1
|
Cao Y, Yang D, Cai S, Yang L, Yu S, Geng Q, Mo M, Li W, Wei Y, Li Y, Yin T, Diao L. Adenomyosis-associated infertility: an update of the immunological perspective. Reprod Biomed Online 2025; 50:104703. [PMID: 40175227 DOI: 10.1016/j.rbmo.2024.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 04/04/2025]
Abstract
Adenomyosis is characterized by the invasion of endometrial glands and stroma into the myometrium. Its clinical manifestations often include dysmenorrhoea, excessive menstrual bleeding and infertility. Reduced pregnancy and live birth rates and an increased miscarriage rate are observed in women with adenomyosis. This review summarizes relevant advances and presents the underlying mechanisms of adenomyosis-associated infertility from an immunological perspective. Individuals with adenomyosis exhibit imbalances in immune cell subpopulations and the endocrine hormone-immunomodulatory axis. These immunological alterations may be key contributors to, or at least accomplices in, impaired endometrial receptivity. In addition, adenomyosis often occurs in association with endometriosis, uterine leiomyoma or endometrial polyps, which are pathogenetically relevant; their similarities and differences are discussed from an immunological perspective. The clinical diagnostic criteria of adenomyosis are not perfect, and the pathogenesis remains to be fully explored. Therefore screening for effective targets for early diagnosis and treatment at the cellular and molecular levels from the immunological point of view holds great potential, which will be of great importance in preventing this disease and improving women's reproductive health.
Collapse
Affiliation(s)
- Ying Cao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongyong Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Lingtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Shuyi Yu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Qiang Geng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Meilan Mo
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Wenzhu Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China.
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Liu JN, Tian JY, Liu L, Cao Y, Lei X, Zhang XH, Zhang ZQ, He JX, Zheng CX, Ma C, Bai SF, Sui BD, Jin F, Chen J. The landscape of cell regulatory and communication networks in the human dental follicle. Front Bioeng Biotechnol 2025; 13:1535245. [PMID: 39974190 PMCID: PMC11835805 DOI: 10.3389/fbioe.2025.1535245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction The dental follicle localizes the surrounding enamel organ and dental papilla of the developing tooth germ during the embryonic stage. It can differentiate and develop to form the periodontal ligament, cementum, and alveolar bone tissues. Postnatally, the dental follicle gradually degenerates, but some parts of the dental follicle remain around the impacted tooth. However, the specific cellular components and the intricate regulatory mechanisms governing the postnatal development and biological function of the dental follicle have not been completely understood. Methods We analyzed dental follicles with single-cell RNA sequencing (scRNA-seq) to reveal their cellular constitution molecular signatures by cell cycle analysis, scenic analysis, gene enrichment analysis, and cell communication analysis. Results Ten cell clusters were identified with differential characteristics, among which immune and vessel-related cells, as well as a stem cell population, were revealed as the main cell types. Gene regulatory networks (GRNs) were established and defined four regulon modules underlying dental tissue development and microenvironmental regulation, including vascular and immune responses. Cell-cell communication analysis unraveled crosstalk between vascular and immune cell components in orchestrating dental follicle biological activities, potentially based on COLLAGAN-CD44 ligand-receptor pairs, as well as ANGPTL1-ITGA/ITGB ligand-receptor pairs. Conclusion We establish a landscape of cell regulatory and communication networks in the human dental follicle, providing mechanistic insights into the cellular regulation and interactions in the complex dental follicle tissue microenvironment.
