1
|
McMahon M, Erolin C. Biomimicry - medical design concepts inspired by nature. J Vis Commun Med 2024; 47:27-38. [PMID: 39033380 DOI: 10.1080/17453054.2024.2375504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Biomimicry is the application of existing features in nature to human technologies, such as the invention of aircraft inspired by bird flight. In the development of medical solutions, biomimicry is a growing field of research, where a holistic understanding of nature can inspire cutting-edge design. The purpose of this study was to create an educational, visual resource exemplifying up-and-coming medical applications of biomimicry. A website was created to present 2D motion graphics (animations) and illustrations. Animation is an established and useful method of communicating health information to the public. This presents an accessible interface for the public to interact with and learn about this area of research, bridging the gap between the two. Increasing public knowledge, engagement, and interest can expand the reach and thereby influence future research. A survey was conducted to assess public engagement and opinions on both the resource and the topic of biomimicry and medical design. The results suggested that participants positively engaged with the resource; 95.7% strongly agreed/agreed that the animations were beneficial for learning. All responding participants agreed that biomimicry could provide useful solutions in medical design. This study suggests that graphic motions are effective at communicating complex ideas for public outreach.
Collapse
Affiliation(s)
- Muireann McMahon
- Duncan and Jordanstone College of Art and Design, University of Dundee, Dundee, UK
| | - Caroline Erolin
- School of Science and Engineering, University of Dundee Centre for Anatomy and Human Identification, Dundee, UK
| |
Collapse
|
2
|
Marcut L, Manescu Paltanea V, Antoniac A, Paltanea G, Robu A, Mohan AG, Grosu E, Corneschi I, Bodog AD. Antimicrobial Solutions for Endotracheal Tubes in Prevention of Ventilator-Associated Pneumonia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5034. [PMID: 37512308 PMCID: PMC10386556 DOI: 10.3390/ma16145034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Ventilator-associated pneumonia is one of the most frequently encountered hospital infections and is an essential issue in the healthcare field. It is usually linked to a high mortality rate and prolonged hospitalization time. There is a lack of treatment, so alternative solutions must be continuously sought. The endotracheal tube is an indwelling device that is a significant culprit for ventilator-associated pneumonia because its surface can be colonized by different types of pathogens, which generate a multispecies biofilm. In the paper, we discuss the definition of ventilator-associated pneumonia, the economic burdens, and its outcomes. Then, we present the latest technological solutions for endotracheal tube surfaces, such as active antimicrobial coatings, passive coatings, and combinatorial methods, with examples from the literature. We end our analysis by identifying the gaps existing in the present research and investigating future possibilities that can decrease ventilator-associated pneumonia cases and improve patient comfort during treatment.
Collapse
Affiliation(s)
- Lavinia Marcut
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Intensive Care Unit, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Veronica Manescu Paltanea
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania
| | - Iuliana Corneschi
- Romfire Protect Solutions SRL, 39 Drumul Taberei, RO-061359 Bucharest, Romania
| | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
3
|
Alves D, Grainha T, Pereira MO, Lopes SP. Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress. Acta Biomater 2023; 158:32-55. [PMID: 36632877 DOI: 10.1016/j.actbio.