1
|
Megahid SF. Two-dimensional biothermomechanical effects in a layer of skin tissue exposed to variable thermal loading using a fourth-order MGT model. Sci Rep 2025; 15:17023. [PMID: 40379746 DOI: 10.1038/s41598-025-01745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025] Open
Abstract
A key consideration in medical procedures like thermal therapy is the danger of thermal harm to skin tissues from exposure to fluctuating thermal loads. To maximize treatment effectiveness while safeguarding healthy tissues, it is crucial to accurately anticipate and manage this damage, especially in hyperthermia therapy. The fourth-order Moore-Gibson-Thompson (4MGT) idea is employed in this study to lay a theoretical foundation for bioheat analysis. The purpose of this work is to clarify how skin tissues respond biothermally to varying thermal loading. The model developed makes it easier to anticipate the thermal reactions that occur in human skin and to estimate the efficiency of biothermal transfer in biological tissues. For the suggested model, a two-dimensional skin layer is utilized. The analytical results for tissue temperature are obtained using the normal mode approach. Both the impact of the duration of heat loading exposure and thermal damage are examined. Furthermore, the accuracy of the suggested model is evaluated by contrasting the obtained analytical results with accepted theories. The findings show that when the thermal relaxation time constant is included, the modified Moore-Gibson-Thomson biothermal model forecasts a decrease in temperature compared to the Pennes model.
Collapse
Affiliation(s)
- Sami F Megahid
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
- Department of Mathematics, Faculty of Science, New Mansoura University, New Mansoura City, 35712, Egypt.
| |
Collapse
|
2
|
G A, A A, M I, G N, G P V. A multi-objective optimization framework through genetic algorithm for hyperthermia-mediated drug delivery. Comput Biol Med 2025; 189:109895. [PMID: 40020552 DOI: 10.1016/j.compbiomed.2025.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
This study presents an approach to the multi-objective optimization of hyperthermia-mediated drug delivery using thermo-sensitive liposomes (TSLs) for the treatment of hepatocellular carcinoma. The research focuses on addressing the non-optimal coupling methods that combine thermal treatments and chemotherapy by employing a Multi-Objective Genetic Algorithm (MOGA) optimization process, in order to identify the right combination of design variables to achieve better treatment outcomes. The proposed model integrates Computational Fluid Dynamics (CFD) analysis using the Pennes' Bioheat equation for tissue heating and a convection-diffusion model for drug delivery. The goal is to maximize the fraction of killed cancer cells through the pharmaceutical treatment while minimizing thermal damage to the tissue, aiming to not hinder the drug feeding from the vascular system. The optimization considers several design variables, including heating power, timing, and the number of antenna slots for the microwave heating. Simulations results suggest that a two-slots antenna configuration with a specific heating schedule yields optimal therapeutic outcomes by maximizing drug concentration in the tumor while limiting damage to healthy tissue. The results of the CFD analysis also show a significant improvement in the treatment outcomes compared to non-optimized results proposed previously in the literature, leading to an increase from the 10 % up to the 33 % for the fraction of killed cells function. The proposed optimization through Genetic Algorithm framework could significantly improve patient-specific treatment planning for hyperthermia-mediated drug delivery.
Collapse
Affiliation(s)
- Adabbo G
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy.
| | - Andreozzi A
- Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Iasiello M
- Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Napoli G
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy
| | - Vanoli G P
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy
| |
Collapse
|
3
|
Khan S, Kim J, Kang TU, Park G, Lee S, Park JW, Kim W. Compact Vital-Sensing Band with Uninterrupted Power Supply for Core Body Temperature and Pulse Rate Monitoring. ACS Sens 2024; 9:5885-5895. [PMID: 39484701 DOI: 10.1021/acssensors.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Although wearable devices for continuous monitoring of vital signs have undergone significant advancements, their need for frequent recharging precludes continuous operation, potentially leading to adverse outcomes being overlooked. Additionally, the scattered locations of the sensors hamper wearability. Herein, we present a compact vital-sensing band with uninterrupted power supply designed for continuous monitoring of core body temperature (CBT) and pulse rate. The band─which comprises two sensors, a power source (i.e., a flexible thermoelectric generator (TEG) and a battery), and a flexible circuit─is worn on the forearm. The CBT is calculated by measuring the skin temperature and heat flux, while a triboelectric nanogenerator-based self-powered pressure sensor is utilized for pulse rate monitoring. The TEG is a flexible unit that converts body heat into electricity, accumulating a total energy of 314 mJ (100%). Out of this total energy, only 43.2 mJ (7.2%) is utilized for CBT measurements, while the remaining 270.80 mJ (92.8%) is stored in the battery. This enables reliable and continuous operation of the vital-sensing band, highlighting its potential for use in healthcare applications.
Collapse
Affiliation(s)
- Salman Khan
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiyong Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tae-Uk Kang
- Department of Material Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gimin Park
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungbin Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jin-Woo Park
- Department of Material Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Woochul Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Wu J, Lan Z, Li X, He J, Zhang D, Jin T. A novel recombinant adenovirus expressing apoptin and melittin genes kills hepatocellular carcinoma cells and inhibits the growth of ectopic tumor. Invest New Drugs 2024; 42:428-441. [PMID: 38935191 DOI: 10.1007/s10637-024-01453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
HCC is the most common fatal malignancy. Although surgical resection is the primary treatment strategy, most patients are not eligible for resection due to tumor heterogeneity, underlying liver disease, or comorbidities. Therefore, this study explores the possibility of multi-molecular targeted drug delivery in treating HCC. In this study, we constructed the recombinant adenovirus co-expressing apoptin and melittin (MEL) genes. The inhibitory effect of the recombinant adenovirus on hepatocellular carcinoma cells was detected through experiments on cell apoptosis, migration, invasion, and other factors. The tumor inhibitory effect in vivo was assessed using subcutaneous HCC mice. Results showed that recombinant adenovirus co-expressing anti-tumor genes TAT and apoptin, RGD and MEL can significantly inhibit the proliferation, migration, and invasion of HCC cells by inducing an increase in reactive oxygen species (ROS) levels, upregulation of apoptotic proteins such as Bax, cleaved caspase-3, and cleaved caspase-9, and downregulation of the anti-apoptotic protein Bcl-2. In subcutaneous HCC mice, recombinant adenovirus induced significant apoptosis in tumor, and inhibited tumor growth. In conclusion, recombinant adenovirus co-expressing apoptin and MEL can inhibit the growth and proliferation of tumor cells both in vivo and in vitro.