Collapse
Affiliation(s)
- Jia-Ning Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiong-Yi Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiao Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jun-Xi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chao Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Sheng-Feng Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fang Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Wang L, Wei X, Wang Y. Promoting Angiogenesis Using Immune Cells for Tissue-Engineered Vascular Grafts. Ann Biomed Eng 2023; 51:660-678. [PMID: 36774426 DOI: 10.1007/s10439-023-03158-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/29/2023] [Indexed: 02/13/2023]
Abstract
Implantable tissue-engineered vascular grafts (TEVGs) usually trigger the host reaction which is inextricably linked with the immune system, including blood-material interaction, protein absorption, inflammation, foreign body reaction, and so on. With remarkable progress, the immune response is no longer considered to be entirely harmful to TEVGs, but its therapeutic and impaired effects on angiogenesis and tissue regeneration are parallel. Although the implicated immune mechanisms remain elusive, it is certainly worthwhile to gain detailed knowledge about the function of the individual immune components during angiogenesis and vascular remodeling. This review provides a general overview of immune cells with an emphasis on macrophages in light of the current literature. To the extent possible, we summarize state-of-the-art approaches to immune cell regulation of the vasculature and suggest that future studies are needed to better define the timing of the activity of each cell subpopulation and to further reveal key regulatory switches.
Collapse
Affiliation(s)
- Li Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqing Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
4
|
Grande-Tovar CD, Castro JI, Valencia Llano CH, Tenorio DL, Saavedra M, Zapata PA, Chaur MN. Polycaprolactone (PCL)-Polylactic Acid (PLA)-Glycerol (Gly) Composites Incorporated with Zinc Oxide Nanoparticles (ZnO-NPs) and Tea Tree Essential Oil (TTEO) for Tissue Engineering Applications. Pharmaceutics 2022; 15:pharmaceutics15010043. [PMID: 36678672 PMCID: PMC9864333 DOI: 10.3390/pharmaceutics15010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The search for new biocompatible materials that can replace invasive materials in biomedical applications has increased due to the great demand derived from accidents and diseases such as cancer in various tissues. In this sense, four formulations based on polycaprolactone (PCL) and polylactic acid (PLA) incorporated with zinc oxide nanoparticles (ZnO-NPs) and tea tree essential oil (TTEO) were prepared. The sol-gel method was used for zinc oxide nanoparticle synthesis with an average size of 11 ± 2 nm and spherical morphology. On the other hand, Fourier Transformed infrared spectroscopy (FTIR) showed characteristic functional groups for each composite component. The TTEO incorporation in the formulations was related to the increased intensity of the C-O-C band. The thermal properties of the materials show that the degradative properties of the ZnO-NPs decrease the thermal stability. The morphological study by scanning electron microscopy (SEM) showed that the presence of TTEO and ZnO-NPs act synergistically, obtaining smooth surfaces, whereas membranes with the presence of ZnO-NPs or TTEO only show porous morphologies. Histological implantation of the membranes showed biocompatibility and biodegradability after 60 days of implantation. This degradation occurs through the fragmentation of the larger particles with the presence of connective tissue constituted by type III collagen fibers, blood vessels, and inflammatory cells, where the process of resorption of the implanted material continues.
Collapse
Affiliation(s)
- Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
- Correspondence: (C.D.G.-T.); (M.N.C.); Tel.: +57-5-3599-484 (C.D.G.-T.)
| | - Jorge Iván Castro
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia
| | | | - Diego López Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia
| | - Marcela Saavedra
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170020, Chile
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170020, Chile
| | - Manuel N. Chaur
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia
- Correspondence: (C.D.G.-T.); (M.N.C.); Tel.: +57-5-3599-484 (C.D.G.-T.)
| |
Collapse
|
5
|
Biocompatibility Assessment of Polylactic Acid (PLA) and Nanobioglass (n-BG) Nanocomposites for Biomedical Applications. Molecules 2022; 27:molecules27113640. [PMID: 35684575 PMCID: PMC9182463 DOI: 10.3390/molecules27113640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.
