1
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Xu Y, Chen Z, Lu X, Zheng J, Liu X, Zhang T, Yang W, Qian Y. Targeted inhibition of STAT3 (Tyr705) by xanthatin alleviates osteoarthritis progression through the NF-κB signaling pathway. Biomed Pharmacother 2024; 174:116451. [PMID: 38520869 DOI: 10.1016/j.biopha.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
The transcription factor, signal transducer, and stimulator of transcription 3 (STAT3) is a potential target in osteoarthritis (OA) treatment. Although xanthatin (XA), a biologically active substance derived from Xanthium strumarium L, specifically inhibits STAT3 phosphorylation at Tyr705, the mechanism underlying its inhibitory effect on OA progression remains unclear. In this study, our objective was to explore the therapeutic effects exerted by XA on OA and the underlying molecular mechanisms. The effects of XA treatment on mouse OA models subjected to destabilization of the medial meniscus using medial collateral ligament transection, as well as on interleukin-1β (IL-1β)-induced mouse chondrocytes, were examined. Histological changes in cartilage and subchondral bone (SCB), as well as changes in the expression levels of osteophytes, cartilage degeneration- and osteoclast differentiation-related factors, and the role of XA-related signaling pathways in human cartilage tissue, were studied using different techniques. XA inhibited STAT3 phosphorylation at Tyr705 and further attenuated the activity of nuclear factor-κB (NF-κB) in chondrocytes and osteoclasts. In vitro, XA administration alleviated pro-inflammatory cytokine release, extracellular matrix catabolism, and RANKL-mediated osteoclast differentiation. In vivo, intraperitoneal injection of XA exerted a protective effect on cartilage degeneration and SCB loss. Similarly, XA exerted a protective effect on human cartilage tissue by inhibiting the STAT3/NF-κB signaling pathway. Overall, our study elucidated the therapeutic potential of XA as a small-molecule inhibitor of STAT3-driven OA progression. This discovery may help enhance innovative clinical interventions against OA.
Collapse
Affiliation(s)
- Yangjun Xu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Zhuolin Chen
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, China
| | - Jiewen Zheng
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xuewen Liu
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, China
| | - Tan Zhang
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang 312000, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China.
| | - Yu Qian
- Department of Orthopedics Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
3
|
Tanaka E. Etiology and Diagnosis for Idiopathic Condylar Resorption in Growing Adolescents. J Clin Med 2023; 12:6607. [PMID: 37892745 PMCID: PMC10607317 DOI: 10.3390/jcm12206607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This article has been written in honor of the late professor emeritus Kazuo Tanne, who passed away on 4 March 2023 [...].
Collapse
Affiliation(s)
- Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| |
Collapse
|
4
|
Liu X, Cai HX, Cao PY, Feng Y, Jiang HH, Liu L, Ke J, Long X. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice. J Cell Mol Med 2020; 24:11489-11499. [PMID: 32914937 PMCID: PMC7576306 DOI: 10.1111/jcmm.15763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
The abundance of inflammatory mediators in injured joint indicates innate immune reactions activated during temporomandibular joint osteoarthritis (TMJOA) progression. Toll‐like receptor 4 (TLR4) can mediate innate immune reaction. Herein, we aimed to investigate the expression profile and effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice. The expression of TLR4 and NFκB p65 in the synovium of TMJOA patients was measured by immunohistochemistry, Western blotting and RT‐PCR. H&E and Masson staining were utilized to assess the damage of cartilage and subchondral bone of the discectomy‐induced TMJOA mice. A TLR4 inhibitor, TAK‐242, was used to assess the effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice by Safranin O, micro‐CT, immunofluorescence and immunohistochemistry. Western blotting was used to quantify the expression and effect of TLR4 in IL‐1β–induced chondrocytes. The expression of TLR4 and NFκB p65 was elevated in the synovium of TMJOA patients, compared with the normal synovium. TLR4 elevated in the damaged cartilage and subchondral bone of discectomy‐induced TMJOA mice, and the rate of TLR4 expressing chondrocytes positively correlated with OA score. Intraperitoneal injections of TAK‐242 ameliorate the extent of TMJOA. Furthermore, TLR4 promotes the expression of MyD88/NFκB, pro‐inflammatory and catabolic mediators in cartilage of discectomy‐induced TMJOA. Besides, TLR4 participates in the production of MyD88/NFκB, pro‐inflammatory and catabolic mediators in IL‐1β–induced chondrocytes. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy‐induced TMJOA mice through activation of MyD88/NFκB and release of pro‐inflammatory and catabolic mediators.