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Ventilator-associated pneumonia (VAP) is an unresolved problem in nosocomial settings, remaining consistently associated with a lack of treatment, high mortality, and prolonged hospital stay. The endotracheal tube (ETT) is the major culprit for VAP development owing to its early surface microbial colonization and biofilm formation by multiple pathogens, both critical events for VAP pathogenesis and relapses. To combat this matter, gradual research on antimicrobial ETT surface coating/modification approaches has been made. This review provides an overview of the relevance and implications of the ETT bioburden for VAP pathogenesis and how technological research on antimicrobial materials for ETTs has evolved. Firstly, certain main VAP attributes (definition/categorization; outcomes; economic impact) were outlined, highlighting the issues in defining/diagnosing VAP that often difficult VAP early- and late-onset differentiation, and that generate misinterpretations in VAP surveillance and discrepant outcomes. The central role of the ETT microbial colonization and subsequent biofilm formation as fundamental contributors to VAP pathogenesis was then underscored, in parallel with the uncovering of the polymicrobial ecosystem of VAP-related infections. Secondly, the latest technological developments (reported since 2002) on materials able to endow the ETT surface with active antimicrobial and/or passive antifouling properties were annotated, being further subject to critical scrutiny concerning their potentialities and/or constraints in reducing ETT bioburden and the risk of VAP while retaining/improving the safety of use. Taking those gaps/challenges into consideration, we discussed potential avenues that may assist upcoming advances in the field to tackle VAP rampant rates and improve patient care. STATEMENT OF SIGNIFICANCE: The use of the endotracheal tube (ETT) in patients requiring mechanical ventilation is associated with the development of ventilator-associated pneumonia (VAP). Its rapid surface colonization and biofilm formation are critical events for VAP pathogenesis and relapses. This review provides a comprehensive overview on the relevance/implications of the ETT biofilm in VAP, and on how research on antimicrobial ETT surface coating/modification technology has evolved over the last two decades. Despite significant technological advances, the limited number of gathered reports (46), highlights difficulty in overcoming certain hurdles associated with VAP (e.g., persistent colonization/biofilm formation; mechanical ventilation duration; hospital length of stay; VAP occurrence), which makes this an evolving, complex, and challenging matter. Challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Grainha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Arango-Santander S. Bioinspired Topographic Surface Modification of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2383. [PMID: 35407716 PMCID: PMC8999667 DOI: 10.3390/ma15072383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behavior.
Collapse
|
5
|
Wang Y, Cai B, Ni D, Sun Y, Wang G, Jiang H. A novel antibacterial and antifouling nanocomposite coated endotracheal tube to prevent ventilator-associated pneumonia. J Nanobiotechnology 2022; 20:112. [PMID: 35248076 PMCID: PMC8897767 DOI: 10.1186/s12951-022-01323-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The endotracheal tube (ETT) is an essential medical device to secure the airway patency in patients undergoing mechanical ventilation or general anesthesia. However, long-term intubation eventually leads to complete occlusion, ETTs potentiate biofilm-related infections, such as ventilator-associated pneumonia. ETTs are mainly composed of medical polyvinyl chloride (PVC), which adheres to microorganisms to form biofilms. Thus, a simple and efficient method was developed to fabricate CS-AgNPs@PAAm-Gelatin nanocomposite coating to achieve dual antibacterial and antifouling effects.
Results
The PAAm-Gelatin (PAAm = polyacrylamide) molecular chain gel has an interpenetrating network with a good hydrophilicity and formed strong covalent bonds with PVC-ETTs, wherein silver nanoparticles were used as antibacterial agents. The CS-AgNPs@PAAm-Gelatin coating showed great resistance and antibacterial effects against Staphylococcus aureus and Pseudomonas aeruginosa. Its antifouling ability was tested using cell, protein, and platelet adhesion assays. Additionally, both properties were comprehensively evaluated using an artificial broncho-lung model in vitro and a porcine mechanical ventilation model in vivo. These remarkable results were further confirmed that the CS-AgNPs@PAAm-Gelatin coating exhibited an excellent antibacterial capacity, an excellent stain resistance, and a good biocompatibility.
Conclusions
The CS-AgNPs@PAAm-Gelatin nanocomposite coating effectively prevents the occlusion and biofilm-related infection of PVC-ETTs by enhancing the antibacterial and antifouling properties, and so has great potential for future clinical applications.