Collapse
|
6
|
Zarubova J, Hasani-Sadrabadi MM, Ardehali R, Li S. Immunoengineering strategies to enhance vascularization and tissue regeneration. Adv Drug Deliv Rev 2022; 184:114233. [PMID: 35304171 PMCID: PMC10726003 DOI: 10.1016/j.addr.2022.114233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022]
Abstract
Immune cells have emerged as powerful regulators of regenerative as well as pathological processes. The vast majority of regenerative immunoengineering efforts have focused on macrophages; however, growing evidence suggests that other cells of both the innate and adaptive immune system are as important for successful revascularization and tissue repair. Moreover, spatiotemporal regulation of immune cells and their signaling have a significant impact on the regeneration speed and the extent of functional recovery. In this review, we summarize the contribution of different types of immune cells to the healing process and discuss ways to manipulate and control immune cells in favor of vascularization and tissue regeneration. In addition to cell delivery and cell-free therapies using extracellular vesicles, we discuss in situ strategies and engineering approaches to attract specific types of immune cells and modulate their phenotypes. This field is making advances to uncover the extraordinary potential of immune cells and their secretome in the regulation of vascularization and tissue remodeling. Understanding the principles of immunoregulation will help us design advanced immunoengineering platforms to harness their power for tissue regeneration.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | | | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Zhou W, Yang L, Nie L, Lin H. Unraveling the molecular mechanisms between inflammation and tumor angiogenesis. Am J Cancer Res 2021; 11:301-317. [PMID: 33575073 PMCID: PMC7868762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023] Open
Abstract
Inflammatory mediators in tumor microenvironment influence cancer occurrence, growth and metastasis through complex signaling networks. Excessive inflammation is closely associated with elevated cancer risk and mortality, in part through inflammation-induced angiogenesis. Mechanistically, multiple tumor-associated inflammatory cells increase the release and accumulation of various inflammatory products in cancerous sites. These products in turn activate tumor associated signaling cascades such as STAT3, NF-κB, PI3K/Akt and p38 MAPK, which mediate the recruitment of inflammatory cells and secretion of pro-inflammatory factors. More importantly, these events promote the secretion of various pro-angiogenesis factors from endothelial, tumor and inflammatory cells, which then drive malignancy in endothelial cells in a paracrine and/or autocrine manner. Its ultimate effect is to promote endothelial cell proliferation, migration, survival and tube formation, and to hence the formation of blood vessels in tumors. This review describes the signaling network that connects the interaction between inflammation and cancer, especially those involved in inflammation-induced angiogenesis. This will reveal potential targets for the design of anti-inflammatory treatments and drugs that inhibites tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Wenwen Zhou
- Second Clinical Medical School, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Longtao Yang
- Second Clinical Medical School, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Lin Nie
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang UniversityNanchang 330006, Jiangxi Province, China
| |
Collapse
|
8
|
New injectable self-assembled hydrogels that promote angiogenesis through a bioactive degradation product. Acta Biomater 2020; 115:197-209. [PMID: 32814142 DOI: 10.1016/j.actbio.2020.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
Hydrogels used in regenerative medicine are often designed to allow cellular infiltration, degradation, and neovascularization. Low molecular weight hydrogels (LMWHs), formed by self-assembly via non-covalent interactions, are gaining significant interest because they are soft, easy to use and injectable. We propose LMWHs as suitable body implant materials that can stimulate tissue regeneration. We produced four new LMWHs with molecular entities containing nucleic acid and lipid building blocks and analyzed the foreign body response upon subcutaneous implantation into mice. Despite being infiltrated with macrophages, none of the hydrogels triggered detrimental inflammatory responses. Most macrophages present in the hydrogel-surrounding tissue acquired an immuno-modulatory rather than inflammatory phenotype. Concomitantly, no fibrotic capsule was formed after three weeks. Our glyconucleolipid LMWHs exhibited different degradation kinetics in vivo and in vitro. LMWHs with high angiogenic properties in vivo, were found to release glyconucleoside (glucose covalently linked to thymidine via a triazole moiety) as a common by-product of in vitro LMWH degradation. Chemically synthesized glyconucleoside exhibited angiogenic properties in vitro in scratch assays with monolayers of human endothelial cells and in vivo using the chick chorioallantoic membrane assay. Collectively, LMWHs hold promise as efficient scaffolds for various regenerative applications by displaying good biointegration without causing fibrosis, and by promoting angiogenesis through the release of a pro-angiogenic degradation product. STATEMENT OF SIGNIFICANCE: The main limitations of biomaterials developed in the field of tissue engineering remains their biocompatibility and vascularisation properties. In this context, we developed injectable Low Molecular Weight Hydrogels (LMWH) exhibiting thixotropic (reversible gelation) and thermal reversible properties. LMWH having injectability is of great advantage since it allows for their delivery without wounding the surrounding tissues. The resulting gels aim at forming scaffolds that the host cells colonize without major inflammation, and that won't be insulated by a strong fibrosis reaction. Importantly, their molecular degradation releases a product (a glycosyl-nucleoside conjugate) promoting angiogenesis. In this sense, these LMWH represent an important advance in the development of biomaterials promoting tissue regeneration.
