1
|
Mielcarska S, Kot A, Kula A, Dawidowicz M, Sobków P, Kłaczka D, Waniczek D, Świętochowska E. B7H3 in Gastrointestinal Tumors: Role in Immune Modulation and Cancer Progression: A Review of the Literature. Cells 2025; 14:530. [PMID: 40214484 PMCID: PMC11988818 DOI: 10.3390/cells14070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
B7-H3 (CD276), a member of the B7 immune checkpoint family, plays a critical role in modulating immune responses and has emerged as a promising target in cancer therapy. It is highly expressed in various malignancies, where it promotes tumor evasion from T cell surveillance and contributes to cancer progression, metastasis, and therapeutic resistance, showing a correlation with the poor prognosis of patients. Although its receptors were not fully identified, B7-H3 signaling involves key intracellular pathways, including JAK/STAT, NF-κB, PI3K/Akt, and MAPK, driving processes crucial for supporting tumor growth such as cell proliferation, invasion, and apoptosis inhibition. Beyond immune modulation, B7-H3 influences cancer cell metabolism, angiogenesis, and epithelial-to-mesenchymal transition, further exacerbating tumor aggressiveness. The development of B7-H3-targeting therapies, including monoclonal antibodies, antibody-drug conjugates, and CAR-T cells, offers promising avenues for treatment. This review provides an up-to-date summary of the B7H3 mechanisms of action, putative receptors, and ongoing clinical trials evaluating therapies targeting B7H3, focusing on the molecule's role in gastrointestinal tumors.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Piotr Sobków
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Daria Kłaczka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| |
Collapse
|
2
|
Babič D, Jovčevska I, Zottel A. B7-H3 in glioblastoma and beyond: significance and therapeutic strategies. Front Immunol 2024; 15:1495283. [PMID: 39664380 PMCID: PMC11632391 DOI: 10.3389/fimmu.2024.1495283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cancer has emerged as the second most prevalent disease and the leading cause of death, claiming the lives of 10 million individuals each year. The predominant varieties of cancer encompass breast, lung, colon, rectal, and prostate cancers. Among the more aggressive malignancies is glioblastoma, categorized as WHO stage 4 brain cancer. Following diagnosis, the typical life expectancy ranges from 12 to 15 months, as current established treatments like surgical intervention, radiotherapy, and chemotherapy using temozolomide exhibit limited effectiveness. Beyond conventional approaches, the exploration of immunotherapy for glioblastoma treatment is underway. A methodology involves CAR-T cells, monoclonal antibodies, ADCC and nanobodies sourced from camelids. Immunotherapy's recent focal point is the cellular ligand B7-H3, notably abundant in tumor cells while either scarce or absent in normal ones. Its expression elevates with cancer progression and serves as a promising prognostic marker. In this article, we delve into the essence of B7-H3, elucidating its function and involvement in signaling pathways. We delineate the receptors it binds to and its significance in glioblastoma and other cancer types. Lastly, we examine its role in immunotherapy and the utilization of nanobodies in this domain.