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Xing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pin-Yin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Hua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Yu Q, Chang J, Wu C. Silicate bioceramics: from soft tissue regeneration to tumor therapy. J Mater Chem B 2020; 7:5449-5460. [PMID: 31482927 DOI: 10.1039/c9tb01467e] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Great efforts have been devoted to exploiting silicate bioceramics for various applications in soft tissue regeneration, owing to their excellent bioactivity. Based on the inherent ability of silicate bioceramics to repair tissue, bioactive ions are easily incorporated into silicate bioceramics to endow them with extra biological properties, such as enhanced angiogenesis, antibiosis, enhanced osteogenesis, and antitumor effect, which significantly expands the application of multifunctional silicate bioceramics. Furthermore, silicate nanobioceramics with unique structures have been widely employed for tumor therapy. In recent years, the novel applications of silicate bioceramics for both tissue regeneration and tumor therapy have substantially grown. Eliminating the skin tumors first and then repairing the skin wounds has been widely investigated by our groups, which might shed some light on treating other soft tissue tumor or tumor-induced defects. This review first describes the recent advances made in the development of silicate bioceramics as therapeutic platforms for soft tissue regeneration. We then highlight the major silicate nanobioceramics used for tumor therapy. Silicate bioceramics for both soft tissue regeneration and tumor therapy are further emphasized. Finally, challenges and future directions of silicate bioceramics stepping into the clinics are discussed. This review will inspire researchers to create the efficient and functional silicate bioceramics needed for regeneration and tumor therapy of other tissues.
Collapse
Affiliation(s)
- Qingqing Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | | | | |
Collapse
|
6
|
Zhu H, Hu Y, Wang C, Zhang X, He D. CircGCN1L1 promotes synoviocyte proliferation and chondrocyte apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis. Cell Death Dis 2020; 11:284. [PMID: 32332704 PMCID: PMC7181816 DOI: 10.1038/s41419-020-2447-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Altered expression of circular RNAs (circRNAs) has been identified in various human diseases. In this study, we investigated whether circRNAs function as competing endogenous RNAs to regulate the pathological process of temporomandibular joint osteoarthritis (TMJOA). High-throughput sequencing of mRNA (RNA seq) was performed to detect the expression of circRNAs in TMJOA and control synovial tissues isolated from humans. The differentially upregulated circGCN1L1 (hsa_circ_0000448) in synoviocyte was validated in vitro and in vivo. Here we demonstrate the interactions between circGCN1L1 and both miR-330-3p and tumor necrosis factor-α (TNF-α) through bioinformatics predictions, luciferase report assays, and fluorescence in situ hybridization. mRNA expression profiles of TNF-α-stimulated synoviocyte showed that circGCN1L1 and p65 expressions were upregulated by TNF-α. Moreover, miR-330-3p was negatively correlated with TNF-α secretion. Further, we found that miR-330-3p directly targeted TNF and restrained the production of matrix-degrading enzymes (MMP3, MMP13, and ADAMTS4). Mechanistic studies unveiled that circGCN1L1 in TMJOA synovial tissues and cells may be associated with condylar chondrocyte apoptosis and synoviocyte hyperplasia. Moreover, intra-articular injection of shcircGCN1L1 alleviated TMJOA progression in rat models. Altogether, we elucidated the important roles of a novel circRNA, namely, circGCN1L1, which induced inflammation in TMJ synoviocytes and decreased anabolism of the extracellular matrix (ECM) through miR-330-3p and TNF-α gene. This circRNA may represent a potentially effective therapeutic strategy against TMJOA progression at an early stage.