Collapse
|
9
|
Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe VL. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. J Tissue Eng Regen Med 2019; 13:1815-1829. [PMID: 31310055 PMCID: PMC6852121 DOI: 10.1002/term.2932] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
The field of tissue engineering is making great strides in developing replacement tissue grafts for clinical use, marked by the rapid development of novel biomaterials, their improved integration with cells, better-directed growth and differentiation of cells, and improved three-dimensional tissue mass culturing. One major obstacle that remains, however, is the lack of graft vascularization, which in turn renders many grafts to fail upon clinical application. With that, graft vascularization has turned into one of the holy grails of tissue engineering, and for the majority of tissues, it will be imperative to achieve adequate vascularization if tissue graft implantation is to succeed. Many different approaches have been developed to induce or augment graft vascularization, both in vitro and in vivo. In this review, we highlight the importance of vascularization in tissue engineering and outline various approaches inspired by both biology and engineering to achieve and augment graft vascularization.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Judith M. Horvath
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Clemens A. van Blitterswijk
- Complex Tissue Regeneration, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa L.S. LaPointe
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
10
|
Changes in VEGF-related factors are associated with presence of inflammatory factors in carbohydrate metabolism disorders during pregnancy. PLoS One 2019; 14:e0220650. [PMID: 31415573 PMCID: PMC6695137 DOI: 10.1371/journal.pone.0220650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to determine the action of molecules in carbohydrate metabolism disorders during pregnancy. The concentration of different types of cytokines and vascular endothelial growth factor (VEGF) in the plasma were measured in 4 groups of women: Group I, normal pregnancy (n = 10); Group II, patients with gestational DM (n = 12); Group III, pregnant patients with preexisting DM (n = 16); and Group IV, diabetic non-pregnant women (n = 22). The plasma VEGF concentration was significantly higher in the women in Group IV than in other groups (P <0.01). The concentration of the soluble form of the VEGF receptor-1 (sVEGFR-1) was significantly higher in Group I than in other groups (P <0.01). The concentration of soluble form of the VEGF receptor-2 (sVEGFR-2) was significantly lower in Groups I than in other groups (P <0.05). The concentrations of monocyte chemotactic protein-1 (MCP-1) and eotaxin were significantly lower in Group I than in Groups III and IV. The levels of interleukin (IL)-8, IL-6, and tumor necrosis factor-α (TNF-α) were significantly higher in Group I than in Group IV. Both the VEGF-related molecules and the Inflammatory cytokines are altered in pregnant women with the carbohydrate metabolism disorders.