Collapse
Affiliation(s)
- Jingqiao Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Zhaoyu Lan
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xin Li
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jinling He
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Dongchao Zhang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China.
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Tianming Jin
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China.
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
- Tianjin Engineering Technology Center of Livestock Pathogen Detection and Genetic Engineering Vaccine, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
5
|
Calik J, Zawada T, Sauer N, Bove T. High Intensity Focused Ultrasound (20 MHz) and Cryotherapy as Therapeutic Options for Granuloma Annulare and Other Inflammatory Skin Conditions. Dermatol Ther (Heidelb) 2024; 14:1189-1210. [PMID: 38703308 PMCID: PMC11116313 DOI: 10.1007/s13555-024-01163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION In dermatology, inflammatory skin conditions impose a substantial burden worldwide, with existing therapies showing limited efficacy and side effects. This report aims to compare a novel immunological activation induced by hyperthermic 20 MHz high intensity focused ultrasound (HIFU) with conventional cryotherapy. The bioeffects from the two methods are initially investigated by numerical models, and subsequently compared to clinical observations after treatment of a patient with the inflammatory disease granuloma annulare (GA). METHODS Clinical responses to moderate energy HIFU and cryotherapy were analysed using numerical models. HIFU-induced pressure and heat transfer were calculated, and a three-layer finite element model simulated temperature distribution and necrotic volume in the skin. Model output was compared to 22 lesions treated with HIFU and 10 with cryotherapy in a patient with GA. RESULTS Cryotherapy produced a necrotic volume of 138.5 mm3 at - 92.7 °C. HIFU at 0.3-0.6 J/exposure and focal depths of 0.8 or 1.3 mm generated necrotic volumes up to only 15.99 mm3 at temperatures of 68.3-81.2 °C. HIFU achieved full or partial resolution in all treated areas, confirming its hyperthermic immunological activation effect, while cryotherapy also resolved lesions but led to scarring and dyspigmentation. CONCLUSION Hyperthermic immunological activation of 20 MHz HIFU shows promise for treating inflammatory skin conditions as exemplified by GA. Numerical models demonstrate minimal skin necrosis compared to cryotherapy. Suggested optimal HIFU parameters are 1.3 mm focal depth, 0.4-0.5 J/exposure, 1 mm spacing, and 1 mm margin. Further studies on GA and other inflammatory diseases are recommended.
Collapse
Affiliation(s)
- Jacek Calik
- Old Town Clinic, Wszystkich Świętych 2a, 50-127, Wrocław, Poland
- Department of Clinical Oncology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Tomasz Zawada
- TOOsonix A/S, Agern Allé 1, 2970, Hoersholm, Denmark.
| | - Natalia Sauer
- Old Town Clinic, Wszystkich Świętych 2a, 50-127, Wrocław, Poland
- Faculty of Pharmacy, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Torsten Bove
- TOOsonix A/S, Agern Allé 1, 2970, Hoersholm, Denmark
| |
Collapse
|
6
|
Abbas I, SaifAlDien M, El-Bary AA, Egami RH, Elamin M. Theoretical estimation of the thermal damages of living tissues caused by laser irradiation in tumor thermal therapy. Heliyon 2024; 10:e29016. [PMID: 38617938 PMCID: PMC11015140 DOI: 10.1016/j.heliyon.2024.e29016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
This article aims to provide theoretical predictions for the thermal reactions of human tissues during tumor thermotherapy when exposed to laser irradiation and an external heat source. For the construction of a theoretical study of bioheat transfer, the selection of a suitable thermal model capable of accurately predicting the required thermal responses is essential. The effect of heat production by heat treatment on a spherical multilayer tumor tissue is evaluated using this approach. Analytical solution for the non-homogenous differential equations is derived in the Laplace domain. The study examines the impact of thermal relaxation time on tissue temperature and the subsequent thermal damage. The numerical findings of thermal damage and temperatures are depicted in a graphical representation. This model explains laser treatment, physical events, metabolic support, and blood perfusion. The numerical outcomes of the recommended model are validated by comparing them to the literatures.