Graphical Abstract
Collapse
|
6
|
Arabi Y, Al Dorzi H, Ghanem A, Hegazy M, AlMatrood A, Alchin J, Mutairi M, Aqeil A. Humidification during mechanical ventilation to prevent endotracheal tube occlusion in critically ill patients: A case control study. Ann Thorac Med 2022; 17:37-43. [PMID: 35198047 PMCID: PMC8809127 DOI: 10.4103/atm.atm_135_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND: Endotracheal tube (ETT) occlusion is a potentially life-threatening event. This study describes a quality improvement project to prevent ETT occlusion in critically ill patients. METHODS: After a cluster of clinically significant ETT occlusion incidents at a tertiary-care intensive care unit (ICU), the root cause analysis suggested that the universal use of heat moisture exchangers (HMEs) was a major cause. Then, we prospectively audited new ETT occlusion incidents after changing our practices to evidence-based active and passive humidification during mechanical ventilation (MV). We also compared the outcomes of affected patients with matched controls. RESULTS: During 100 weeks, 18 incidents of clinically significant ETT occlusion occurred on a median of 7 days after intubation (interquartile range, 4.8–9.5): 8 in the 10 weeks before and 10 in the 90 weeks after changing humidification practices (8.1 vs. 1.0 incidents per 1000 ventilator days, respectively). The incidents were not suspected in 94.4%, the peak airway pressure was >30 cm H2O in only 25%, and 55.6% were being treated for pneumonia when ETT occlusion occurred. Compared with 51 matched controls, ETT occlusion cases had significantly longer MV duration (median of 13.5 vs. 4.0 days; P = 0.002) and ICU stay (median of 26.5 vs. 11.0 days; P = 0.006) and more tracheostomy (55.6% vs. 9.8%; P < 0.001). The hospital mortality was similar in cases and controls. CONCLUSIONS: The rate of ETT occlusion decreased after changing humidification practices from universal HME use to evidence-based active and passive humidification. ETT occlusion was associated with more tracheostomy and a longer duration of MV and ICU stay.
Collapse
|
7
|
Ochońska D, Ścibik Ł, Brzychczy-Włoch M. Biofilm Formation of Clinical Klebsiella pneumoniae Strains Isolated from Tracheostomy Tubes and Their Association with Antimicrobial Resistance, Virulence and Genetic Diversity. Pathogens 2021; 10:pathogens10101345. [PMID: 34684294 PMCID: PMC8541166 DOI: 10.3390/pathogens10101345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Due to the commonness of tracheotomy procedures and the wide use of biomaterials in the form of tracheostomy tubes (TTs), the problem of biomaterial-associated infections (BAIs) is growing. Bacterial colonization of TTs results in the development of biofilms on the surface of biomaterials, which may contribute to the development of invasive infections in tracheostomized patients. (2) Methods: Clinical strains of K. pneumoniae, isolated from TTs, were characterized according to their ability to form biofilms, as well as their resistance to antibiotics, whether they harbored ESβL genes, the presence of selected virulence factors and genetic diversity. (3) Results: From 53 patients, K. pneumoniae were detected in 18 of the TTs examined, which constituted 34% of all analyzed biomaterials. Three of the strains (11%) were ESβL producers and all had genes encoding CTX-M-1, SHV and TEM enzymes. 44.4% of isolates were biofilm formers, SEM demonstrating that K. pneumoniae formed differential biofilms on the surface of polyethylene (PE) and polyvinyl chloride (PVC) TTs in vitro. A large range of variation in the share of fimbrial genes was observed. PFGE revealed sixteen genetically distinct profiles. (4) Conclusions: Proven susceptibility of TT biomaterials to colonization by K. pneumoniae means that the attention of research groups should be focused on achieving a better understanding of the bacterial pathogens that form biofilms on the surfaces of TTs. In addition, research efforts should be directed at the development of new biomaterials or the modification of existing materials, in order to prevent bacterial adhesion to their surfaces.
Collapse
Affiliation(s)
- Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland
- Correspondence: (D.O.); (M.B.-W.); Tel.: +48-12633-2567 (D.O. & M.B.-W.); Fax: +48-91454-0733 (D.O. & M.B.-W.)
| | - Łukasz Ścibik
- Department of Otolaryngology and Oncological Surgery of the Head and Neck, 5th Military Hospital with Polyclinic in Krakow, 1-3 Wrocławska Street, 30-901 Krakow, Poland;
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland
- Correspondence: (D.O.); (M.B.-W.); Tel.: +48-12633-2567 (D.O. & M.B.-W.); Fax: +48-91454-0733 (D.O. & M.B.-W.)