Collapse
|
11
|
Kwee BJ, Seo BR, Najibi AJ, Li AW, Shih TY, White D, Mooney DJ. Treating ischemia via recruitment of antigen-specific T cells. SCIENCE ADVANCES 2019; 5:eaav6313. [PMID: 31392268 PMCID: PMC6669016 DOI: 10.1126/sciadv.aav6313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
Ischemic diseases are a leading cause of mortality and can result in autoamputation of lower limbs. We explored the hypothesis that implantation of an antigen-releasing scaffold, in animals previously vaccinated with the same antigen, can concentrate TH2 T cells and enhance vascularization of ischemic tissue. This approach may be clinically relevant, as all persons receiving childhood vaccines recommended by the Centers for Disease Control and Prevention have vaccines that contain aluminum, a TH2 adjuvant. To test the hypothesis, mice with hindlimb ischemia, previously vaccinated with ovalbumin (OVA) and aluminum, received OVA-releasing scaffolds. Vaccinated mice receiving OVA-releasing scaffolds locally concentrated antigen-specific TH2 T cells in the surrounding ischemic tissue. This resulted in local angiogenesis, increased perfusion in ischemic limbs, and reduced necrosis and enhanced regenerating myofibers in the muscle. These findings support the premise that antigen depots may provide a treatment for ischemic diseases in patients previously vaccinated with aluminum-containing adjuvants.
Collapse
Affiliation(s)
- Brian J. Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alexander J. Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Aileen W. Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Des White
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Tawagi E, Ganesh T, Cheng HLM, Santerre JP. Synthesis of degradable-polar-hydrophobic-ionic co-polymeric microspheres by membrane emulsion photopolymerization: In vitro and in vivo studies. Acta Biomater 2019; 89:279-288. [PMID: 30853610 DOI: 10.1016/j.actbio.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
The synthesis of microspheres for tissue regeneration requires good control over the particle size and size distribution. This is particularly important when considering the immune response that may be triggered by the presence of particles in tissue. This report outlines the design of an injectable microsphere system using a low-inflammatory, degradable-polar-hydrophobic-ionic polyurethane, termed D-PHI, and investigates the system's performance in vitro and in vivo. Crosslinked polyurethane microspheres were prepared via a rapid and controlled process based on membrane emulsion and subsequent photopolymerization. The fabrication process efficiently generated microspheres with a narrow size distribution (12 ± 2 μm, PDI = 0.03). The D-PHI microspheres exhibited a slow and controlled degradation and a high capacity for water uptake. Water within the particles existed primarily within the pores of the particles and to a lesser degree within the polymer matrix itself. D-PHI microspheres supported human endothelial and fibroblast cell growth, and they maintained human blood-derived monocytes in a low-inflammatory state. Sub-acute toxicity was assessed for the particles after being administered via intramuscular injection in the gastrocnemius muscle of rats. Cellular infiltration and vascularization into the tissue region where the particles were deposited were observed along with an absence of a fibrous capsule around the particles. The microspheres did not cause elevated human monocyte induced inflammatory character, and supported tissue integration without a prolonged inflammatory response in the rat muscle. These injectable, degradable and low-inflammatory microspheres provide an attractive system for potential drug delivery and tissue regeneration applications in future studies. STATEMENT OF SIGNIFICANCE: Biodegradable, synthetic polymers are attractive candidates for generating tailored drug delivery vehicles and tissue scaffolds owing to their diverse chemical and physical properties that can be customised for delivering defined macromolecules at specific sites in the body. The past two decades have yielded interesting work exploring the fabrication of polymer microspheres with a narrow size distribution. However, the markedly low number of synthetic polymer chemistries currently used for microsphere production exhibit elevated proinflammatory character, both acute and chronic. Furthermore, a limited number of studies have explored the biocompatibility and immune response of polymeric microspheres with human primary cells and in vivo. In the current study, a method was conceived for efficiently generating low-activating polyurethane microspheres with respect to in vitro monocytes and in vivo macrophages. The biodegradable polyurethane, which contained multiple chemistry function and which has previously demonstrated anti-inflammatory properties in film and mm scale scaffold form, was selected as the base material. In this work we undertook the use of a room temperature membrane emulsification photopolymerization approach to avoid the need for high temperature cures and the use of solvents. The response of immune cells to the microspheres was studied with human primary cells and in the rat gastrocnemius muscle. The present work reveals important progress in the design of microspheres, with well-characterized low monocyte-activating properties and the translational advantages of a synthetic polyurethane which could be investigated in future studies for potential macromolecule delivery and tissue regeneration applications.