Collapse
|
3
|
Zhu Q, Nambiar R, Schultz E, Gao X, Liang S, Flamand Y, Stevenson K, Cole PD, Gennarini L, Harris MH, Kahn JM, Ladas EJ, Athale UH, Tran TH, Michon B, Welch JJ, Sallan SE, Silverman LB, Kelly KM, Yao S. Genome-wide study identifies novel genes associated with bone toxicities in children with acute lymphoblastic leukaemia. Br J Haematol 2024; 205:1889-1898. [PMID: 39143423 PMCID: PMC11568943 DOI: 10.1111/bjh.19696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024]
Abstract
Bone toxicities are common among paediatric patients treated for acute lymphoblastic leukaemia (ALL) with potentially major negative impact on patients' quality of life. To identify the underlying genetic contributors, we conducted a genome-wide association study (GWAS) and a transcriptome-wide association study (TWAS) in 260 patients of European-descent from the DFCI 05-001 ALL trial, with validation in 101 patients of European-descent from the DFCI 11-001 ALL trial. We identified a significant association between rs844882 on chromosome 20 and bone toxicities in the DFCI 05-001 trial (p = 1.7 × 10-8). In DFCI 11-001 trial, we observed a consistent trend of this variant with fracture. The variant was an eQTL for two nearby genes, CD93 and THBD. In TWAS, genetically predicted ACAD9 expression was associated with an increased risk of bone toxicities, which was confirmed by meta-analysis of the two cohorts (meta-p = 2.4 × 10-6). In addition, a polygenic risk score of heel quantitative ultrasound speed of sound was associated with fracture risk in both cohorts (meta-p = 2.3 × 10-3). Our findings highlight the genetic influence on treatment-related bone toxicities in this patient population. The genes we identified in our study provide new biological insights into the development of bone adverse events related to ALL treatment.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Ram Nambiar
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Emily Schultz
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Xinyu Gao
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Shuyi Liang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yael Flamand
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Kristen Stevenson
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Peter D. Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Lisa Gennarini
- Division of Pediatric Hematology, Oncology and Cellular Therapy, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY
| | | | - Justine M. Kahn
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY
| | - Elena J. Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY
| | - Uma H. Athale
- Division of Pediatric Hematology/Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology and Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Bruno Michon
- Division of Hematology-Oncology, Centre Hospitalier Universitaire de Québec, Quebec City, Canada
| | - Jennifer J.G. Welch
- Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Stephen E. Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
| | - Lewis B. Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
| | - Kara M. Kelly
- Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
4
|
Stonebraker JR, Pace RG, Gallins PJ, Dang H, Aksit M, Faino AV, Gordon WW, MacParland S, Bamshad MJ, Gibson RL, Cutting GR, Durie PR, Wright FA, Zhou YH, Blackman SM, O’Neal WK, Ling SC, Knowles MR. Genetic variation in severe cystic fibrosis liver disease is associated with novel mechanisms for disease pathogenesis. Hepatology 2024; 80:1012-1025. [PMID: 38536042 PMCID: PMC11427593 DOI: 10.1097/hep.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND AIMS It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.
Collapse
Affiliation(s)
- Jaclyn R. Stonebraker
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Paul J. Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - M.A. Aksit
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - William W. Gordon
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Sonya MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Ronald L. Gibson
- Center for Respiratory Biology & Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, 98105, USA
| | - Garry R. Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | | | - Fred A. Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Scott M. Blackman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Simon C. Ling
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael R. Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
5
|
Podieh F, Overboom MC, Knol JC, Piersma SR, Goeij-de Haas R, Pham TV, Jimenez CR, Hordijk PL. AAMP and MTSS1 Are Novel Negative Regulators of Endothelial Barrier Function Identified in a Proteomics Screen. Cells 2024; 13:1609. [PMID: 39404373 PMCID: PMC11476176 DOI: 10.3390/cells13191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-cell adhesion in endothelial monolayers is tightly controlled and crucial for vascular integrity. Recently, we reported on the importance of fast protein turnover for maintenance of endothelial barrier function. Specifically, continuous ubiquitination and degradation of the Rho GTPase RhoB is crucial to preserve quiescent endothelial integrity. Here, we sought to identify other barrier regulators, which are characterized by a short half-life, using a proteomics approach. Following short-term inhibition of ubiquitination with E1 ligase inhibitor MLN7243 or Cullin E3 ligase inhibitor MLN4924 in primary human endothelial cells, we identified sixty significantly differentially expressed proteins. Intriguingly, our data showed that AAMP and MTSS1 are novel negative regulators of endothelial barrier function and that their turnover is tightly controlled by ubiquitination. Mechanistically, AAMP regulates the stability and activity of RhoA and RhoB, and colocalizes with F-actin and cortactin at membrane ruffles, possibly regulating F-actin dynamics. Taken together, these findings demonstrate the critical role of protein turnover of specific proteins in the regulation of endothelial barrier function, contributing to our options to target dysregulation of vascular permeability.