| |
Collapse
|
8
|
Latorre MC, Pérez-Granda MJ, Savage PB, Alonso B, Martín-Rabadán P, Samaniego R, Bouza E, Muñoz P, Guembe M. Endotracheal tubes coated with a broad-spectrum antibacterial ceragenin reduce bacterial biofilm in an in vitro bench top model. J Antimicrob Chemother 2021; 76:1168-1173. [PMID: 33544817 DOI: 10.1093/jac/dkab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. OBJECTIVES We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). METHODS We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. RESULTS The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0-3.3 × 102) versus 3.32 × 109 (6.6 × 108-3.8 × 109), P < 0.001; 0.0 (0.0-5.4 × 103) versus 1.32 × 106 (2.3 × 103-5.0 × 107), P < 0.001; and 8.1 × 105 (8.5 × 101-1.4 × 109) versus 2.7 × 108 (8.6 × 106-1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5-not applicable (NA)] versus 87.9 (60.5-NA), P = 0.05; 9.1 (6.7-NA) versus 62.6 (42.0-NA), P = 0.05; and 97.7 (94.6-NA) versus 187.3 (43.9-NA), P = 0.827. CONCLUSIONS We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.
Collapse
Affiliation(s)
- María Consuelo Latorre
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Jesús Pérez-Granda
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Beatriz Alonso
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Martín-Rabadán
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES, (CB06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Confocal Laser Scanning Microscopy Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES, (CB06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES, (CB06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
9
|
Faustino CMC, Lemos SMC, Monge N, Ribeiro IAC. A scope at antifouling strategies to prevent catheter-associated infections. Adv Colloid Interface Sci 2020; 284:102230. [PMID: 32961420 DOI: 10.1016/j.cis.2020.102230] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/15/2023]
Abstract
The use of invasive medical devices is becoming more common nowadays, with catheters representing one of the most used medical devices. However, there is a risk of infection associated with the use of these devices, since they are made of materials that are prone to bacterial adhesion with biofilm formation, often requiring catheter removal as the only therapeutic option. Catheter-related urinary tract infections (CAUTIs) and central line-associated bloodstream infections (CLABSIs) are among the most common causes of healthcare-associated infections (HAIs) worldwide while endotracheal intubation is responsible for ventilator-associated pneumonia (VAP). Therefore, to avoid the use of biocides due to the potential risk of bacterial resistance development, antifouling strategies aiming at the prevention of bacterial adherence and colonization of catheter surfaces represent important alternative measures. This review is focused on the main strategies that are able to modify the physical or chemical properties of biomaterials, leading to the creation of antiadhesive surfaces. The most promising approaches include coating the surfaces with hydrophilic polymers, such as poly(ethylene glycol) (PEG), poly(acrylamide) and poly(acrylates), betaine-based zwitterionic polymers and amphiphilic polymers or the use of bulk-modified poly(urethanes). Natural polysaccharides and its modifications with heparin, have also been used to improve hemocompatibility. Recently developed bioinspired techniques yielding very promising results in the prevention of bacterial adhesion and colonization of surfaces include slippery liquid-infused porous surfaces (SLIPS) based on the superhydrophilic rim of the pitcher plant and the Sharklet topography inspired by the shark skin, which are potential candidates as surface-modifying approaches for biomedical devices. Concerning the potential application of most of these strategies in catheters, more in vivo studies and clinical trials are needed to assure their efficacy and safety for possible future use.