Collapse
|
13
|
Giatsidis G, Succar J, Haddad A, Lago G, Schaffer C, Wang X, Schilling B, Chnari E, Matsumine H, Orgill DP. Preclinical Optimization of a Shelf-Ready, Injectable, Human-Derived, Decellularized Allograft Adipose Matrix. Tissue Eng Part A 2018; 25:271-287. [PMID: 30084731 DOI: 10.1089/ten.tea.2018.0052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPACT STATEMENT Trauma, disease, surgery, or congentital defects can cause soft tissue losses in patients, leading to disfigurement, functional impairment, and a low quality of life. In the lack of available effective methods to reconstruct these defects, acellular adipose matrices could provide a novel therapeutic solution to such challenge.
Collapse
Affiliation(s)
- Giorgio Giatsidis
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julien Succar
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anthony Haddad
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gianluigi Lago
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clara Schaffer
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xingang Wang
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,2 Department of Burns and Wound Care Center, Second Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Benjamin Schilling
- 3 Department of Bioengineering, School of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Hajime Matsumine
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Paul Orgill
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Decellularized Diaphragmatic Muscle Drives a Constructive Angiogenic Response In Vivo. Int J Mol Sci 2018; 19:ijms19051319. [PMID: 29710813 PMCID: PMC5983670 DOI: 10.3390/ijms19051319] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle tissue engineering (TE) aims to efficiently repair large congenital and acquired defects. Biological acellular scaffolds are considered a good tool for TE, as decellularization allows structural preservation of tissue extracellular matrix (ECM) and conservation of its unique cytokine reservoir and the ability to support angiogenesis, cell viability, and proliferation. This represents a major advantage compared to synthetic scaffolds, which can acquire these features only after modification and show limited biocompatibility. In this work, we describe the ability of a skeletal muscle acellular scaffold to promote vascularization both ex vivo and in vivo. Specifically, chicken chorioallantoic membrane assay and protein array confirmed the presence of pro-angiogenic molecules in the decellularized tissue such as HGF, VEGF, and SDF-1α. The acellular muscle was implanted in BL6/J mice both subcutaneously and ortotopically. In the first condition, the ECM-derived scaffold appeared vascularized 7 days post-implantation. When the decellularized diaphragm was ortotopically applied, newly formed blood vessels containing CD31+, αSMA+, and vWF+ cells were visible inside the scaffold. Systemic injection of Evans Blue proved function and perfusion of the new vessels, underlying a tissue-regenerative activation. On the contrary, the implantation of a synthetic matrix made of polytetrafluoroethylene used as control was only surrounded by vWF+ cells, with no cell migration inside the scaffold and clear foreign body reaction (giant cells were visible). The molecular profile and the analysis of macrophages confirmed the tendency of the synthetic scaffold to enhance inflammation instead of regeneration. In conclusion, we identified the angiogenic potential of a skeletal muscle-derived acellular scaffold and the pro-regenerative environment activated in vivo, showing clear evidence that the decellularized diaphragm is a suitable candidate for skeletal muscle tissue engineering and regeneration.
Collapse
|
15
|
Cheng P, Yao L, Chen X, Su X, Su X, Huang Q, Hou C. An inflammatory memory and angiogenic self-assembling nanofiber hydrogel scaffold seeded with Akkermansia muciniphila to accelerate the healing of diabetic ischemic ulcers. RSC Adv 2018; 8:17357-17364. [PMID: 35539240 PMCID: PMC9080442 DOI: 10.1039/c8ra01662c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
In this research, a polypeptide skeleton was synthesized based on 3,4-dihydroxyphenylalanine (DOPA) and conjugated with inflammatory and angiogenesis peptides, combined with A. Muciniphila as a novel strategy for diabetic ischemic ulcer treatment.