Collapse
Affiliation(s)
- Fabienne Podieh
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Max C. Overboom
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| | - Jaco C. Knol
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Richard Goeij-de Haas
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Thang V. Pham
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Connie R. Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands (C.R.J.)
| | - Peter L. Hordijk
- Department of Physiology, Microcirculation, Amsterdam Cardiovascular Science, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; (F.P.)
| |
Collapse
|
6
|
Ma S, Sun R, Wang Y, Wei Y, Xu H, Liu X, Liang Z, Zhao L, Hu Y, Lian X, Guo M, Huang D. Improving osseointegration and antimicrobial properties of titanium implants with black phosphorus nanosheets-hydroxyapatite composite coatings for vascularized bone regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35403. [PMID: 38520706 DOI: 10.1002/jbm.b.35403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
For decades, titanium implants have shown impressive advantages in bone repair. However, the preparation of implants with excellent antimicrobial properties as well as better osseointegration ability remains difficult for clinical application. In this study, black phosphorus nanosheets (BPNSs) were doped into hydroxyapatite (HA) coatings using electrophoretic deposition. The coatings' surface morphology, roughness, water contact angle, photothermal properties, and antibacterial properties were investigated. The BP/HA coating exhibited a surface roughness of 59.1 nm, providing an ideal substrate for cell attachment and growth. The water contact angle on the BP/HA coating was measured to be approximately 8.55°, indicating its hydrophilic nature. The BPNSs demonstrated efficient photothermal conversion, with a temperature increase of 42.2°C under laser irradiation. The BP/HA composite coating exhibited a significant reduction in bacterial growth, with inhibition rates of 95.6% and 96.1% against Staphylococcus aureus and Escherichia coli. In addition, the cytocompatibility of the composite coating was evaluated by cell adhesion, CCK8 and AM/PI staining; the effect of the composite coating in promoting angiogenesis was assessed by scratch assay, transwell assay, and protein blotting; and the osteoinductivity of the composite coating was evaluated by alkaline phosphatase assay, alizarin red staining, and Western blot. The results showed that the BP/HA composite coating exhibited superior performance in promoting biological functions such as cell proliferation and adhesion, antibacterial activity, osteogenic differentiation, and angiogenesis, and had potential applications in vascularized bone regeneration.
Collapse
Affiliation(s)
- Shilong Ma
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
| | - Ruize Sun
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China
| | - Haofeng Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
| | - Xuanyu Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China
| | - Meiqing Guo
- Department of Fundamental Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China
| |
Collapse
|
7
|
Kang C, Bertolla R, Pagani R. The '-ics' of male reproduction: genomics, epigenetics, proteomics, metabolomics, and microbiomics. Curr Opin Urol 2023; 33:31-38. [PMID: 36210759 DOI: 10.1097/mou.0000000000001052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the most current findings, from the past 2 years, in various '-ics' fields in male infertility, with a specific focus on nonobstructive azoospermia, the most severe form, and varicocele, the most common correctable cause of male infertility. RECENT FINDINGS Recent studies confirm previously identified causes and identify previously unknown genetic mutations as causes for nonobstructive azoospermia and varicocele. SUMMARY Infertility is a common problem for couples with approximately half of cases attributable to male factor infertility. Although advances in assisted reproductive technology have permitted many more men with infertility to father biological children, the majority of infertile men continue to have unknown causes. The recent explosion of the '-ics' fields, including genomics, epigenetics, proteomics, metabolomics, and microbiomics, has shed light on previously unknown causes for various diseases. New information in these fields will not only shed light on the pathogenesis of these conditions but also may shift the paradigm in clinical testing that may allow clinicians to provide more precise counseling and prognostic information for men with infertility.