Collapse
Affiliation(s)
- Ibrahim Abbas
- Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed SaifAlDien
- Department of Mathematics, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alaa A. El-Bary
- Basic and Applied Science Institute, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt
| | - Ria H. Egami
- Department of Mathematics, College of Science and Humanities in Sulail, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Mawahib Elamin
- Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
7
|
Shaw AK, Soni S. Role of periodic irradiation and incident beam radius for plasmonic photothermal therapy of subsurface tumors. J Therm Biol 2024; 121:103859. [PMID: 38714147 DOI: 10.1016/j.jtherbio.2024.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Plasmonic photothermal therapy (PPTT) is a potential technique to treat tumors selectively. However, during PPTT, issue of high temperature region and damage to the surrounding healthy is still need to be resolved. Also, treatment of deeper tumors non-invasively is a challenge for PPTT. In this paper, the effect of periodic irradiation and incident beam radius (relative to tumor size) for various gold nanorods (GNRs) concentrations is investigated to avoid much higher temperatures region with limiting thermal damage to the surrounding healthy tissue during PPTT of subsurface breast tumors located at various depths. Lattice Boltzmann method is used to solve Pennes' bioheat model to compute the resulting photothermal temperatures for the subsurface tumor embedded with GNRs subjected to broadband near infrared radiation of intensity 1 W/cm2. Computation revealed that low GNRs concentration leads to uniform internal heat generation than higher GNRs concentrations. The results show that deeper tumors, due to attenuation of incident radiation, show low temperature rise than shallower tumors. For shallower tumors situated 3 mm deep, 70% irradiation period resulted in around 20 °C reduction (110 °C-90 °C) of maximum temperature than that with the continuous irradiation. Moreover, 70% beam radius (i.e., beam radius as 70% of the tumor radius) causes less thermal damage to the nearby healthy tissue than 100% beam radius (i.e., beam radius equal to the tumor radius). The thermal damage within the healthy tissue is minimized to the 1 mm in radial direction and 3 mm in axial direction for 70% beam radius with 70% irradiation period. Overall, periodic heating and changing beam radius of the incident irradiation lead to reduce high temperature and limit healthy tissue damage. Hence, discussed results are useful for selection of the irradiation parameters for PPTT of sub-surface tumors.
Collapse
Affiliation(s)
- Amit Kumar Shaw
- Biomedical Applications Group, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Sanjeev Soni
- Biomedical Applications Group, CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
8
|
Luan S, Ji Y, Liu Y, Zhu L, Zhou H, Ouyang J, Yang X, Zhao H, Zhu B. Real-Time Reconstruction of HIFU Focal Temperature Field Based on Deep Learning. BME FRONTIERS 2024; 5:0037. [PMID: 38515637 PMCID: PMC10956737 DOI: 10.34133/bmef.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024] Open
Abstract
Objective and Impact Statement: High-intensity focused ultrasound (HIFU) therapy is a promising noninvasive method that induces coagulative necrosis in diseased tissues through thermal and cavitation effects, while avoiding surrounding damage to surrounding normal tissues. Introduction: Accurate and real-time acquisition of the focal region temperature field during HIFU treatment marked enhances therapeutic efficacy, holding paramount scientific and practical value in clinical cancer therapy. Methods: In this paper, we initially designed and assembled an integrated HIFU system incorporating diagnostic, therapeutic, and temperature measurement functionalities to collect ultrasound echo signals and temperature variations during HIFU therapy. Furthermore, we introduced a novel multimodal teacher-student model approach, which utilizes the shared self-expressive coefficients and the deep canonical correlation analysis layer to aggregate each modality data, then through knowledge distillation strategies, transfers the knowledge from the teacher model to the student model. Results: By investigating the relationship between the phantoms, in vitro, and in vivo ultrasound echo signals and temperatures, we successfully achieved real-time reconstruction of the HIFU focal 2D temperature field region with a maximum temperature error of less than 2.5 °C. Conclusion: Our method effectively monitored the distribution of the HIFU temperature field in real time, providing scientifically precise predictive schemes for HIFU therapy, laying a theoretical foundation for subsequent personalized treatment dose planning, and providing efficient guidance for noninvasive, nonionizing cancer treatment.
Collapse
Affiliation(s)
- Shunyao Luan
- School of Integrated Circuits, Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan, China
| | - Yongshuo Ji
- HIFU Center of Oncology Department,
Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yumei Liu
- HIFU Center of Oncology Department,
Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Linling Zhu
- HIFU Center of Oncology Department,
Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Haoyu Zhou
- School of Integrated Circuits, Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan, China
| | - Jun Ouyang
- School of Integrated Circuits, Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Yang
- School of Integrated Circuits, Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhao
- HIFU Center of Oncology Department,
Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Benpeng Zhu
- School of Integrated Circuits, Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Soeiro JF, Sousa FL, Monteiro MV, Gaspar VM, Silva NJO, Mano JF. Advances in screening hyperthermic nanomedicines in 3D tumor models. NANOSCALE HORIZONS 2024; 9:334-364. [PMID: 38204336 PMCID: PMC10896258 DOI: 10.1039/d3nh00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.
Collapse
Affiliation(s)
- Joana F Soeiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Nuno J O Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Kho ASK, Ooi EH, Foo JJ, Ooi ET. Saline-Infused Radiofrequency Ablation: A Review on the Key Factors for a Safe and Reliable Tumour Treatment. IEEE Rev Biomed Eng 2024; 17:310-321. [PMID: 35653443 DOI: 10.1109/rbme.2022.3179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Radiofrequency ablation (RFA) combined with saline infusion into tissue is a promising technique to ablate larger tumours. Nevertheless, the application of saline-infused RFA remains at clinical trials due to the contradictory findings as a result of the inconsistencies in experimental procedures. These inconsistencies not only magnify the number of factors to consider during the treatment, but also obscure the understanding of the role of saline in enlarging the coagulation zone. Consequently, this can result in major complications, which includes unwanted thermal damages to adjacent tissues and also incomplete ablation of the tumour. This review aims to identify the key factors of saline responsible for enlarging the coagulation zone during saline-infused RFA, and provide a proper understanding on their effects that is supported with findings from computational studies to ensure a safe and reliable cancer treatment.