Collapse
Affiliation(s)
- Panke Cheng
- Department of Anatomy
- Third Military Medical University
- Chongqing 400038
- China
| | - Liyang Yao
- Department of Anatomy
- Third Military Medical University
- Chongqing 400038
- China
| | - Xiaolong Chen
- Department of Anatomy
- Third Military Medical University
- Chongqing 400038
- China
| | - Xingxing Su
- Department of Anatomy
- Third Military Medical University
- Chongqing 400038
- China
| | - Xuejiao Su
- Department of Anatomy
- Third Military Medical University
- Chongqing 400038
- China
| | - Qiang Huang
- Department of Orthopaedics
- Traditional Chinese Medicine Hospital
- Chongqing 400030
- China
| | - Chunli Hou
- Department of Anatomy
- Third Military Medical University
- Chongqing 400038
- China
| |
Collapse
|
16
|
Biomaterials for skeletal muscle tissue engineering. Curr Opin Biotechnol 2017; 47:16-22. [PMID: 28575733 DOI: 10.1016/j.copbio.2017.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
Abstract
Although skeletal muscle can naturally regenerate in response to minor injuries, more severe damage and myopathies can cause irreversible loss of muscle mass and function. Cell therapies, while promising, have not yet demonstrated consistent benefit, likely due to poor survival of delivered cells. Biomaterials can improve muscle regeneration by presenting chemical and physical cues to muscle cells that mimic the natural cascade of regeneration. This brief review describes strategies for muscle repair utilizing biomaterials that can provide signals to either transplanted or host muscle cells. These strategies range from approaches that utilize biomaterials alone to those that combine biomaterials with exogenous growth factors, ex vivo cultured cells, and extensive culture time.
Collapse
|
17
|
Abstract
Type 1 diabetes is an autoimmune disorder in which the immune system attacks and destroys insulin-producing islet cells of the pancreas. Although islet transplantation has proved to be successful for some patients with type 1 diabetes, its widespread use is limited by islet donor shortage and the requirement for lifelong immunosuppression. An encapsulation strategy that can prevent the rejection of xenogeneic islets or of stem cell-derived allogeneic islets can potentially eliminate both of these barriers. Although encapsulation technology has met several challenges, the convergence of expertise in materials, nanotechnology, stem cell biology and immunology is allowing us to get closer to the goal of encapsulated islet cell therapy for humans.
Collapse
Affiliation(s)
- Tejal Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, Byers Hall Rm 203C, MC 2520, 1700 4th Street, San Francisco, California 94158-2330, USA
| | - Lonnie D Shea
- University of Michigan, Department of Biomedical Engineering, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA
| |
Collapse
|
18
|
Ran J, Hu Y, Le H, Chen Y, Zheng Z, Chen X, Yin Z, Yan R, Jin Z, Tang C, Huang J, Gu Y, Xu L, Qian S, Zhang W, Heng BC, Dominique P, Chen W, Wu L, Shen W, Ouyang H. Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: A preliminary study. Acta Biomater 2017; 53:307-317. [PMID: 28213096 DOI: 10.1016/j.actbio.2017.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Anterior cruciate ligament (ACL) reconstruction remains a formidable clinical challenge because of the lack of vascularization and adequate cell numbers in the joint cavity. In this study, we developed a novel strategy to mimic the early stage of repair in vivo, which recapitulated extra-articular inflammatory response to facilitate the early ingrowth of blood vessels and cells. A vascularized ectopic tissue engineered ligament (ETEL) with silk collagen scaffold was developed and then transferred to reconstruct the ACL in rabbits without interruption of perfusion. At 2weeks after ACL reconstruction, more well-perfused cells and vessels were found in the regenerated ACL with ETEL, which decreased dramatically at the 4 and 12week time points with collagen deposition and maturation. ACL treated with ETEL exhibited more mature ligament structure and enhanced ligament-bone healing post-reconstructive surgery at 4 and 12weeks, as compared with the control group. In addition, the ETEL group was demonstrated to have higher modulus and stiffness than the control group significantly at 12weeks post-reconstructive surgery. In conclusion, our results demonstrated that the ETEL can provide sufficient vascularity and cellularity during