Collapse
Affiliation(s)
- Huimin Zhu
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Hu
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Dongmei He
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Betti BF, Everts V, Ket JCF, Tabeian H, Bakker AD, Langenbach GE, Lobbezoo F. Effect of mechanical loading on the metabolic activity of cells in the temporomandibular joint: a systematic review. Clin Oral Investig 2017; 22:57-67. [PMID: 28761983 PMCID: PMC5748425 DOI: 10.1007/s00784-017-2189-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/21/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The purpose of this systematic review was to elucidate how different modalities and intensities of mechanical loading affect the metabolic activity of cells within the fibro-cartilage of the temporomandibular joint (TMJ). MATERIALS AND METHODS A systematic review was conducted according to PRISMA guidelines using PubMed, Embase, and Web of Science databases. The articles were selected following a priori formulated inclusion criteria (viz., in vivo and in vitro studies, mechanical loading experiments on TMJ, and the response of the TMJ). A total of 254 records were identified. After removal of duplicates, 234 records were screened by assessing eligibility criteria for inclusion. Forty-nine articles were selected for full-text assessment. Of those, 23 were excluded because they presented high risk of bias or were reviews. Twenty-six experimental studies were included in this systematic review: 15 in vivo studies and 11 in vitro ones. CONCLUSION The studies showed that dynamic mechanical loading is an important stimulus for mandibular growth and for the homeostasis of TMJ cartilage. When this loading is applied at a low intensity, it prevents breakdown of inflamed cartilage. Yet, frequent overloading at excessive levels induces accelerated cell death and an increased cartilage degradation. CLINICAL SIGNIFICANCE Knowledge about the way temporomandibular joint (TMJ) fibrocartilage responds to different types and intensities of mechanical loading is important to improve existing treatment protocols of degenerative joint disease of the TMJ, and also to better understand the regenerative pathway of this particular type of cartilage.
Collapse
Affiliation(s)
- Beatriz F Betti
- Department of Orthodontics, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands. .,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands. .,Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Johannes C F Ket
- Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Hessam Tabeian
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Geerling E Langenbach
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Kapitanov GI, Wang X, Ayati BP, Brouillette MJ, Martin JA. Linking Cellular and Mechanical Processes in Articular Cartilage Lesion Formation: A Mathematical Model. Front Bioeng Biotechnol 2016; 4:80. [PMID: 27843894 PMCID: PMC5086581 DOI: 10.3389/fbioe.2016.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022] Open
Abstract
Post-traumatic osteoarthritis affects almost 20% of the adult US population. An injurious impact applies a significant amount of physical stress on articular cartilage and can initiate a cascade of biochemical reactions that can lead to the development of osteoarthritis. In our effort to understand the underlying biochemical mechanisms of this debilitating disease, we have constructed a multiscale mathematical model of the process with three components: cellular, chemical, and mechanical. The cellular component describes the different chondrocyte states according to the chemicals these cells release. The chemical component models the change in concentrations of those chemicals. The mechanical component contains a simulation of a blunt impact applied onto a cartilage explant and the resulting strains that initiate the biochemical processes. The scales are modeled through a system of partial-differential equations and solved numerically. The results of the model qualitatively capture the results of laboratory experiments of drop-tower impacts on cartilage explants. The model creates a framework for incorporating explicit mechanics, simulated by finite element analysis, into a theoretical biology framework. The effort is a step toward a complete virtual platform for modeling the development of post-traumatic osteoarthritis, which will be used to inform biomedical researchers on possible non-invasive strategies for mitigating the disease.
Collapse
Affiliation(s)
| | - Xiayi Wang
- Program in Applied Mathematical and Computational Sciences, The University of Iowa , Iowa City, IA , USA
| | - Bruce P Ayati
- Department of Mathematics, The University of Iowa, Iowa City, IA, USA; Program in Applied Mathematical and Computational Sciences, The University of Iowa, Iowa City, IA, USA; Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Marc J Brouillette
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - James A Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Caballero M, Morse JC, Halevi AE, Emodi O, Pharaon MR, Wood JS, van Aalst JA. Juvenile Swine Surgical Alveolar Cleft Model to Test Novel Autologous Stem Cell Therapies. Tissue Eng Part C Methods 2016; 21:898-908. [PMID: 25837453 DOI: 10.1089/ten.tec.2014.0646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation. Five-week-old pigs (n=6) underwent surgically created maxillary (alveolar) defects to determine critical-sized defect and the quality of treatment outcomes with rib, iliac crest cancellous bone, and tissue-engineered scaffolds. Pigs were sacrificed at 1 month. Computed tomography scans were obtained at days 0 and 30, at the time of euthanasia. Histological evaluation was performed on newly formed bone within the surgical defect. A 1 cm surgically created defect healed with no treatment, the 2 cm defect did not heal. A subsequently created 1.7 cm defect, physiologically similar to a congenitally occurring alveolar cleft in humans, from the central incisor to the canine, similarly did not heal. Rib graft treatment did not incorporate into adjacent normal bone; cancellous bone and the tissue-engineered graft healed the critical-sized defect. This work establishes a juvenile swine alveolar cleft model with critical-sized defect approaching 1.7 cm. Both cancellous bone and tissue engineered graft generated bridging bone formation in the surgically created alveolar cleft defect.