Collapse
Affiliation(s)
- Caroline Kang
- Department of Urology, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Ricardo Bertolla
- Division of Urology, Department of Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
8
|
Cherng JH, Chang SJ, Chiu YK, Chiu YH, Fang TJ, Chen HC. Low Molecular Weight Sericin Enhances the In Vitro of Immunological Modulation and Cell Migration. Front Bioeng Biotechnol 2022; 10:925197. [PMID: 35928949 PMCID: PMC9343859 DOI: 10.3389/fbioe.2022.925197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 11/14/2022] Open
Abstract
Sericin, a waste product of the silk textile industry, has favorable physicochemical and biological properties. In this study, we extracted a low molecular weight (MW) sericin (LMW-sericin; below 10 kDa) by a performing high-temperature and high-pressure method and confirmed the MW using matrix-assisted laser desorption ionization-time of flight and liquid chromatography–mass spectrometry. Furthermore, we determined its biological effects on macrophages and human adipose stem cells (hASCs) as cell models to investigate the biocompatibility, immunomodulation behavior, and potential signaling pathway-related wound healing via analyses of gene expression of focal adhesion and human cytokines and chemokines using quantitative real-time polymerase chain reaction and cytokine assay. LMW-sericin showed good biocompatibility both in macrophages and hASCs. Macrophages cultured with 0.1 mg/ml LMW-sericin displayed an improved inflammatory response shown by the upregulation of CXCL9, IL12A, BMP7, and IL10, which developed Th1 and Th2 balance. LMW-sericin also improved the differentiation of macrophages toward the M2 phenotype by significantly enhancing the expression of Arg-1, which is conducive to the repair of the inflammatory environment. Moreover, the gene expression of hASCs showed that LMW-sericin promoted the secretion of beneficial adhesion molecules that potentially activate the gene transcription of differentiation and migration in hASCs, as well as significantly enhanced the levels of PKCβ1, RhoA, and RasGFR1 as fruitful molecules in wound healing. These findings provide insights into LMW-sericin application as a potential biomaterial for wound management.
Collapse
Affiliation(s)
- Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Jen Chang
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yaw-Kwan Chiu
- Department of Pediatrics Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsiang Chiu
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tong-Jing Fang
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Cheng Chen
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Hsiang-Cheng Chen,
| |
Collapse
|
9
|
Ciprut S, Berberich A, Knoll M, Pusch S, Hoffmann D, Furkel J, Ward Gahlawat A, Kahlert-Konzelamnn L, Sahm F, Warnken U, Winter M, Schnölzer M, Pusch S, von Deimling A, Abdollahi A, Wick W, Lemke D. AAMP is a binding partner of costimulatory human B7-H3. Neurooncol Adv 2022; 4:vdac098. [PMID: 35919070 PMCID: PMC9341442 DOI: 10.1093/noajnl/vdac098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Targeted immunotherapies are of growing interest in the treatment of various cancers. B7 homolog 3 protein (B7-H3), a member of the co-stimulatory/-inhibitory B7-family, exerts immunosuppressive and pro-tumorigenic functions in various cancer types and is under evaluation in ongoing clinical trials. Unfortunately, interaction partner(s) remain unknown which restricts the druggability. Methods Aiming to identify potential binding partner(s) of B7-H3, a yeast two-hybrid and a mass spectrometry screen were performed. Potential candidates were evaluated by bimolecular fluorescence complementation (BiFC) assay, co-immunoprecipitation (co-IP), and functionally in a 3H-thymidine proliferation assay of Jurkat cells, a T-cell lineage cell line. Prognostic value of angio-associated migratory cell protein (AAMP) and B7-H3 expression was evaluated in isocitrate dehydrogenase 1 wildtype (IDH1wt) glioblastoma (GBM) patients from The Cancer Genome Atlas (TCGA)-GBM cohort. Results Of the screening candidates, CD164, AAMP, PTPRA, and SLAMF7 could be substantiated via BiFC. AAMP binding could be further confirmed via co-IP and on a functional level. AAMP was ubiquitously expressed in glioma cells, immune cells, and glioma tissue, but did not correlate with glioma grade. Finally, an interaction between AAMP and B7-H3 could be observed on expression level, hinting toward a combined synergistic effect. Conclusions AAMP was identified as a novel interaction partner of B7-H3, opening new possibilities to create a targeted therapy against the pro-tumorigenic costimulatory protein B7-H3.
