1
|
Yang W, Meng X, Li J, Cao H, Li L, Huang C, Wang Y, Chang W, Grad S, Li Z, Qin L, Wang X. Phytomolecule Epimedin C Mitigates Cartilage Extracellular Matrix Degradation and Osteoarthritis Progression in Rats. Adv Biol (Weinh) 2025:e2400685. [PMID: 40197728 DOI: 10.1002/adbi.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/05/2025] [Indexed: 04/10/2025]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease associated with chronic inflammation. Epimedin C (EpiC), flavonoid from Epimedin, enhances the extracellular matrix (ECM) expression in human chondrocytes in vitro. This study aims to investigate the effects of EpiC on osteoarthritis progress in vivo. OA is induced in Lewis rats by medial meniscus transection and treatment with intra-articular injections of EpiC. EpiC treatment reduces joint swelling and improves hindlimb weight distribution in MMT-induced OA rats. Pathological changes in cartilage are observed and evaluated by the osteoarthritis research society international (OARSI) score and both EpiC groups have lower OARSI scores than the OA group. The EpiC groups also exhibit higher positive expressions of collagen II and aggrecan, and lower MMP13 and ADAMTS5 in the cartilage. RNA-seq suggest that EpiC may attenuate MMT-induced ECM degradation by inhibiting the JAK-STAT pathway. EpiC promotes the gene expressions of Col2a1 and Acan, while inhibiting Mmp13 and Col10a1 in cartilage. EpiC reduces the phosphorylated STAT3 in human chondrocyte pellets stimulated with inflammatory cytokines. In conclusion, EpiC demonstrates potential as an OA therapeutic by reducing pain and ECM degradation through p-STAT3 inhibition.
Collapse
Affiliation(s)
- Wenyao Yang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xiangbo Meng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, 100000, P. R. China
| | - Jiming Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Huijuan Cao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuishan Huang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingchao Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Sibylle Grad
- AO Research Institute Davos, Davos Platz, 7270, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos Platz, 7270, Switzerland
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, 100000, P. R. China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China
| |
Collapse
|
2
|
Ersoy A, Say F, Tokur O, Karaca E, Aksoy A, Çiftçi A. High-dose vancomycin spacers provided early recovery without nephrotoxicity compared with standard-dose in MRSA-induced periprosthetic joint infection model of rats. Knee 2024; 49:125-134. [PMID: 38909590 DOI: 10.1016/j.knee.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Periprosthetic joint infections (PJIs) are commonly treated with two-stage revision surgery utilising antibiotic-loaded spacers; however, antibiotic release from spacers is limited and usually drops below effective levels a few days after placement. This study compared high-dose and standard-dose vancomycin-loaded spacers in terms of efficacy, safety, and overall treatment duration in a rat periprosthetic joint infection model. METHODS Thirty male Wistar albino rats (8-10 weeks old, 300-320 g) were housed individually at standard conditions. A periprosthetic infection model was established in the right knee of the rats using methicillin-resistant Staphylococcus aureus (MRSA) -contaminated Kirschner wires. Two weeks later, the infection was verified, and the Kirschner wires were removed. Rats were randomly divided into three groups (n = 10): standard-dose (SVanc) and high-dose (HVanc) vancomycin groups had 2.5 and 7.5% vancomycin in their spacers, respectively, while the control group had no spacers. All groups received intramuscular (IM) vancomycin and gentamicin for 4 weeks after spacer implantation. Microbiological counts and vancomycin levels in the blood and joint flush samples were measured, and histopathological assessments were conducted on the femur and kidneys. RESULTS After spacer implantation, MRSA was eliminated in the HVanc group with 4 weeks of treatment, while the SVanc group required 6 weeks of treatment (P < 0.001). Histopathological findings of the femoral medulla and cortical samples were better in the HVanc group compared with other groups (P = 0.007). Vancomycin levels in serum remained within safe limits in all groups, and kidney damage was not observed. CONCLUSION The use of high-dose vancomycin spacers might accelerate the transition period, which in turn reduces the duration of systemic antibiotic use and mitigates the risk of nephrotoxicity. Thus, this method may decrease the medical costs associated with PJI treatment.