Collapse
Affiliation(s)
- Célia M C Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sara M C Lemos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
10
|
Barnes M, Feit C, Grant TA, Brisbois EJ. Antimicrobial polymer modifications to reduce microbial bioburden on endotracheal tubes and ventilator associated pneumonia. Acta Biomater 2019; 91:220-234. [PMID: 31022549 DOI: 10.1016/j.actbio.2019.04.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
Hospital associated infections (HAIs), infections acquired by patients during care in a hospital, remain a prevalent issue in the healthcare field. These infections often occur with the use of indwelling medical devices, such as endotracheal tubes (ETTs), that can result in ventilator-associated pneumonia (VAP). When examining the various routes of infection, VAP is associated with the highest incidence, rate of morbidity, and economic burden. Although ETTs are essential for the survival of patients requiring mechanical ventilation, their use comes with complications. The presence of an ETT in the airway impairs physiological host defense mechanisms for clearance of pathogens and provides a platform for oropharynx microorganism transport to the sterile tracheobronchial network. Antibiotics are administered to treat lower respiratory infections; however, they are not always effective and consequently can result in increased antibiotic resistance. Prophylactic approaches by altering the surface of ETTs to prevent the establishment and growth of bacteria have exhibited promising results. In addition, passive surface modifications that prevent bacterial establishment and growth, or active coatings that possess a bactericidal effect have also proven effective. In this review we aim to highlight the importance of preventing biofilm establishment on indwelling medical devices, focusing on ETTs. We will investigate successful antimicrobial modifications to ETTs and the future avenues that will ultimately decrease HAIs and improve patient care. STATEMENT OF SIGNIFICANCE: Infections that occur with indwelling medicals devices remain a constant concern in the medical field and can result in hospital-acquired infections. Specifically, ventilator associated pneumonia (VAP) occurs with the use of an endotracheal tube (ETT). Infections often require use of antibiotics and can result in patient mortality. Our review includes a summary of the recent collective work of antimicrobial ETT modifications and potential avenues for further investigations in an effort to reduce VAP associated with ETTs. Polymer modifications with antibacterial nature have been developed and tested; however, a focus on ETTs is lacking and clinical availability of new antimicrobial ETT devices is limited. Our collective work shows the successful and prospective applications to the surfaces of ETTs that can support researchers and physicians to create safer medical devices.
Collapse
|
11
|
Querido MM, Aguiar L, Neves P, Pereira CC, Teixeira JP. Self-disinfecting surfaces and infection control. Colloids Surf B Biointerfaces 2019; 178:8-21. [PMID: 30822681 PMCID: PMC7127218 DOI: 10.1016/j.colsurfb.2019.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022]
Abstract
According to World Health Organization, every year in the European Union, 4 million patients acquire a healthcare associated infection. Even though some microorganisms represent no threat to healthy people, hospitals harbor different levels of immunocompetent individuals, namely patients receiving immunosuppressors, with previous infections, or those with extremes of age (young children and elderly), requiring the implementation of effective control measures. Public spaces have also been found an important source of infectious disease outbreaks due to poor or none infection control measures applied. In both places, surfaces play a major role on microorganisms' propagation, yet they are very often neglected, with very few guidelines about efficient cleaning measures and microbiological assessment available. To overcome surface contamination problems, new strategies are being designed to limit the microorganisms' ability to survive over surfaces and materials. Surface modification and/or functionalization to prevent contamination is a hot-topic of research and several different approaches have been developed lately. Surfaces with anti-adhesive properties, with incorporated antimicrobial substances or modified with biological active metals are some of the strategies recently proposed. This review intends to summarize the problems associated with contaminated surfaces and their importance on infection spreading, and to present some of the strategies developed to prevent this public health problem, namely some already being commercialized.