Collapse
Affiliation(s)
- Sara Ciprut
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Anne Berberich
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Maximilian Knoll
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
| | - Dirk Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
- Faculty of Biosciences, Heidelberg University , Heidelberg , Germany
| | - Jennifer Furkel
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Aoife Ward Gahlawat
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Lena Kahlert-Konzelamnn
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Felix Sahm
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Martin Winter
- Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Martina Schnölzer
- Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Sonja Pusch
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Dieter Lemke
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| |
Collapse
|
10
|
Wu Y, Liu B, Lin W, Zhao R, Han W, Xie J. AAMP promotes colorectal cancer metastasis by suppressing SMURF2-mediated ubiquitination and degradation of RhoA. Mol Ther Oncolytics 2021; 23:515-530. [PMID: 34901393 PMCID: PMC8633529 DOI: 10.1016/j.omto.2021.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metastasis is considered the leading cause of cancer death due to the limited possibilities to therapeutically target this process. How the ubiquitination machinery contributes to metastasis remains underexplored. Angio-associated migratory cell protein (AAMP), a ubiquitously expressed protein involved in cell migration, has been reported to play oncogenic roles in breast and non-small cell lung cancer (NSCLC). However, the role of AAMP in colorectal cancer (CRC) has not been demonstrated. Here, we report that AAMP is aberrantly upregulated in metastatic CRC and that AAMP upregulation is correlated with the poor survival of CRC patients. AAMP knockdown significantly attenuated the migration and invasion of CRC cells, while AAMP overexpression led to the opposite effects. Mechanistically, we identified Ras homolog family member A (RhoA) as a target of AAMP. Smad ubiquitin regulatory factor (SMURF) 2 was previously found to be a CRC suppressor. Notably, we discovered here that SMURF2 acted as an E3 ubiquitin ligase to mediate the ubiquitination and degradation of RhoA. AAMP stabilized RhoA by binding to it and suppressing its SMURF2-mediated ubiquitination and degradation. Subsequently, the level of active RhoA was increased, thereby accelerating CRC cell migration and invasion. These findings indicate a new potential antitumor target for CRC.
Collapse
Affiliation(s)
- Yuhui Wu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Bofang Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Weiqiang Lin
- Laboratory of Cancer Biology, Institute of Clinical Science, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Corresponding author: Weidong Han, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang 310016, China.
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Corresponding author: Jiansheng Xie, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
11
|
Genetics of osteonecrosis in pediatric acute lymphoblastic leukemia and general populations. Blood 2021; 137:1550-1552. [PMID: 33106839 DOI: 10.1182/blood.2020008471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/18/2020] [Indexed: 12/12/2022] Open
|
12
|
Li X, Wang F, Lan Y, Bian R, Wang Y, Zhang X, Guo Y, Xiao L, Ni W, Zhao X, Luo G, Zhan R. GDF-5 induces epidermal stem cell migration via RhoA-MMP9 signalling. J Cell Mol Med 2020; 25:1939-1948. [PMID: 33369147 PMCID: PMC7882973 DOI: 10.1111/jcmm.15925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/06/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
The migration of epidermal stem cells (EpSCs) is critical for wound re-epithelization and wound healing. Recently, growth/differentiation factor-5 (GDF-5) was discovered to have multiple biological effects on wound healing; however, its role in EpSCs remains unclear. In this work, recombinant mouse GDF-5 (rmGDF-5) was found via live imaging in vitro to facilitate the migration of mouse EpSCs in a wound-scratch model. Western blot and real-time PCR assays demonstrated that the expression levels of RhoA and matrix metalloproteinase-9 (MMP9) were correlated with rmGDF-5 concentration. Furthermore, we found that rmGDF-5 stimulated mouse EpSC migration in vitro by regulating MMP9 expression at the mRNA and protein levels through the RhoA signalling pathway. Moreover, in a deep partial-thickness scald mouse model in vivo, GDF-5 was confirmed to promote EpSC migration and MMP9 expression via RhoA, as evidenced by the tracking of cells labelled with 5-bromo-2-deoxyuridine (BrdU). The current study showed that rmGDF-5 can promote mouse EpSC migration in vitro and in vivo and that GDF-5 can trigger the migration of EpSCs via RhoA-MMP9 signalling.