Collapse
Affiliation(s)
- Ahmet Ersoy
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Ondokuz Mayıs University, Türkiye.
| | - Ferhat Say
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Ondokuz Mayıs University, Türkiye
| | - Orhan Tokur
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Türkiye
| | - Efe Karaca
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Türkiye
| | - Abdurrahman Aksoy
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Türkiye
| | - Alper Çiftçi
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Türkiye
| |
Collapse
|
3
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Partain BD, Bracho-Sanchez E, Farhadi SA, Yarmola EG, Keselowsky BG, Hudalla GA, Allen KD. Intra-articular delivery of an indoleamine 2,3-dioxygenase galectin-3 fusion protein for osteoarthritis treatment in male Lewis rats. Arthritis Res Ther 2023; 25:173. [PMID: 37723593 PMCID: PMC10506271 DOI: 10.1186/s13075-023-03153-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is driven by low-grade inflammation, and controlling local inflammation may offer symptomatic relief. Here, we developed an indoleamine 2,3-dioxygenase and galectin-3 fusion protein (IDO-Gal3), where IDO increases the production of local anti-inflammatory metabolites and Gal3 binds carbohydrates to extend IDO's joint residence time. In this study, we evaluated IDO-Gal3's ability to alter OA-associated inflammation and pain-related behaviors in a rat model of established knee OA. METHODS Joint residence was first evaluated with an analog Gal3 fusion protein (NanoLuc™ and Gal3, NL-Gal3) that produces luminescence from furimazine. OA was induced in male Lewis rats via a medial collateral ligament and medial meniscus transection (MCLT + MMT). At 8 weeks, NL or NL-Gal3 were injected intra-articularly (n = 8 per group), and bioluminescence was tracked for 4 weeks. Next, IDO-Gal3s's ability to modulate OA pain and inflammation was assessed. Again, OA was induced via MCLT + MMT in male Lewis rats, with IDO-Gal3 or saline injected into OA-affected knees at 8 weeks post-surgery (n = 7 per group). Gait and tactile sensitivity were then assessed weekly. At 12 weeks, intra-articular levels of IL6, CCL2, and CTXII were assessed. RESULTS The Gal3 fusion increased joint residence in OA and contralateral knees (p < 0.0001). In OA-affected animals, both saline and IDO-Gal3 improved tactile sensitivity (p = 0.008), but IDO-Gal3 also increased walking velocities (p ≤ 0.033) and improved vertical ground reaction forces (p ≤ 0.04). Finally, IDO-Gal3 decreased intra-articular IL6 levels within the OA-affected joint (p = 0.0025). CONCLUSION Intra-articular IDO-Gal3 delivery provided long-term modulation of joint inflammation and pain-related behaviors in rats with established OA.
Collapse
Affiliation(s)
- Brittany D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Shaheen A Farhadi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Elena G Yarmola
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA.
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Partain BD, Bracho-Sanchez E, Farhadi SA, Yarmola EG, Keselowsky BG, Hudalla GA, Allen KD. Intra-Articular Delivery of an Indoleamine 2,3-Dioxygenase Galectin-3 Fusion Protein for Osteoarthritis Treatment in Male Lewis Rats. RESEARCH SQUARE 2023:rs.3.rs-2753443. [PMID: 37131836 PMCID: PMC10153358 DOI: 10.21203/rs.3.rs-2753443/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective : Controlling joint inflammation can improve osteoarthritis (OA) symptoms; however, current treatments often fail to provide long-term effects. We have developed an indoleamine 2,3-dioxygenase and galectin-3 fusion protein (IDO-Gal3). IDO converts tryptophan to kynurenines, directing the local environment toward an anti-inflammatory state; Gal3 binds carbohydrates and extends IDO's joint residence time. In this study, we evaluated IDO-Gal3's ability to alter OA-associated inflammation and pain-related behaviors in a rat model of established knee OA. Methods : Joint residence was first evaluated with an analog Gal3 fusion protein (NanoLuc™ and Gal3, NL-Gal3) that produces luminescence from furimazine. OA was induced in male Lewis rats via a medial collateral ligament and medial meniscus transection (MCLT+MMT). At 8 weeks, NL or NL-Gal3 were injected intra-articularly (n=8 per group), and bioluminescence was tracked for 4 weeks. Next, IDO-Gal3's ability to modulate OA pain and inflammation was assessed. Again, OA was induced via MCLT+MMT in male Lewis rats, with IDO-Gal3 or saline injected into OA-affected knees at 8 weeks post-surgery (n=7 per group). Gait and tactile sensitivity were then assessed weekly. At 12 weeks, intra-articular levels of IL6, CCL2, and CTXII were assessed. Results : The Gal3 fusion increased joint residence in OA and contralateral knees (p<0.0001). In OA-affected animals, IDO-Gal3 improved tactile sensitivity (p=0.002), increased walking velocities (p≤0.033), and improved vertical ground reaction forces (p≤0.04). Finally, IDO-Gal3 decreased intra-articular IL6 levels within the OA-affected joint (p=0.0025). Conclusion : Intra-articular IDO-Gal3 delivery provided long-term modulation of joint inflammation and pain-related behaviors in rats with established OA.
