEA-models of the knee joint? J Mech Behav Biomed Mater 2014; 38:242-50. [PMID: 24747014 DOI: 10.1016/j.jmbbm.2014.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/09/2013] [Accepted: 03/15/2014] [Indexed: 02/04/2023]
Abstract
The depth-dependent matrix composition of articular cartilage is important for its mechanical behavior. It is unknown whether the depth-dependent matrix composition of a meniscus is similarly important for its load-bearing function. The present objective was to determine whether it is necessary to account for the native distribution of matrix components in the cross-sectional plane of the meniscus, when studying its mechanical behavior in numerical models. To address this objective, measured depth-dependent distribution of matrix contents in the human meniscus, and fitted visco-elastic mechanical properties of the collagen were used as input in FEA simulations of a knee joint. The importance of including the depth-dependent matrix component constitution in the meniscus was determined by comparing simulations with an axisymmetric representation of the knee joint, which incorporated either the depth-dependent matrix composition or homogenized matrix. Depth-dependent differences in water, collagen and proteoglycan contents were observed, but these were not significantly different. The anterior region, with significantly higher collagen content, was statistically stiffer than the posterior region. However, depth wise, stiffness did not correlate to the constitution of the tissue. GAG content was significantly higher in the posterior than in the anterior region. Visco-elastic properties of meniscus collagen were fitted against tensile test data. Simulations show that the distribution of stresses and strains in the cartilage is slightly low when the meniscus contains a depth-dependent constitution, but this difference is only modest. Therefore, this study suggests that knee joint mechanics is rather insensitive to the distribution of constitutive components in the cross section of the meniscus, and that the depth-dependent matrix distribution of the meniscus is not essential to be included in axisymmetric computational models of the knee joint.
Collapse
Affiliation(s)
- J M Párraga Quiroga
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - P Emans
- Department of Orthopaedic Surgery, University Hospital Maastricht, PO Box 7500, 6202 AZ Maastricht, The Netherlands
| | - W Wilson
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - K Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - C C van Donkelaar
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
45
|
Freutel M, Schmidt H, Dürselen L, Ignatius A, Galbusera F. Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon) 2014; 29:363-72. [PMID: 24529470 DOI: 10.1016/j.clinbiomech.2014.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Musculoskeletal soft tissues, such as articular cartilage, ligaments, knee meniscus and intervertebral disk, have a complex structure, which provides elasticity and capability to support and distribute the body loads. Soft tissues describe an inhomogeneous and multiphasic structure, and exhibit a nonlinear, time-dependent behavior. Their mechanical response is governed by a substance composed of protein fiber-rich and proteoglycan-rich extracellular matrix and interstitial fluid. Protein fibers (e.g. collagen) give the tissue direction dependent stiffness and strength. To investigate these complex biological systems, the use of mathematical tools is well established, alone or in combination with experimental in vitro and in vivo tests. However, the development of these models poses many challenges due to the complex structure and mechanical response of soft tissues. METHODS Non-systematic literature review. FINDINGS This paper provides a summary of different modeling strategies with associated material properties, contact interactions between articulating tissues, validation and sensitivity of soft tissues with special focus on knee joint soft tissues and intervertebral disk. Furthermore, it reviews and discusses some salient clinical findings of reported finite element simulations. INTERPRETATION Model studies extensively contributed to the understanding of functional biomechanics of soft tissues. Models can be effectively used to elucidate clinically relevant questions. However, users should be aware of the complexity of such tissues and of the capabilities and limitations of these approaches to adequately simulate a specific in vivo or in vitro phenomenon.
Collapse
Affiliation(s)
- Maren Freutel
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University of Ulm, Ulm, Germany.
| | - Hendrik Schmidt
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University of Ulm, Ulm, Germany
| | | |
Collapse
|
46
|
Mononen ME, Jurvelin JS, Korhonen RK. Effects of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during the stance phase of the gait cycle--A 3D finite element study. J Orthop Res 2013; 31:1208-17. [PMID: 23572353 DOI: 10.1002/jor.22358] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 03/07/2013] [Indexed: 02/04/2023]
Abstract
The purpose of the current study was to evaluate influences of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during normal walking by using computational modeling. A 3D geometry of a knee joint of a healthy patient was obtained from our previous study, whereas the data of normal walking were taken from the literature. Cartilage tissue was modeled as a fibril reinforced poroviscoelastic material, whereas meniscal tissue was modeled as a transverse isotropic elastic material. The realistic gait cycle data were implemented into the computational model and the effects of radial tears and partial meniscectemy of lateral meniscus on the knee joint mechanics were simulated. Middle, posterior, and anterior radial tears in lateral meniscus increased stresses by 300%, 430%, and 1530%, respectively, at the ends of tears compared to corresponding areas in the model with intact lateral meniscus. Meniscus tears did not alter stresses and strains at the tibial cartilage surface, whereas partial meniscectomy increased contact pressures, stresses, strains and pore pressures in the tibial cartilage by 50%, 44%, 21%, and 43%, respectively. Increased stresses and strains were observed primarily during the first ∼50% of the stance phase of the gait cycle. The present study suggests that anterior radial tear causes the highest risk for the development of total meniscal rupture, whereas partial meniscectomy increases the risk for the development of OA in lateral tibial cartilage. Highest risks for meniscus and cartilage failures are suggested to occur during the loading response and mid-stance of the gait cycle. In the future, the present modeling may be further developed to offer a clinical tool for aid in decision making of clinical interventions for patients with knee joint injuries.