Collapse
|
11
|
Wang Y, Wang Z, Zheng W, Lu X. Coupled thermo-mechanical interaction on a multi-layered skin tissue with temperature-dependent physical properties irradiated by a pulse laser. J Therm Biol 2024; 119:103800. [PMID: 38295752 DOI: 10.1016/j.jtherbio.2024.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
A detailed understanding of the coupled thermo-mechanical interaction on the biological tissue irradiated by a pulse laser is essential for the existed therapeutic methods constructed on the photo-thermal effect, which will contribute to the design, characterization and optimization of strategies for delivering better treatment. The aim of present work is to explore the coupled thermo-mechanical behavior of a multi-layered skin tissue with temperature-dependent physical properties under the pulsed laser irradiation. A layered theoretical model involved variable physical parameters with temperature has been proposed firstly according to the generalized theory of thermo-elasticity with dual-phase lag mechanism. The numerical method based on an explicit finite difference scheme is then employed to predict the temporal and spatial distributions of the temperature, thermal deformation and stresses experienced to a short-pulse laser irradiation. On this basis, the effect of variable thermal and mechanical physical parameters of skin tissue on the coupled thermo-mechanical behavior and relative thermal damage has been evaluated.
Collapse
Affiliation(s)
- Yingze Wang
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Zhe Wang
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenbo Zheng
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiaoyu Lu
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
12
|
Tang Y, Wang Y, Flesch RCC, Jin T. Influence of different heat transfer models on therapeutic temperature prediction and heat-induced damage during magnetic hyperthermia. J Therm Biol 2023; 118:103747. [PMID: 38000145 DOI: 10.1016/j.jtherbio.2023.103747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Magnetic hyperthermia regulates the therapeutic temperature within a specific range to damage malignant cells after exposing the magnetic nanoparticles inside tumor tissue to an alternating magnetic field. The therapeutic temperature of living tissues can be generally predicted using Pennes' bio-heat equation after ignoring both the inhomogeneity of biological structure and the microstructural responses. Although various of the bio-heat transfer models proposed in literature fix these shortages, there is still a lack of a comprehensive report on investigating the discrepancy for different models when applied in the magnetic hyperthermia context. This study compares four different bio-heat equations in terms of the therapeutic temperature distribution and the heat-induced damage situation for a proposed geometric model, which is established based on computed tomography images of a tumor bearing mouse. The therapeutic temperature is also used as an index to evaluate the effect of two key relaxation times for the phase lag behavior on bio-heat transfer. Moreover, this work evaluates the effects of two blood perfusion rates on both the treatment temperature and the cumulative equivalent heating minutes at 43 °C. Numerical analysis results reveal that relaxation times for phase-lag behavior as well as the porosity for living tissues directly affect the therapeutic temperature variation and ultimately the thermal damage for the malignant tissue during magnetic hyperthermia. The dual-phase-lag equation can be converted into Pennes' equation and simple-phase-lag equation when relaxation times meet specific conditions during the process of heat transfer. In addition, different blood perfusion rates can result in an amplitude discrepancy for treatment temperature, but this parameter does not change the characteristics of thermal propagation during therapy.
Collapse
Affiliation(s)
- Yundong Tang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Yuesheng Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Rodolfo C C Flesch
- Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Tao Jin
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
13
|
Park G, Woo S, Kim K, Kim J, Hwang J, Kim SK, Lee H, Lee S, Kwon B, Kim S, Rhee H, Kim W. Noninvasive and Continuous Monitoring of the Core Body Temperature through the Quantitative Measurement of Blood Perfusion Rate. ACS Sens 2023; 8:2975-2985. [PMID: 37432871 DOI: 10.1021/acssensors.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Core body temperature (CBT) is one of the four vital signs that must be monitored continuously. The continuous recording of CBT is possible through invasive methods by inserting a temperature probe into specific body sites. We report a novel method to monitor CBT through the quantitative measurement of skin blood perfusion rate (ωb,skin). By monitoring the skin temperature, heat flux, and ωb,skin, the arterial blood temperature, equivalent to CBT, can be extracted. ωb,skin is quantitatively evaluated thermally via sinusoidal heating with regulated thermal penetration depth so that the blood perfusion rate is acquired only in the skin. Its quantification is significant because it indicates various physiological events including hyper- or hypothermia, tissue death, and delineation of tumors. A subject showed promising results with steady values of ωb,skin and CBT of 5.2 ± 1.05 × 10-4 s-1 and 36.51 ± 0.23 °C, respectively. For periods where the subject's actual CBT (axillary temperature) did not fall within the estimated range, the average deviation from the actual CBT was only 0.07 °C. This study aims to develop a competent methodology capable of continuously monitoring the CBT and blood perfusion rate at a distant location from the core body region for the diagnosis of a patient's health condition with wearable devices.
Collapse
Affiliation(s)
- Gimin Park
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seungjai Woo
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyomin Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiyong Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Junphil Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang Kyu Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
| | - Hotaik Lee
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
| | - Soyoung Lee
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
| | - Boksoon Kwon
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
| | - Sungho Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
| | - Hongsoon Rhee
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
| | - Woochul Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Singh S, Escobar A, Wang Z, Zhang Z, Ramful C, Xu CQ. Numerical Modeling and Simulation of Non-Invasive Acupuncture Therapy Utilizing Near-Infrared Light-Emitting Diode. Bioengineering (Basel) 2023; 10:837. [PMID: 37508864 PMCID: PMC10376585 DOI: 10.3390/bioengineering10070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Acupuncture is one of the most extensively used complementary and alternative medicine therapies worldwide. In this study, we explore the use of near-infrared light-emitting diodes (LEDs) to provide acupuncture-like physical stimulus to the skin tissue, but in a completely non-invasive way. A computational modeling framework has been developed to investigate the light-tissue interaction within a three-dimensional multi-layer model of skin tissue. Finite element-based analysis has been conducted, to obtain the spatiotemporal temperature distribution within the skin tissue, by solving Pennes' bioheat transfer equation, coupled with the Beer-Lambert law. The irradiation profile of the LED has been experimentally characterized and imposed in the numerical model. The experimental validation of the developed model has been conducted through comparing the numerical model predictions with those obtained experimentally on the agar phantom. The effects of the LED power, treatment duration, LED distance from the skin surface, and usage of multiple LEDs on the temperature distribution attained within the skin tissue have been systematically investigated, highlighting the safe operating power of the selected LEDs. The presented information about the spatiotemporal temperature distribution, and critical factors affecting it, would assist in better optimizing the desired thermal dosage, thereby enabling a safe and effective LED-based photothermal therapy.