the early stages of healing, and subsequently promote ACL regeneration and ligament-bone healing, suggesting its clinic use as a promising therapeutic modality. STATEMENT OF SIGNIFICANCE Early inflammatory cell infiltration, tissue and vessels ingrowth were significantly higher in the extra-articular implanted scaffolds than theses in the joint cavity. By mimicking the early stages of wound repair, which provided extra-articular inflammatory stimulation to facilitate the early ingrowth of blood vessels and cells, a vascularized ectopic tissue engineered ligament (ETEL) with silk collagen scaffold was constructed by subcutaneous implantation for 2weeks. The fully vascularized TE ligament was then transferred to rebuild ACL without blood perfusion interruption, and was demonstrated to exhibit improved ACL regeneration, bone tunnel healing and mechanical properties.
Collapse
Affiliation(s)
- Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Yejun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Huihui Le
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Yangwu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ruijian Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Zhangchu Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Yanjia Gu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Shengjun Qian
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Wei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Boon Chin Heng
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Orthopaedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| |
Collapse
|
19
|
Abstract
Implanted biomaterials often fail because they elicit a foreign body response (FBR) and concomitant fibrotic encapsulation. To design clinically relevant interference approaches, it is crucial to first examine the FBR mechanisms. Here, we report the development and validation of infrared-excited nonlinear microscopy to resolve the three-dimensional (3D) organization and fate of 3D-electrospun scaffolds implanted deep into the skin of mice, and the following step-wise FBR process. We observed that immigrating myeloid cells (predominantly macrophages of the M1 type) engaged and became immobilized along the scaffold/tissue interface, before forming multinucleated giant cells. Both macrophages and giant cells locally produced vascular endothelial growth factor (VEGF), which initiated and maintained an immature neovessel network, followed by formation of a dense collagen capsule 2-4 weeks post-implantation. Elimination of the macrophage/giant-cell compartment by clodronate and/or neutralization of VEGF by VEGF Trap significantly diminished giant-cell accumulation, neovascularization and fibrosis. Our findings identify macrophages and giant cells as incendiaries of the fibrotic encapsulation of engrafted biomaterials via VEGF release and neovascularization, and therefore as targets for therapy.
Collapse
|
20
|
Hao H, Shao J, Deng Y, He S, Luo F, Wu Y, Li J, Tan H, Li J, Fu Q. Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications. Biomater Sci 2016; 4:1682-1690. [DOI: 10.1039/c6bm00588h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light-crosslinking waterborne polyurethanes (LWPUs) based on lysine possess appropriate elasticity for soft tissue repair, and can induce macrophages into a wound healing phenotype.
Collapse
|
21
|
Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2015; 8:5671-5701. [PMID: 28793529 PMCID: PMC5512621 DOI: 10.3390/ma8095269] [Citation(s) in RCA: 453] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022]
Abstract
All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs) are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a better understanding of the role of macrophages in the tissue healing processes, especially in events that follow biomaterial implantation, we can design novel biomaterials-based tissue-engineered constructs that elicit a favorable immune response upon implantation and perform for their intended applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Patricia J Brooks
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Oriyah Barzilay
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Noah Fine
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Michael Glogauer
- Faculty of Dentistry, Matrix Dynamics Group, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
22
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-S202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|