Collapse
Affiliation(s)
- Montserrat Caballero
- 1 Plastic Surgery, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Justin C Morse
- 2 Plastic and Reconstructive Surgery, The University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | | | - Omri Emodi
- 4 Oral and Maxillofacial Surgery, Rambam Medical Center , Haifa, Israel
| | - Michael R Pharaon
- 5 Plastic Surgery, Kapiolani Hospital for Women and Children , Honolulu, Hawaii
| | - Jeyhan S Wood
- 2 Plastic and Reconstructive Surgery, The University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | - John A van Aalst
- 1 Plastic Surgery, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
10
|
Wen J, Jiang Y, Zhang C, Chen S, Li H. The Protective Effects of Salubrinal on the Cartilage and Subchondral Bone of the Temporomandibular Joint under Various Compressive Mechanical Stimulations. PLoS One 2016; 11:e0155514. [PMID: 27196267 PMCID: PMC4873203 DOI: 10.1371/journal.pone.0155514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/30/2016] [Indexed: 11/19/2022] Open
Abstract
Excessive mechanical loads on the temporomandibular joint (TMJ) can cause mandibular cartilage degradation and subchondral bone erosion, but the treatment of these conditions remains challenging. Salubrinal, which target eukaryotic translation initiation factor 2 alpha, has been shown to have multiple beneficial effects on skeletal tissue. Here, we examined the effect of a Salubrinal injection on the mandibular cartilage and subchondral bone of the TMJ under various compressive stresses. We conducted in vivo analyses in rat models using various compressive stresses (40 g and 80 g), and we observed time-related degeneration and pathological changes in the cartilage and subchondral bone of the TMJ at days 1, 3 and 7 through histological measurements, subcellular observation, and changes in proliferation and apoptosis. After the Salubrinal injection, the thickness of the cartilage recovered, and the pathological change was alleviated. In the Salubrinal/light (Sal/light) compressive stress group, the drug altered the proliferation and apoptosis of chondrocytes most significantly at day 1. In the Salubrinal/heavy (Sal/heavy) compressive stress group, the drug increased the proliferation of chondrocytes most significantly at day 1 and reduced the apoptosis of chondrocytes most significantly at day 7. Salubrinal also increased the area of the bone trabeculae and suppressed inflammatory responses and pathological change in the subchondral bone of the TMJ. Together, these results indicate that the administration of Salubrinal reduces apoptosis and strengthens the proliferation of chondrocyte to varying degrees at days 1, 3 and 7 under various compressive mechanical stresses, both of which contribute to the recovery of cartilage thickness and the alleviation of pathological change. Salubrinal also suppresses inflammatory responses and pathological change in the subchondral bone of the TMJ.