Collapse
Affiliation(s)
- Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Andres Escobar
- Department of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zexi Wang
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zhiyi Zhang
- Advanced Electronics and Photonics Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Chundra Ramful
- Advanced Electronics and Photonics Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| | - Chang-Qing Xu
- Department of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
15
|
Peng K, Wang Y, Li L, Zhang J, Chen H, Xiao J. In vivo photothermal therapy monitored by multi-position calibrated photoacoustic thermometer. PHOTOACOUSTICS 2023; 31:100501. [PMID: 37180960 PMCID: PMC10172711 DOI: 10.1016/j.pacs.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
With the ability of monitoring both temperature and photothermal agents, the photoacoustic (PA) imaging is a promising guiding tool for the photothermal therapy (PTT). The calibration line which depicts the relative variation of PA amplitude with the temperature should be obtained before using PA thermometer. In existing study, a calibration line was generated based on the data from one spatial position, and used in the whole region of interesting (ROI). However, the generalization of this calibration line in ROI was not verified, especially for ROI with heterogeneous tissues. Moreover, the relationship between the distributions of photothermal agents and effective treatment area is not clear, hindering using photothermal agents' distribution to optimize the administration-therapy interval. In this study, the distribution of effective photothermal agents and temperature in subcutaneously transplanted tumor mouse models were continuously monitored by 3D photoacoustic/ ultrasonic dual-modality imaging in 8 h after administration. With multiple micro-temperature probes in tumor and surrounding normal tissue, the PA thermometer was calibrated and evaluated at multiple spatial positions for the first time. The generalization in homologous tissue and tissue specificity in heterogeneous tissues of the PA thermometer calibration line were verified. Our study not only validated the effectivity of PA thermometer by proving the generalization of calibration line, but also removes a major obstacle that prevents applying the PA thermometer to a heterogeneous tissues ROI. The positive correlation between the proportion of effective treatment area and the proportion of effective photothermal agent area in the tumor was observed. Since the latter can be monitored with fast PA imaging, PA imaging can be employed as a convenient tool for seeking optimal administration-treatment interval.
Collapse
Affiliation(s)
- Kuan Peng
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Yongjun Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Lingfeng Li
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Jiaxi Zhang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Jiaying Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Shenzhen Research Institute, Central South University, Shenzhen 518057, China
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Corresponding author at: Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China.
| |
Collapse
|
16
|
Zenkour AM, Saeed T, Aati AM. Refined Dual-Phase-Lag Theory for the 1D Behavior of Skin Tissue under Ramp-Type Heating. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2421. [PMID: 36984301 PMCID: PMC10055763 DOI: 10.3390/ma16062421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
In this article, a mathematical analysis of thermoelastic skin tissue is presented based on a refined dual-phase-lag (DPL) thermal conduction theory that considers accounting for the effect of multiple time derivatives. The thin skin tissue is regarded as having mechanically clamped surfaces that are one-dimensional. Additionally, the skin tissue undergoes ramp-type heating on its outer surface, whereas its inner surface keeps the assessed temperature from vanishing. Some of the previous generalized thermoelasticity theories were obtained from the proposed model. The distributions of temperature, displacement, dilatation, and stress are attained by applying the Laplace transform and its numerical reversal approaches. The outcomes are explicitly illustrated to examine the significant influences on the distributions of the field variables. The refined DPL bioheat conduction model in this study predicts temperature, and the findings revealed that the model is located among the existing generalized thermoelastic theories. These findings offer a more thorough understanding of how skin tissue behaves when exposed to a particular boundary condition temperature distribution.
Collapse
Affiliation(s)
- Ashraf M. Zenkour
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tareq Saeed
- Financial Mathematics and Actuarial Science (FMAS)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amal M. Aati
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Mathematics, College of Science and Arts and Applied College Branch in Rijal Alma’a, King Khalid University, Abha 61411, Saudi Arabia
| |
Collapse
|
17
|
Wang Y, Lu X, Zheng W, Wang Z. Bio-thermal response and thermal damage in biological tissues with non-equilibrium effect and temperature-dependent properties induced by pulse-laser irradiation. J Therm Biol 2023; 113:103541. [PMID: 37055117 DOI: 10.1016/j.jtherbio.2023.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Comprehension of thermal behavior underlying the living biological tissues helps successful applications of current heat therapies. The present work is to explore the heat transport properties of irradiated tissue during tis thermal treatment, in which the local thermal non-equilibrium effect as well as temperature-dependent properties arose from complicated anatomical structure, is considered. Based on the generalized dual-phase lag (GDPL) model, a non-linear governing equation of tissue temperature with variable thermal physical properties is proposed. The effective procedure constructed on an explicit finite difference scheme is then developed to predict numerically the thermal response and thermal damage irradiated by a pulse laser as a therapeutic heat source. The parametric study on variable thermal physical parameters including the phase lag times, heat conductivity, specific heat capacity and blood perfusion rate has been performed to evaluate their influence on temperature distribution in time and space. On this basis, the thermal damage with different laser variables such as laser intensity and exposure time are further analyzed.