Collapse
Affiliation(s)
- Xue Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Fan Wang
- Department of Plastic and Reconstructive Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanxin Lan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruyu Bian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Yicheng Guo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Xiao
- Department of Burn and Plastic Surgery, Chenzhou First People's Hospital Affiliated to Nanhua University, Chenzhou, China
| | - Wenqiang Ni
- Department of Burn and Plastic Surgery, Chenzhou First People's Hospital Affiliated to Nanhua University, Chenzhou, China
| | - Xiaohong Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
Yao S, Shi F, Mu N, Li X, Ma G, Wang Y, Sun X, Liu X, Su L. Angio-associated migratory cell protein (AAMP) interacts with cell division cycle 42 (CDC42) and enhances migration and invasion in human non-small cell lung cancer cells. Cancer Lett 2020; 502:1-8. [PMID: 33279622 DOI: 10.1016/j.canlet.2020.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/27/2022]
Abstract
Angio-associated migratory cell protein (AAMP) is considered a pro-tumor protein, which contributes to angiogenesis, proliferation, adhesion, and other biological activities. Although AAMP is known to facilitate the motility of breast cancer cells and smooth muscle cells by regulating ras homolog family member A (RHOA) activity, the function of AAMP in the metastasis of non-small cell lung cancer (NSCLC) cells still remains unknown. In the present study, AAMP was upregulated in non-small cell lung carcinoma, and was found to promote migration and invasion in NSCLC cells. Further experiments demonstrated that AAMP interacted with cell division cycle 42 (CDC42) and promoted its activation, resulting in the formation of cellular protrusions. Subsequently, we found that AAMP enhanced CDC42 activation by impairing the combination of rho GTPase activating protein 1 (ARHGAP1) and CDC42. Taken together, we revealed and elucidated the critical role of AAMP in the migration and invasion of NSCLC cells and presented a new potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Shun Yao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Henan Provincial People's Hospital, Henan, China; Shandong Provincial Collaborative Innovation Center of Cell Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Feifei Shi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ning Mu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaopeng Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Guilin Ma
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yingying Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaoyang Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Shandong Provincial Collaborative Innovation Center of Cell Biology, School of Life Sciences, Shandong Normal University, Jinan, China.
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Shandong Provincial Collaborative Innovation Center of Cell Biology, School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
14
|
Tang Q, Lim T, Wei XJ, Wang QY, Xu JC, Shen LY, Zhu ZZ, Zhang CQ. A free-standing multilayer film as a novel delivery carrier of platelet lysates for potential wound-dressing applications. Biomaterials 2020; 255:120138. [DOI: 10.1016/j.biomaterials.2020.120138] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
|
15
|
Yang B, Yang Y, Liu Y, Li H, Ren S, Peng Z, Fang K, Yang L, Dong Q. Molecular characteristics of varicocele: integration of whole-exome and transcriptome sequencing. Fertil Steril 2020; 115:363-372. [PMID: 32912637 DOI: 10.1016/j.fertnstert.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To explore the exome and transcriptome characteristics potentially underlying the pathogenesis of varicocele (VE). DESIGN Experimental study and cohort study. SETTING Academic research laboratory and university-affiliated hospital. PATIENT(S) Eleven VE patients whose fathers also had VE, plus 151 additional patients and 324 healthy men for variants genotyping; for the rat model, eight Sprague-Dawley male rats. INTERVENTION(S) Partial ligation of renal vein was conducted to establish VE rat models for whole-transcriptome RNA sequencing (RNA-seq). MAIN OUTCOME MEASURE(S) Genes with differential expression and/or harboring potential pathogenic variants detected via RNA-seq and whole-exome sequencing (WES) then subjected to population-based survey to define candidate genes of VE and analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes to identify VE-involved pathways. RESULT(S) Whole-transcriptome RNA sequencing (RNA-seq) was performed using left spermatic veins of five rat VE models and three controls. We identified 9,688 genes and 18 pathways via RNA-seq, and via WES 160 genes harboring 279 potential deleterious variants and 16 pathways. Nine genes (AAMP, KMT2D, IRS2, SPINT1, IFT122, MKI67, DCHS1, LAMA2, and CBL) had variants in more than one patient who underwent WES, and six of these genes (AAMP, SPINT1, MKI67, IFT122, LAMA2, and DCHS1) showed differential expression. The population-based survey showed that AAMP, SPINT1, and MKI67 were strongly associated with VE risk. Together, two omic 67 data sets revealed four pathways potentially related to VE. CONCLUSION(S) For the first time, we have described the exome and transcriptome characteristics of VE. The bi-omics identified novel candidate genes and pathways involving the occurrence and development of VE.