Collapse
Affiliation(s)
- Micaela Machado Querido
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Lívia Aguiar
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Paula Neves
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Cristiana Costa Pereira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Pirrone M, Imber DA, Marrazzo F, Pinciroli R, Zhang C, Bry L, Delaney ML, Dubois AM, Thomas JG, Nistico L, Melton-Kreft R, Bittner EA, Kacmarek RM, Berra L. Silver-Coated Endotracheal Tubes Cleaned With a Mechanism for Secretion Removal. Respir Care 2019; 64:1-9. [PMID: 30181363 PMCID: PMC10068633 DOI: 10.4187/respcare.06222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Biofilm on the surface of endotracheal tubes (ETTs) is associated with ventilator-associated pneumonia. The use of silver-coated ETTs has been suggested to reduce the occurrence of ventilator-associated pneumonia by preventing biofilm formation. However, mucus accumulation can reduce the antibacterial activity of silver-coated ETTs by isolating bacterial colonies from the silver surface. We hypothesized that, in mechanically ventilated subjects, periodic removal of secretions through the use of a cleaning device would enhance the antimicrobial properties of silver-coated ETTs and thus reduce bacterial colonization. METHODS Subjects were randomized to either standard suctioning (blind tracheal suctioning, control group) or blind tracheal suctioning plus cleaning maneuver every 8 h (treatment group). Tracheal aspirates were collected immediately before extubation for microbiological culture. After extubation, ETTs were collected for both cultural and non-cultural microbiological analysis and biofilm isolation. RESULTS 39 subjects expected to be ventilated for > 48 h were enrolled; 36 ETTs (18 control, 18 treatment) and 29 tracheal samples (15 control, 14 treatment) were collected. Among the ETTs positive for bacterial colonization (15 vs 9, P = .18), cleaning maneuvers did not reduce microbial load, shown as the decimal logarithm of colony-forming units (CFU) per mL (1.6 ± 1.2 vs 0.9 ± 1.2 logCFU/mL, P = .15). There was a trend toward decreased biofilm deposition (439.5 ± 29.0 vs 288.9 ± 157.7 mg, P = .09) in the treated ETTs. No significant differences were observed in the number of positive tracheal aspirates (13 vs 10, P = .39) or in the microbial load (4.8 ± 4.0 vs 4.2 ± 3.8 logCFU/mL, P = .70) of tracheal secretions. Finally, no differences in the microbial load of Gram-positive organisms, Gram-negative organisms, or yeasts were found between the ETTs and tracheal aspirates of the 2 groups. CONCLUSIONS In 39 critically-ill subjects intubated with silver-coated ETTs, periodic cleaning maneuvers did not decrease bacterial colonization of the ETTs and did not lower respiratory tract colonization compared to the standard suctioning. (Clinicaltrials.gov registration NCT02120001.).
Collapse
Affiliation(s)
- Massimiliano Pirrone
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - David Ae Imber
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Francesco Marrazzo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Riccardo Pinciroli
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Anesthesia and Critical Care Service 1, ASST Niguarda Hospital, University of Milan-Bicocca, Milan, Italy
| | - Changsheng Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Mary L Delaney
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Andrea M Dubois
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - John G Thomas
- Allegheny Health Network Center of Excellence in Biofilm Research, Pittsburgh, Pennsylvania
| | - Laura Nistico
- Allegheny Health Network Center of Excellence in Biofilm Research, Pittsburgh, Pennsylvania
| | - Rachael Melton-Kreft
- Allegheny Health Network Center of Excellence in Biofilm Research, Pittsburgh, Pennsylvania
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert M Kacmarek
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
13
|
Midturi JK, Ranganath S. Prevention and Treatment of Multidrug-Resistant Organisms in End-Stage Renal Disease. Adv Chronic Kidney Dis 2019; 26:51-60. [PMID: 30876618 DOI: 10.1053/j.ackd.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease patients are at high risk for infections because of multidrug-resistant organisms. Infections are the second most common cause of death in patients with ESRD. Patients with ESRD are prone to infections given alterations in immunity, increased rates of colonization with multidrug-resistant organisms, increased hospitalizations, and interactions with health care systems. Infections range from urinary tract infections, pneumonia, skin and soft tissue infections, central line-associated bloodstream infections to sepsis. A coordinated collaborative effort using a multipronged approach must be stressed to reduce the burden of infections. Preventive measures such as hand hygiene, antibiotic stewardship, immunizations, and minimizing central venous catheters are critical to curtail infections with multidrug-resistant organisms. Empirical and targeted treatment for multidrug-resistant organisms may require collaboration with infectious disease providers to improve outcomes in these serious infections. It is imperative to address multidrug-resistant organisms in ESRD patients at this juncture to improve medical outcomes now and for the future.