Collapse
Affiliation(s)
- Yingze Wang
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Xiaoyu Lu
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenbo Zheng
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhe Wang
- Department of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
18
|
Effects of Pulsed Radiofrequency Source on Cardiac Ablation. Bioengineering (Basel) 2023; 10:bioengineering10020227. [PMID: 36829721 PMCID: PMC9952521 DOI: 10.3390/bioengineering10020227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Heart arrhythmia is caused by abnormal electrical conduction through the myocardium, which in some cases, can be treated with heat. One of the challenges is to reduce temperature peaks-by still guaranteeing an efficient treatment where desired-to avoid any healthy tissue damage or any electrical issues within the device employed. A solution might be employing pulsed heat, in which thermal dose is given to the tissue with a variation in time. In this work, pulsed heat is used to modulate induced temperature fields during radiofrequency cardiac ablation. A three-dimensional model of the myocardium, catheter and blood flow is developed. Porous media, heat conduction and Navier-Stokes equations are, respectively, employed for each of the investigated domains. For the electric field, solved via Laplace equation, it is assumed that the electrode is at a fixed voltage. Pulsed heating effects are considered with a cosine time-variable pulsed function for the fixed voltage by constraining the product between this variable and time. Different dimensionless frequencies are considered and applied for different blood flow velocity and sustained voltages. Results are presented for different pulsed conditions to establish if a reasonable ablation zone, known from the obtained temperature profiles, can be obtained without any undesired temperature peaks.
Collapse
|
19
|
Temperature Dependence of Thermal Properties of Ex Vivo Porcine Heart and Lung in Hyperthermia and Ablative Temperature Ranges. Ann Biomed Eng 2023; 51:1181-1198. [PMID: 36656452 PMCID: PMC10172290 DOI: 10.1007/s10439-022-03122-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023]
Abstract
This work proposes the characterization of the temperature dependence of the thermal properties of heart and lung tissues from room temperature up to > 90 °C. The thermal diffusivity (α), thermal conductivity (k), and volumetric heat capacity (Cv) of ex vivo porcine hearts and deflated lungs were measured with a dual-needle sensor technique. α and k associated with heart tissue remained almost constant until ~ 70 and ~ 80 °C, accordingly. Above ~ 80 °C, a more substantial variation in these thermal properties was registered: at 94 °C, α and k respectively experienced a 2.3- and 1.5- fold increase compared to their nominal values, showing average values of 0.346 mm2/s and 0.828 W/(m·K), accordingly. Conversely, Cv was almost constant until 55 °C and decreased afterward (e.g., Cv = 2.42 MJ/(m3·K) at 94 °C). Concerning the lung tissue, both its α and k were characterized by an exponential increase with temperature, showing a marked increment at supraphysiological and ablative temperatures (at 91 °C, α and k were equal to 2.120 mm2/s and 2.721 W/(m·K), respectively, i.e., 13.7- and 13.1-fold higher compared to their baseline values). Regression analysis was performed to attain the best-fit curves interpolating the measured data, thus providing models of the temperature dependence of the investigated properties. These models can be useful for increasing the accuracy of simulation-based preplanning frameworks of interventional thermal procedures, and the realization of tissue-mimicking materials.
Collapse
|
20
|
Qin S, Jiang Y, Wang F, Tang L, Huang X. Development and validation of a combined model based on dual-sequence MRI radiomics for predicting the efficacy of high-intensity focused ultrasound ablation for hysteromyoma. Int J Hyperthermia 2022; 40:2149862. [PMID: 36535929 DOI: 10.1080/02656736.2022.2149862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To determine the value of dual-sequence magnetic resonance imaging (MRI)-based radiomics in predicting the efficacy of high-intensity focused ultrasound (HIFU) ablation for hysteromyoma. METHODS A total of 142 patients with 172 hysteromyomas (95 hysteromyomas from the sufficient ablation group, and 77 hysteromyomas from the insufficient ablation group) were enrolled in the study. The clinical-radiological model was constructed with independent clinical-radiological risk factors, the radiomics model was constructed based on the optimal radiomics features of hysteromyoma from dual sequences, and the two groups of features were incorporated to construct the combined model. A fivefold cross validation procedure was adopted to validate these models. A nomogram was constructed, applying the combined model in the training cohort. The models were assessed with receiver operating characteristic (ROC) curves and integrated discrimination improvement (IDI). An independent test cohort comprising 40 patients was used to evaluate the performance of the optimal model. RESULTS Among the three models, the average areas under the ROC curves (AUC) of the radiomics model and combined model were 0.803 (95% confidence interval (CI): 0.726-0.881) and 0.841 (95% CI: 0.772-0.909), which were better than the clinical-radiological model in the training cohort. The IDI showed that the combined model had the best prediction accuracy. The combined model also showed good discrimination in both the validation cohort (AUC = 0.834) and the independent test cohort (AUC = 0.801). CONCLUSION The combined model based on the dual-sequence MRI radiomics is the most promising tool from our study to assist clinicians in predicting HIFU ablation efficacy.
Collapse
Affiliation(s)
- Shize Qin
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Jiang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fang Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Lingling Tang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaohua Huang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
21
|
MHD flow of time-fractional Casson nanofluid using generalized Fourier and Fick's laws over an inclined channel with applications of gold nanoparticles. Sci Rep 2022; 12:17364. [PMID: 36253393 PMCID: PMC9576778 DOI: 10.1038/s41598-022-21006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/21/2022] [Indexed: 01/10/2023] Open
Abstract
Gold nanoparticles are commonly used as a tracer in laboratories. They are biocompatible and can transport heat energy to tumor cells via a variety of clinical techniques. As cancer cells are tiny, properly sized nanoparticles were introduced into the circulation for invasion. As a result, gold nanoparticles are highly effective. Therefore, the current research investigates the magnetohydrodynamic free convection flow of Casson nanofluid in an inclined channel. The blood is considered as a base fluid, and gold nanoparticles are assumed to be uniformly dispersed in it. The above flow regime is formulated in terms of partial differential equations. The system of derived equations with imposed boundary conditions is non-dimensionalized using appropriate dimensionless variables. Fourier's and Fick's laws are used to fractionalize the classical dimensionless model. The Laplace and Fourier sine transformations with a new transformation are used for the closed-form solutions of the considered problem. Finally, the results are expressed in terms of a specific function known as the Mittag-Leffler function. Various figures and tables present the effect of various physical parameters on the achieved results. Graphical results conclude that the fractional Casson fluid model described a more realistic aspect of the fluid velocity profile, temperature, and concentration profile than the classical Casson fluid model. The heat transfer rate and Sherwood number are calculated and presented in tabular form. It is worth noting that increasing the volume percentage of gold nanoparticles from 0 to 0.04 percent resulted in an increase of up to 3.825% in the heat transfer rate.