Collapse
Affiliation(s)
- Bo Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Department of Pediatric Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Yuan Yang
- Department of Medical Genetics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yunqiang Liu
- Department of Medical Genetics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Zhufeng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kun Fang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
16
|
The Functional Implications of Endothelial Gap Junctions and Cellular Mechanics in Vascular Angiogenesis. Cancers (Basel) 2019; 11:cancers11020237. [PMID: 30781714 PMCID: PMC6406946 DOI: 10.3390/cancers11020237] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.
Collapse
|
17
|
Zhao J, Cai CK, Xie M, Liu JN, Wang BZ. Investigation of the therapy targets of Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu recipe on type 2 diabetes by serum proteome labeled with iTRAQ. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:1-14. [PMID: 29654829 DOI: 10.1016/j.jep.2018.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Based on basic theories of Chinese medicine, Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu (YQYYHTQY) recipe was constituted by eleven kinds of Chinese herbs and effective in treatment of type 2 diabetes (T2DM). But the therapy target was unclear. OBJECTIVE In this study, we used the serum proteome labeled by iTRAQ to find therapy target of YQYYHTQY recipe on T2DM. MATERIALS AND METHODS The rat model was induced by high-fat diet (HFD) and streptozotocin (STZ, 30 mg/kg). Drugs were administered to rats once daily for 14 days. Related laboratory parameters were observed. Serum proteome were compared between T2DM and YQYYHTQY group using the iTRAQ labeling quantitative proteomics technique. Functional differential proteins were analysis by STRING software. Target proteins were confirmed by ELISA kits. RESULTS Hyperglycemia, hyperinsulinemia, insulin resistance, decrease of glucose transporter, depilation, less activity, flock together, depression, ecchymosis of tongue and tail appearance, the typical diabetic patients "a little more than three" symptoms, as well as the decrease of grip strength, serum cyclic adenosine monophosphate (cAMP)/ cyclic guanosine monophosphate (cGMP) ratio, serum high density lipoprotein-cholesterol (HDL-C) and the increase of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), thromboxane B2 (TXB2)/ 6-keto prostaglandin F1α (6-keto PGF1α) ratio, endothelin-1 (ET-1) levels were found in T2DM group. After drugs treatment, all the above indexes almost were improved in different degrees and effect of YQYYHTQY recipe was superior to pioglitazone hydrochloride. In addition, there were 23 differential proteins, 5 up-regulated and 18 down-regulated proteins. Of them, there were 4 proteins related with diabetes, blood and behavior. Cell division control protein 42 homolog (CDC42) and Ras homolog gene family member A (RhoA) were the therapy targets of YQYYHTQY recipe on T2DM. CONCLUSIONS YQYYHTQY recipe showed therapy effect on T2DM. CDC42 and RhoA proteins were the therapy targets of YQYYHTQY recipe.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research and Continuing Education, Shenzhen 518057, China.
| | - Cheng-Ke Cai
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Xie
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jin-Na Liu
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Shool of Combination of Chinese traditional and Western medicine, Hebei Medical University, Hebei 050017, China.