Collapse
|
14
|
Antimicrobial Activity of Ibuprofen against Cystic Fibrosis-Associated Gram-Negative Pathogens. Antimicrob Agents Chemother 2018; 62:AAC.01574-17. [PMID: 29311081 PMCID: PMC5826130 DOI: 10.1128/aac.01574-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Clinical trials have demonstrated the benefits of ibuprofen therapy in cystic fibrosis (CF) patients, an effect that is currently attributed to ibuprofen's anti-inflammatory properties. Yet, a few previous reports demonstrated an antimicrobial activity of ibuprofen as well, although none investigated its direct effects on the pathogens found in the CF lung, which is the focus of this work. Determination of ibuprofen's in vitro antimicrobial activity against Pseudomonas aeruginosa and Burkholderia species strains through measurements of the endpoint number of CFU and growth kinetics showed that ibuprofen reduced the growth rate and bacterial burden of the tested strains in a dose-dependent fashion. In an in vitroPseudomonas biofilm model, a reduction in the rate of biomass accumulation over 8 h of growth with ibuprofen treatment was observed. Next, an acute Pseudomonas pneumonia model was used to test this antimicrobial activity after the oral delivery of ibuprofen. Following intranasal inoculation, ibuprofen-treated mice exhibited lower CFU counts and improved survival compared with the control animals. Preliminary biodistribution studies performed after the delivery of ibuprofen to mice by aerosol demonstrated a rapid accumulation of ibuprofen in serum and minimum retention in lung tissue and bronchoalveolar lavage fluid. Therefore, ibuprofen-encapsulated polymeric nanoparticles (Ibu-NPs) were formulated to improve the pharmacokinetic profile. Ibu-NPs formulated for aerosol delivery inhibited the growth of P. aeruginosa in vitro and may provide a convenient dosing method. These results provide an additional explanation for the previously observed therapeutic effects of ibuprofen in CF patients and further strengthen the argument for its use by these patients.
Collapse
|
15
|
Pérez-Granda MJ, Latorre MC, Alonso B, Hortal J, Samaniego R, Bouza E, Guembe M. Eradication of P. aeruginosa biofilm in endotracheal tubes based on lock therapy: results from an in vitro study. BMC Infect Dis 2017; 17:746. [PMID: 29202722 PMCID: PMC5715999 DOI: 10.1186/s12879-017-2856-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Despite the several strategies available for the management of biofilm-associated ventilator-associated pneumonia, data regarding the efficacy of applying antibiotics to the subglottic space (SS) are scarce. We created an in vitro model to assess the efficacy of antibiotic lock therapy (ALT) applied in the SS for eradication of Pseudomonas aeruginosa biofilm in endotracheal tubes (ETTs). Methods We applied 2 h of ALT to a P. aeruginosa biofilm in ETTs using a single dose (SD) and a 5-day therapy model (5D). We used sterile saline lock therapy (SLT) as the positive control. We compared colony count and the percentage of live cells between both models. Results The median (IQR) cfu counts/ml and percentage of live cells in the SD-ALT and SD-SLT groups were, respectively, 3.12 × 105 (9.7 × 104-0) vs. 8.16 × 107 (7.0 × 107-0) (p = 0.05) and 53.2% (50.9%-57.2%) vs. 91.5% (87.3%-93.9%) (p < 0.001). The median (IQR) cfu counts/ml and percentage of live cells in the 5D-ALT and 5D-SLT groups were, respectively, 0 (0-0) vs. 3.2 × 107 (2.32 × 107-0) (p = 0.03) and 40.6% (36.6%-60.0%) vs. 90.3% (84.8%-93.9%) (p < 0.001). Conclusion We demonstrated a statistically significant decrease in the viability of P. aeruginosa biofilm after application of 5D-ALT in the SS. Future clinical studies to assess ALT in patients under mechanical ventilation are needed.
Collapse
Affiliation(s)
- María Jesús Pérez-Granda
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | | | - Beatriz Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Hortal
- Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Confocal Laser Scanning Microscopy Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain. .,Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario "Gregorio Marañón", C/. Dr. Esquerdo, 46, 28007, Madrid, Spain.
| |
Collapse
|