Collapse
|
6
|
Lawson TB, Mäkelä JTA, Klein T, Snyder BD, Grinstaff MW. Nanotechnology and osteoarthritis; part 1: Clinical landscape and opportunities for advanced diagnostics. J Orthop Res 2021; 39:465-472. [PMID: 32827322 DOI: 10.1002/jor.24817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disease of the entire joint, often triggered by cartilage injury, mediated by a cascade of inflammatory pathways involving a complex interplay among metabolic, genetic, and enzymatic factors that alter the biochemical composition, microstructure, and biomechanical performance. Clinically, OA is characterized by degradation of the articular cartilage, thickening of the subchondral bone, inflammation of the synovium, and degeneration of ligaments that in aggregate reduce joint function and diminish quality of life. OA is the most prevalent joint disease, affecting 140 million people worldwide; these numbers are only expected to increase, concomitant with societal and financial burden of care. We present a two-part review encompassing the applications of nanotechnology to the diagnosis and treatment of OA. Herein, part 1 focuses on OA treatment options and advancements in nanotechnology for the diagnosis of OA and imaging of articular cartilage, while part 2 (10.1002/jor.24842) summarizes recent advances in drug delivery, tissue scaffolds, and gene therapy for the treatment of OA. Specifically, part 1 begins with a concise review of the clinical landscape of OA, along with current diagnosis and treatments. We next review nanoparticle contrast agents for minimally invasive detection, diagnosis, and monitoring of OA via magnetic resonace imaging, computed tomography, and photoacoustic imaging techniques as well as for probes for cell tracking. We conclude by identifying opportunities for nanomedicine advances, and future prospects for imaging and diagnostics.
Collapse
Affiliation(s)
- Taylor B Lawson
- Departments of Biomedical Engineering, Mechanical Engineering, Chemistry, and Medicine Boston University, Boston, Massachusetts
- Orthopaedics Research Department, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Janne T A Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Brian D Snyder
- Orthopaedics Research Department, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Mechanical Engineering, Chemistry, and Medicine Boston University, Boston, Massachusetts
| |
Collapse
|
7
|
Yarmola EG, Shah YY, Lakes EH, Pacheco YC, Xie DF, Dobson J, Allen KD. Use of magnetic capture to identify elevated levels of CCL2 following intra-articular injection of monoiodoacetate in rats. Connect Tissue Res 2020; 61:485-497. [PMID: 31438731 PMCID: PMC7036010 DOI: 10.1080/03008207.2019.1620223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/25/2019] [Indexed: 02/03/2023]
Abstract
PURPOSE Synovial fluid biomarkers help evaluate osteoarthritis (OA) development. Magnetic capture, our new magnetic nanoparticle-based technology, has proven to be effective for determining extracellular matrix fragment levels in two rat OA models. Here, the feasibility of magnetic capture for detecting monocyte chemoattractant protein-1 (MCP-1 or CCL2) is demonstrated after intra-articular injection of monoiodoacetate (MIA) in the rat knee. METHODS Forty-eight male Lewis rats received a right hind limb, intra-articular injection of MIA (1 mg in 25 µl of saline) or 25 µl of saline. Magnetic capture and lavage were performed at 7 days after injection (n = 6 per treatment per procedure), with magnetic capture additionally performed at 14 and 28 days post-injection (n = 6 per treatment per time point). CCL2 was also assessed in serum. RESULTS Serum CCL2 levels revealed no difference between MIA and saline animals (p = 0.0851). In contrast, magnetic capture and lavage detected a significant increase of CCL2 in the MIA-injected knee, with the MIA-injected knee having elevated CCL2 compared to contralateral and saline-injected knees (p = 0.00016 (contralateral) and p = 0.00016 (saline) for magnetic capture; p = 0.00023 (contralateral) and p = 0.00049 (saline) for lavage). CONCLUSIONS Magnetic capture of CCL2 was successfully developed and applied to determine levels of CCL2 in a rat knee. Magnetic capture detected a statistically significant increase of CCL2 in MIA-injected knees compared to controls, and CCL2 levels stayed relatively stable from week 1 through week 4 post-MIA injection.