Collapse
Affiliation(s)
- Juan Wen
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yuanyuan Jiang
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Caixia Zhang
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Sheng Chen
- Pathological Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huang Li
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
- * E-mail:
| |
Collapse
|
11
|
Kartha S, Zhou T, Granquist EJ, Winkelstein BA. Development of a Rat Model of Mechanically Induced Tunable Pain and Associated Temporomandibular Joint Responses. J Oral Maxillofac Surg 2016; 74:54.e1-10. [DOI: 10.1016/j.joms.2015.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 11/24/2022]
|
12
|
Tanaka E, Pelayo F, Kim N, Lamela MJ, Kawai N, Fernández-Canteli A. Stress relaxation behaviors of articular cartilages in porcine temporomandibular joint. J Biomech 2014; 47:1582-7. [DOI: 10.1016/j.jbiomech.2014.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/25/2022]
|
13
|
Effect of different doses of transforming growth factor-β1 on cartilage and subchondral bone in osteoarthritic temporomandibular joints. Br J Oral Maxillofac Surg 2013; 51:241-6. [DOI: 10.1016/j.bjoms.2012.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 05/31/2012] [Indexed: 11/22/2022]
|
14
|
Štembírek J, Kyllar M, Putnová I, Stehlík L, Buchtová M. The pig as an experimental model for clinical craniofacial research. Lab Anim 2012; 46:269-79. [PMID: 22969144 DOI: 10.1258/la.2012.012062] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pig represents a useful, large experimental model for biomedical research. Recently, it has been used in different areas of biomedical research. The aim of this study was to review the basic anatomical structures of the head region in the pig in relation to their use in current research. Attention was focused on the areas that are frequently affected by pathological processes in humans: the oral cavity with teeth, salivary gland, orbit, nasal cavity and paranasal sinuses, maxilla, mandible and temporomandibular joint. Not all of the structures have an equal morphology in the pig and human, and these morphological dissimilarities must be taken into account before choosing the pig as an experimental model for regenerative medicine.
Collapse
Affiliation(s)
- J Štembírek
- Institute of Animal Physiology and Genetics, vvi, Academy of Sciences of Czech Republic, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
15
|
Fan W, Wu C, Miao X, Liu G, Saifzadeh S, Sugiyama S, Afara I, Crawford R, Xiao Y. Biomaterial scaffolds in cartilage–subchondral bone defects influencing the repair of autologous articular cartilage transplants. J Biomater Appl 2012; 27:979-89. [DOI: 10.1177/0885328211431310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The repair of articular cartilage typically involves the repair of cartilage–subchondral bone tissue defects. Although various bioactive materials have been used to repair bone defects, how these bioactive materials in subchondral bone defects influence the repair of autologous cartilage transplant remains unclear. The aim of this study was to investigate the effects of different subchondral biomaterial scaffolds on the repair of autologous cartilage transplant in a sheep model. Cylindrical cartilage–subchondral bone defects were created in the right femoral knee joint of each sheep. The subchondral bone defects were implanted with hydroxyapatite–β-tricalcium phosphate (HA–TCP), poly lactic-glycolic acid (PLGA)-HA–TCP dual-layered composite scaffolds (PLGA/HA–TCP scaffolds), or autologous bone chips. The autologous cartilage layer was placed on top of the subchondral materials. After 3 months, the effect of different subchondral scaffolds on the repair of autologous cartilage transplant was systematically studied by investigating the mechanical strength, structural integration, and histological responses. The results showed that the transplanted cartilage layer supported by HA–TCP scaffolds had better structural integration and higher mechanical strength than that supported by PLGA/HA–TCP scaffolds. Furthermore, HA–TCP-supported cartilage showed higher expression of acid mucosubstances and glycol-amino-glycan contents than that supported by PLGA/HA–TCP scaffolds. Our results suggested that the physicochemical properties, including the inherent mechanical strength and material chemistry of the scaffolds, play important roles in influencing the repair of autologous cartilage transplants. The study may provide useful information for the design and selection of proper subchondral biomaterials to support the repair of both subchondral bone and cartilage defects.
Collapse
Affiliation(s)
- Wei Fan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
- Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, People’s Republic of China
| | - Chengtie Wu
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Xigeng Miao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Gang Liu
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Siamak Saifzadeh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Sadahiro Sugiyama
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Isaac Afara
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
16
|
Lin YY, Tanaka N, Ohkuma S, Iwabuchi Y, Tanne Y, Kamiya T, Kunimatsu R, Huang YC, Yoshioka M, Mitsuyoshi T, Tanimoto K, Tanaka E, Tanne K. Applying an excessive mechanical stress alters the effect of subchondral osteoblasts on chondrocytes in a co-culture system. Eur J Oral Sci 2010; 118:151-8. [DOI: 10.1111/j.1600-0722.2010.00710.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|