| | - Bang-Zhong Wang
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
18
|
Chi Q, Shan J, Ding X, Yin T, Wang Y, Jia D, Wang G. Smart mechanosensing machineries enable migration of vascular smooth muscle cells in atherosclerosis-relevant 3D matrices. Cell Biol Int 2017; 41:586-598. [PMID: 28328100 DOI: 10.1002/cbin.10764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/19/2017] [Indexed: 11/05/2022]
Abstract
At the early stage of atherosclerosis, neointima is formed due to the migration of vascular smooth muscle cells (VSMCs) from the media to the intima. VSMCs are surrounded by highly adhesive 3D matrices. They take specific strategies to cross various 3D matrices in the media, including heterogeneous collagen and mechanically strong basement membrane. Migration of VSMCs is potentially caused by biomechanical mechanism. Most in vitro studies focus on cell migration on 2D substrates in response to biochemical factors. How the cells move through 3D matrices under the action of mechanosensing machineries remains unexplored. In this review, we propose that several interesting tension-dependent machineries act as "tractor"-posterior myosin II accumulation, and "wrecker"-anterior podosome maintaining, to power VSMCs ahead. VSMCs embedded in 3D matrices may accumulate a minor myosin II isoform, myosin IIB, at the cell rear. Anisotropic myosin IIB distribution creates cell rear, polarizes cell body, pushes the nucleus and reshapes the cell body, and cooperates with a uniformly distributed myosin IIA to propel the cell forward. On the other hand, matrix digestion by podosome further promote the migration when the matrix becomes denser. Actomyosin tension activates Src to induce podosome in soft 3D matrices and retain the podosome integrity to steadily digest the matrix.
Collapse
Affiliation(s)
- Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jieling Shan
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xiaorong Ding
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Wang F, Zhan R, Chen L, Dai X, Wang W, Guo R, Li X, Li Z, Wang L, Huang S, Shen J, Li S, Cao C. RhoA promotes epidermal stem cell proliferation via PKN1-cyclin D1 signaling. PLoS One 2017; 12:e0172613. [PMID: 28222172 PMCID: PMC5319766 DOI: 10.1371/journal.pone.0172613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/06/2017] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Epidermal stem cells (ESCs) play a critical role in wound healing, but the mechanism underlying ESC proliferation is not well defined. Here, we explore the effects of RhoA on ESC proliferation and the possible underlying mechanism. METHODS Human ESCs were enriched by rapid adhesion to collagen IV. RhoA(+/+)(G14V), RhoA(-/-)(T19N) and pGFP control plasmids were transfected into human ESCs. The effect of RhoA on cell proliferation was detected by cell proliferation and DNA synthesis assays. Induction of PKN1 activity by RhoA was determined by immunoblot analysis, and the effects of PKN1 on RhoA in terms of inducing cell proliferation and cyclin D1 expression were detected using specific siRNA targeting PKN1. The effects of U-46619 (a RhoA agonist) and C3 transferase (a RhoA antagonist) on ESC proliferation were observed in vivo. RESULTS RhoA had a positive effect on ESC proliferation, and PKN1 activity was up-regulated by the active RhoA mutant (G14V) and suppressed by RhoA T19N. Moreover, the ability of RhoA to promote ESC proliferation and DNA synthesis was interrupted by PKN1 siRNA. Additionally, cyclin D1 protein and mRNA expression levels were up-regulated by RhoA G14V, and these effects were inhibited by siRNA-mediated knock-down of PKN1. RhoA also promoted ESC proliferation via PKN in vivo. CONCLUSION This study shows that the effect of RhoA on ESC proliferation is mediated by activation of the PKN1-cyclin D1 pathway in vitro, suggesting that RhoA may serve as a new therapeutic target for wound healing.
Collapse
Affiliation(s)
- Fan Wang
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Rixing Zhan
- School of Nursing, Third Military Medical University, Chongqing, China
| | - Liang Chen
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Xia Dai
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Wenping Wang
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Rui Guo
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoge Li
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Zhe Li
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Liang Wang
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Shupeng Huang
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Jie Shen
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
| | - Shirong Li
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (LS); (CC)
| | - Chuan Cao
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (LS); (CC)
| |
Collapse
|