Collapse
Affiliation(s)
- Elena G. Yarmola
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Yash Y. Shah
- Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Emily H. Lakes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Yan C. Pacheco
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Danny F. Xie
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Lyons S, Mc Kiernan EP, Dee G, Brougham DF, Morrin A. Electrostatically modulated magnetophoretic transport of functionalised iron-oxide nanoparticles through hydrated networks. NANOSCALE 2020; 12:10550-10558. [PMID: 32159560 DOI: 10.1039/d0nr01602k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Factors that determine magnetophoretic transport of magnetic nanoparticles (MNPs) through hydrated polymer networks under the influence of an external magnetic field gradient were studied. Functionalised iron oxide cores (8.9 nm core diameter) were tracked in real-time as they moved through agarose gels under the influence of an inhomogeneous magnetic field. Terminal magnetophoretic velocities were observed in all cases, these were quantified and found to be highly reproducible and sensitive to the conditions. Increasing agarose content reduced magnetophoretic velocity, we attribute this to increasingly tortuous paths through the porous hydrated polymer network and propose a new factor to quantify the tortuosity. The impact of MNP surface functionalisation, charge, network fixed charge content, and ionic strength of the aqueous phase on velocity were studied to separate these effects. For MNPs functionalised with polyethylene glycol (PEG) increasing chain length reduced velocity but the tortuosity extracted, which is a function of the network, was unchanged; validating the approach. For charged citrate- and arginine-functionalised MNPs, magnetophoretic velocities were found to increase for particles with positive and decrease for particles with negative zeta potential. In both cases these effects could be moderated by reducing the number of agarose anionic residues and/or increasing the ionic strength of the aqueous phase; conditions under which tortuosity again becomes the critical factor. A model for MNP transport identifying the contributions from the tortuous pore network and from electrostatic effects associated with the pore constrictions is proposed.
Collapse
Affiliation(s)
- Stephen Lyons
- Insight SFI Research Centre For Data Analytics; National Centre for Sensor Research; School of Chemical Sciences, Dublin City University, Ireland.
| | | | - Garret Dee
- School of Chemistry, Trinity College Dublin, Ireland
| | | | - Aoife Morrin
- Insight SFI Research Centre For Data Analytics; National Centre for Sensor Research; School of Chemical Sciences, Dublin City University, Ireland.
| |
Collapse
|
9
|
Brown SB, Hornyak JA, Jungels RR, Shah YY, Yarmola EG, Allen KD, Sharma B. Characterization of Post-Traumatic Osteoarthritis in Rats Following Anterior Cruciate Ligament Rupture by Non-Invasive Knee Injury (NIKI). J Orthop Res 2020; 38:356-367. [PMID: 31520482 PMCID: PMC8596306 DOI: 10.1002/jor.24470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
Small animal models are essential for studying anterior cruciate ligament (ACL) injury, one of the leading risk factors for post-traumatic osteoarthritis (PTOA). Non-surgical models of ACL rupture have recently surged as a new tool to study PTOA, as they circumvent the confounding effects of surgical disruption of the joint. These models primarily have been explored in mice and rabbits, but are relatively understudied in rats. The purpose of this work was to establish a non-invasive, mechanical overload model of ACL rupture in the rat and to study the disease pathogenesis following the injury. ACL rupture was induced via non-invasive tibial compression in Lewis rats. Disease state was characterized for 4 months after ACL rupture via histology, computed tomography, and biomarker capture from the synovial fluid. The non-invasive knee injury (NIKI) model created consistent ACL ruptures without direct damage to other tissues and resulted in conventional OA pathology. NIKI knees exhibited structural changes as early as 4 weeks post-injury, including regional structural changes to cartilage, chondrocyte and cartilage disorganization, changes to the bone architecture, synovial hyperplasia, and the increased presence of biomarkers of cartilage fragmentation and pro-inflammatory cytokines. These results suggest that this model can be a valuable tool to study PTOA. By establishing the fundamental pathogenesis of this injury, additional opportunities are created to evaluate unique contributing factors and potential therapeutic interventions for this disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:356-367, 2020.