Collapse
Affiliation(s)
- Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211, Kuopio, Finland.
| | | | | |
Collapse
|
47
|
A novel method for the accurate evaluation of Poisson's ratio of soft polymer materials. ScientificWorldJournal 2013; 2013:930798. [PMID: 23737733 PMCID: PMC3655649 DOI: 10.1155/2013/930798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 03/27/2013] [Indexed: 11/24/2022] Open
Abstract
A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6–47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials.
Collapse
|
48
|
Esposito AR, Moda M, Cattani SMDM, de Santana GM, Barbieri JA, Munhoz MM, Cardoso TP, Barbo MLP, Russo T, D'Amora U, Gloria A, Ambrosio L, Duek EADR. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering. Biores Open Access 2013; 2:138-47. [PMID: 23593566 PMCID: PMC3620496 DOI: 10.1089/biores.2012.0293] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.
Collapse
Affiliation(s)
- Andrea Rodrigues Esposito
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Campinas (UNICAMP) , Campinas, Brazil . ; Laboratory of Biomaterials, Faculty of Medicine and Health Sciences, Pontifical Catholic University of Sao Paulo (PUC-SP) , Sorocaba, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mononen ME, Jurvelin JS, Korhonen RK. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Comput Methods Biomech Biomed Engin 2013; 18:141-52. [PMID: 23570549 DOI: 10.1080/10255842.2013.783575] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Computational models can be used to evaluate the functional properties of knee joints and possible risk locations within joints. Current models with fibril-reinforced cartilage layers do not provide information about realistic human movement during walking. This study aimed to evaluate stresses and strains within a knee joint by implementing load data from a gait cycle in healthy and meniscectomised knee joint models with fibril-reinforced cartilages. A 3D finite element model of a knee joint with cartilages and menisci was created from magnetic resonance images. The gait cycle data from varying joint rotations, translations and axial forces were taken from experimental studies and implemented into the model. Cartilage layers were modelled as a fibril-reinforced poroviscoelastic material with the menisci considered as a transversely isotropic elastic material. In the normal knee joint model, relatively high maximum principal stresses were specifically predicted to occur in the medial condyle of the knee joint during the loading response. Bilateral meniscectomy increased stresses, strains and fluid pressures in cartilage on the lateral side, especially during the first 50% of the stance phase of the gait cycle. During the entire stance phase, the superficial collagen fibrils modulated stresses of cartilage, especially in the medial tibial cartilage. The present computational model with a gait cycle and fibril-reinforced biphasic cartilage revealed time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking. The lateral meniscus was observed to have a more significant role in distributing loads across the knee joint than the medial meniscus, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.
Collapse
Affiliation(s)
- Mika E Mononen
- a Department of Applied Physics , University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio , Finland
| | | | | |
Collapse
|
50
|
Guo H, Maher SA, Spilker RL. Biphasic finite element contact analysis of the knee joint using an augmented Lagrangian method. Med Eng Phys 2013; 35:1313-20. [PMID: 23498852 DOI: 10.1016/j.medengphy.2013.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/16/2012] [Accepted: 02/17/2013] [Indexed: 11/30/2022]
Abstract
Biphasic contact analysis is essential to obtain a more complete understanding of soft tissue biomechanics; however, only a limited number of studies have addressed these types of problems. In this paper, a theoretically consistent biphasic finite element solution of the 2D axisymmetric human knee was developed, and an augmented Lagrangian method was used to enforce the biphasic continuity across the contact interface. The interaction between the fluid and solid matrices of the soft tissues of the knee joint, the stress and strain distributions within the meniscus, and the changes in stress and strain distributions in the articular cartilage of the femur and tibia after complete meniscectomy were investigated. It was found that (i) the fluid phase carries more than 60% of the load, which reinforces the need for the biphasic model for knee biomechanics; (ii) the inner third and outer two-thirds of the meniscus had different strain distributions; and (iii) the distributions of both maximum shear stress and maximum principal strain in articular cartilage changed after complete meniscectomy - with peak values increasing by over 350%.
Collapse
Affiliation(s)
- Hongqiang Guo
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| | | | | |
Collapse
|