Collapse
|
22
|
Sobhy M, Zenkour AM. Refined Lord-Shulman Theory for 1D Response of Skin Tissue under Ramp-Type Heat. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6292. [PMID: 36143604 PMCID: PMC9505323 DOI: 10.3390/ma15186292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In this article, we present a mathematical model of thermoelastic skin tissue based on a refined Lord-Shulman heat conduction theory. A small thickness of skin tissue is considered to be one-dimensional with mechanical clamped surfaces. In addition, the skin tissue's outer surface is subjected to ramp-type heating while its inner surface is adiabatic. A simple Lord-Shulman theory, as well as the classical coupled thermoelasticity, are also applied in this article. Laplace transform techniques and their inversions are calculated to return to the time domain. Numerical outcomes are represented graphically to discuss the significant impacts on the temperature, dilatation, displacement, and stress distributions. Such results provide a more comprehensive and better insight for understanding the behavior of skin tissue during the temperature distribution of a specific boundary condition.
Collapse
Affiliation(s)
- Mohammed Sobhy
- Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf M. Zenkour
- Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
23
|
Modeling a 3-D multiscale blood-flow and heat-transfer framework for realistic vascular systems. Sci Rep 2022; 12:14610. [PMID: 36028657 PMCID: PMC9418225 DOI: 10.1038/s41598-022-18831-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Modeling of biological domains and simulation of biophysical processes occurring in them can help inform medical procedures. However, when considering complex domains such as large regions of the human body, the complexities of blood vessel branching and variation of blood vessel dimensions present a major modeling challenge. Here, we present a Voxelized Multi-Physics Simulation (VoM-PhyS) framework to simulate coupled heat transfer and fluid flow using a multi-scale voxel mesh on a biological domain obtained. In this framework, flow in larger blood vessels is modeled using the Hagen–Poiseuille equation for a one-dimensional flow coupled with a three-dimensional two-compartment porous media model for capillary circulation in tissue. The Dirac distribution function is used as Sphere of Influence (SoI) parameter to couple the one-dimensional and three-dimensional flow. This blood flow system is coupled with a heat transfer solver to provide a complete thermo-physiological simulation. The framework is demonstrated on a frog tongue and further analysis is conducted to study the effect of convective heat exchange between blood vessels and tissue, and the effect of SoI on simulation results.
Collapse
|
24
|
Ren Y, Yan Y, Qi H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv Colloid Interface Sci 2022; 308:102753. [PMID: 36007283 DOI: 10.1016/j.cis.2022.102753] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/17/2022]
Abstract
Photothermal therapy (PTT) is a promising alternative therapy for benign or even malignant tumors. To improve the selective heating of tumor cells, target-specific photothermal conversion agents are often included, especially nanoparticles. Meanwhile, some indirect methods by manipulating the radiation and heat delivery are also adopted. Therefore, to gain a clear understanding of the mechanism, and to improve the controllability of PTT, a few issues need to be clarified, including bioheat and radiation transfer, localized and collective heating of nanoparticles, etc. In this review, we provide an introduction to the typical bioheat transfer and radiation transfer models along with the dynamic thermophysical properties of biological tissue. On this basis, we reviewed the most recent advances in the temperature control methods in PTT from macroscale to nanoscale. Most importantly, a comprehensive introduction of the localized and collective heating effects of nanoparticle clusters is provided to give a clear insight into the mechanism for PPT from the microscale and nanoscale point of view.
Collapse
Affiliation(s)
- Yatao Ren
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yuying Yan
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Hong Qi
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
25
|
Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH. Polymers (Basel) 2022; 14:polym14153151. [PMID: 35956664 PMCID: PMC9371108 DOI: 10.3390/polym14153151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.
Collapse
|
26
|
Das SS, Mahapatra SK. Study of heat sink effect of blood in a bifurcated vessel. Comput Methods Biomech Biomed Engin 2022; 26:721-733. [PMID: 35703320 DOI: 10.1080/10255842.2022.2085998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thermal ablation treatment uses elevated (hyperthermia) or depressed (hypothermia) tissue temperature to destroy tumor cells. The efficacy and effectiveness of thermal ablation therapy is dependent on the tissue temperature which is significantly affected due to heat sink effect of blood flow near the infected site. In this study, Euler-Euler multiphase model is used to analyze the effect of plasma and RBC concentration on the heat sink effect of blood in a bifurcated vessel. This study is divided into two separate cases. First case refers to the study of heat sink effect produced by a tumor patient suffering from HVS (hyperviscosity syndrome) and a normal (without blood disorder) tumor patient during hyperthermia treatment. The second case analyses the effect of RBCs on blood heat transfer. Temperature distribution and transient Nusselt number, which are used to represent heat sink effect, are calculated and compared for different cases of blood disorders. From the results, it is found that a patient with HVS blood disorder produces a smaller heat sink effect during hyperthermia treatment compared to a normal tumor patient. Also, the level of RBC concentration in the blood stream has a minimal effect on heat transfer.