Collapse
Affiliation(s)
- Shannon B. Brown
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Jessica A. Hornyak
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Ryan R. Jungels
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Yash Y. Shah
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Elena G. Yarmola
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Kyle D. Allen
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Blanka Sharma
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| |
Collapse
|
10
|
Allen KD, Chan KM, Yarmola EG, Shah YY, Partain BD. The effects of age on the severity of joint damage and intra-articular inflammation following a simulated medial meniscus injury in 3, 6, and 9 month old male rats. Connect Tissue Res 2020; 61:82-94. [PMID: 31438735 PMCID: PMC6884683 DOI: 10.1080/03008207.2019.1641495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
Purpose: Aging is a known risk factor for osteoarthritis (OA). Several transgenic rodent models have been used to investigate the effects of accelerated or delayed aging in articular joints. However, age-effects on the progression of post-traumatic OA are less frequently evaluated. The objective of this study is to evaluate how animal age affects the severity of intra-articular inflammation and joint damage in the rat medial collateral ligament plus medial meniscus transection (MCLT+MMT) model of knee OA.Methods: Forty-eight, male Lewis rats were aged to 3, 6, or 9 months old. At each age, eight rats received either an MCLT+MMT surgery or a skin-incision. At 2 months post-surgery, intra-articular evidence of CTXII, IL1β, IL6, TNFα, and IFNγ was evaluated using a multiplex magnetic capture technique, and histological evidence of OA was assessed via a quantitative histological scoring technique.Results: Elevated levels of CTXII and IL6 were found in MCLT+MMT knees relative to skin-incision and contralateral controls; however, animal age did not affect the severity of joint inflammation. Conversely, histological investigation of cartilage damage showed larger cartilage lesion areas, greater width of affected cartilage, and more evidence of hypertrophic cartilage damage in MCLT+MMT knees with age.Conclusions: These data indicate the severity of cartilage damage subsequent to MCLT+MMT surgery is related to the rat's age at the time of injury. However, despite greater levels of cartilage damage, the level of intra-articular inflammation was not necessarily affected in 3, 6, and 9 month old male rats.
Collapse
Affiliation(s)
- Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Elena G. Yarmola
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Yash Y. Shah
- Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Brittany D. Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Hui Mingalone CK, Liu Z, Hollander JM, Garvey KD, Gibson AL, Banks RE, Zhang M, McAlindon TE, Nielsen HC, Georgakoudi I, Zeng L. Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis. J Transl Med 2018; 98:656-669. [PMID: 29540857 PMCID: PMC7735372 DOI: 10.1038/s41374-018-0040-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of chronic disability whose mechanism of pathogenesis is largely elusive. Local inflammation is thought to play a key role in OA progression, especially in injury-associated OA. While multiple inflammatory cytokines are detected, the timing and extent of overall inflammatory activities in early OA and the manner by which joint inflammation correlates with cartilage structural damage are still unclear. We induced OA via destabilization of the medial meniscus (DMM) in NFκB luciferase reporter mice, whose bioluminescent signal reflects the activity of NFκB, a central mediator of inflammation. Bioluminescence imaging data showed that DMM and sham control joints had a similar surge of inflammation at 1-week post-surgery, but the DMM joint exhibited a delay in resolution of inflammation in subsequent weeks. A similar trend was observed with synovitis, which we found to be mainly driven by synovial cell density and inflammatory infiltration rather than synovial lining thickness. Interestingly, an association between synovitis and collagen structural damage was observed in early OA. Using Second Harmonic Generation (SHG) imaging, we analyzed collagen fiber organization in articular cartilage. Zonal differences in collagen fiber thickness and organization were observed as soon as OA initiated after DMM surgery, and persisted over time. Even at 1-week post-surgery, the DMM joint showed a decrease in collagen fiber thickness in the deep zone and an increase in collagen fiber disorganization in the superficial zone. Since we were able detect and quantify collagen structural changes very early in OA development by SHG imaging, we concluded that SHG imaging is a highly sensitive tool to evaluate pathological changes in OA. In summary, this study uncovered a dynamic profile of inflammation and joint cartilage damage during OA initiation and development, providing novel insights into OA pathology.
Collapse
Affiliation(s)
- Carrie K. Hui Mingalone
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Judith M. Hollander
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Kirsten D. Garvey
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Averi L. Gibson
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rose E. Banks
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Ming Zhang
- Division of Rheumatology, Tufts Medical Center, Boston, MA 02111, USA
| | | | - Heber C. Nielsen
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA. .,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA. .,Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Yarmola EG, Shah YY, Kloefkorn HE, Dobson J, Allen KD. Comparing intra-articular CTXII levels assessed via magnetic capture or lavage in a rat knee osteoarthritis model. Osteoarthritis Cartilage 2017; 25:1189-1194. [PMID: 28137664 PMCID: PMC5466845 DOI: 10.1016/j.joca.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Parallel measures of osteoarthritis (OA) across species can help evaluate OA models relative to humans. Toward this need, our group recently developed a magnetic nanoparticle-based technology, termed magnetic capture, to analyze biomarkers within a rat knee. The objectives of this study were to directly compare magnetic capture to lavage, and assess c-telopeptide of collagen type II (CTXII) in the rat medial meniscus transection (MMT) model of knee OA. DESIGN MMT surgery was performed in 30 male Lewis rats (3 months, 250 g). Using lavage or magnetic capture, CTXII was assessed in the OA-affected and contralateral knee at 1 week (n = 6 per group) or 4 weeks (n = 8 per group) after surgery. RESULTS While lavage detected elevated CTXII concentrations in the OA-affected knee at 1 week (P = 0.002), magnetic capture detected elevated CTXII levels in the OA-affected knee at 4 weeks (P = 0.016). While magnetic capture did not detect significant elevation of CTXII at week 1, five of six rats evaluated with magnetic capture had higher CTXII levels in the OA-affected joint relative to the contralateral limb. Moreover, with magnetic capture, CTXII levels increased from 1 week to 4 weeks, corresponding to histological damage. CTXII concentrations evaluated via lavage were relatively constant across time. CONCLUSIONS Magnetic capture and lavage evaluate CTXII in different ways: Magnetic capture measures total CTXII in the joint, while lavage measures concentration. Our data indicate magnetic capture may be advantageous at later time points, where CTXII can be diluted by effusions.
Collapse
Affiliation(s)
- E. G. Yarmola
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - Y. Y. Shah
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL,Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - H. E. Kloefkorn
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - J. Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL,Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| | - K. D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
13
|
Mobasheri A, Bay-Jensen AC, van Spil WE, Larkin J, Levesque MC. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers). Osteoarthritis Cartilage 2017; 25:199-208. [PMID: 28099838 DOI: 10.1016/j.joca.2016.12.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this "Year in Review" article is to summarize and discuss the implications of biochemical marker related articles published between the Osteoarthritis Research Society International (OARSI) 2015 Congress in Seattle and the OARSI 2016 Congress in Amsterdam. METHODS The PubMed/MEDLINE bibliographic database was searched using the combined keywords: 'biomarker' and 'osteoarthritis'. The PubMed/MEDLINE literature search was conducted using the Advanced Search Builder function (http://www.ncbi.nlm.nih.gov/pubmed/advanced). RESULTS Over two hundred new biomarker-related papers were published during the literature search period. Some papers identified new biomarkers whereas others explored the biological properties and clinical utility of existing markers. There were specific references to several adipocytokines including leptin and adiponectin. ADAM Metallopeptidase with Thrombospondin Type 1 motif 4 (ADAMTS-4) and aggrecan ARGS neo-epitope fragment (ARGS) in synovial fluid (SF) and plasma chemokine (CeC motif) ligand 3 (CCL3) were reported as potential new knee biomarkers. New and refined proteomic technologies and novel assays including a fluoro-microbead guiding chip (FMGC) for measuring C-telopeptide of type II collagen (CTX-II) in serum and urine and a novel magnetic nanoparticle-based technology (termed magnetic capture) for collecting and concentrating CTX-II, were described this past year. CONCLUSION There has been steady progress in osteoarthritis (OA) biomarker research in 2016. Several novel biomarkers were identified and new technologies have been developed for measuring existing biomarkers. However, there has been no "quantum leap" this past year and identification of novel early OA biomarkers remains challenging. During the past year, OARSI published a set of recommendations for the use of soluble biomarkers in clinical trials, which is a major step forward in the clinical use of OA biomarkers and bodes well for future OA biomarker development.
Collapse
Affiliation(s)
- A Mobasheri
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, United Kingdom; Faculty of Health and Medical Sciences, Duke of Kent Building, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.
| | - A-C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience A/S, Herlev, Denmark
| | - W E van Spil
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - J Larkin
- C3 DPU, Immunoinflammation Therapeutic Area, GlaxoSmithKline, King of Prussia, PA, 19406, United States
| | - M C Levesque
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| |
Collapse
|