Collapse
Affiliation(s)
- Sidharth Sankar Das
- Department of Mechanical Engineering, IIT Bhubaneswar, Khordha, Odisha, India
| | | |
Collapse
|
27
|
Radiofrequency ablation for liver tumors abutting complex blood vessel structures: treatment protocol optimization using response surface method and computer modeling. Int J Hyperthermia 2022; 39:733-742. [PMID: 35610101 DOI: 10.1080/02656736.2022.2075567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To achieve a result of a large tumor ablation volume with minimal thermal damage to the surrounding blood vessels by designing a few clinically-adjustable operating parameters in radiofrequency ablation (RFA) for liver tumors abutting complex vascular structures. METHODS Response surface method (RSM) was employed to correlate the ablated tumor volume (Ra) and thermal damage to blood vessels (Dt) based on RFA operating parameters: ablation time, electrode position, and insertion angle. A coupled electric-thermal-fluid RFA computer model was created as the testbed for RSM to simulate RFA process. Then, an optimal RFA protocol for the two conflicting goals, namely (1) large tumor ablation and (2) small thermal damage to the surrounding blood vessels, has been achieved under a specific ablation environment. RESULTS Linear regression analysis confirmed that the RFA protocol significantly affected Ra and Dt (the adjusted coefficient of determination Radj2 = 93.61% and 95.03%, respectively). For a proposed liver tumor scenario (liver tumor with a dimension of 4×3×2.9 cm3 abutting a complex vascular structure), an optimized RFA protocol was found based on the regression results in RSM. Compared with a reference RFA protocol, in which the electrode was centered in the tumor with a 12-min ablation time, the optimized RFA protocol has increased Ra from 98.1% to 99.6% and decreased Dt from 4.1% to 0.4%, achieving nearly the complete ablation of proposed liver tumor and ignorable thermal damages to vessels. CONCLUSION This work showed that it is possible to design a few clinically-adjustable operating parameters of RFA for achieving a large tumor ablation volume while minimizing thermal damage to the surrounding blood vessels.
Collapse
|
28
|
Abstract
Significant research efforts have been devoted in the past decades to accurately modelling the complex heat transfer phenomena within biological tissues. These modeling efforts and analysis have assisted in a better understanding of the intricacies of associated biological phenomena and factors that affect the treatment outcomes of hyperthermic therapeutic procedures. In this contribution, we report a three-dimensional non-Fourier bio-heat transfer model of cardiac ablation that accounts for the three-phase-lags (TPL) in the heat propagation, viz., lags due to heat flux, temperature gradient, and thermal displacement gradient. Finite element-based COMSOL Multiphysics software has been utilized to predict the temperature distributions and ablation volumes. A comparative analysis has been conducted to report the variation in the treatment outcomes of cardiac ablation considering different bio-heat transfer models. The effect of variations in the magnitude of different phase lags has been systematically investigated. The fidelity and integrity of the developed model have been evaluated by comparing the results of the developed model with the analytical results of the recent studies available in the literature. This study demonstrates the importance of considering non-Fourier lags within biological tissue for predicting more accurately the characteristics important for the efficient application of thermal therapies.
Collapse
|
29
|
Brociek R, Wajda A, Lo Sciuto G, Słota D, Capizzi G. Computational Methods for Parameter Identification in 2D Fractional System with Riemann-Liouville Derivative. SENSORS 2022; 22:s22093153. [PMID: 35590840 PMCID: PMC9104792 DOI: 10.3390/s22093153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023]
Abstract
In recent times, many different types of systems have been based on fractional derivatives. Thanks to this type of derivatives, it is possible to model certain phenomena in a more precise and desirable way. This article presents a system consisting of a two-dimensional fractional differential equation with the Riemann-Liouville derivative with a numerical algorithm for its solution. The presented algorithm uses the alternating direction implicit method (ADIM). Further, the algorithm for solving the inverse problem consisting of the determination of unknown parameters of the model is also described. For this purpose, the objective function was minimized using the ant algorithm and the Hooke-Jeeves method. Inverse problems with fractional derivatives are important in many engineering applications, such as modeling the phenomenon of anomalous diffusion, designing electrical circuits with a supercapacitor, and application of fractional-order control theory. This paper presents a numerical example illustrating the effectiveness and accuracy of the described methods. The introduction of the example made possible a comparison of the methods of searching for the minimum of the objective function. The presented algorithms can be used as a tool for parameter training in artificial neural networks.
Collapse
Affiliation(s)
- Rafał Brociek
- Department of Mathematics Applications and Methods for Artificial Intelligence, Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland;
- Correspondence:
| | - Agata Wajda
- Institute for Chemical Processing of Coal, 41-803 Zabrze, Poland;
| | - Grazia Lo Sciuto
- Department of Mechatronics, Silesian University of Technology, Akademicka 10a, 44-100 Gliwice, Poland; or
- Department of Electrical, Electronics and Informatics Engineering, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy;
| | - Damian Słota
- Department of Mathematics Applications and Methods for Artificial Intelligence, Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Giacomo Capizzi
- Department of Electrical, Electronics and Informatics Engineering, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy;
| |
Collapse
|
30
|
Rytov RA, Bautin VA, Usov NA. Towards optimal thermal distribution in magnetic hyperthermia. Sci Rep 2022; 12:3023. [PMID: 35194138 PMCID: PMC8863883 DOI: 10.1038/s41598-022-07062-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
A linear combination of spherically symmetric heat sources is shown to provide optimal stationary thermal distribution in magnetic hyperthermia. Furthermore, such spatial location of heat sources produces suitable temperature distribution in biological medium even for assemblies of magnetic nanoparticles with a moderate value of specific absorption rate (SAR), of the order of 100-150 W/g. We also demonstrate the advantage of using assemblies of spherical magnetic nanocapsules consisting of metallic iron nanoparticles covered with non magnetic shells of sufficient thickness in magnetic hyperthermia. Based on numerical simulation we optimize the size and geometric structure of biocompatible spherical capsules in order to minimize the influence of strong magneto-dipole interaction between closely spaced nanoparticles. It is shown that assembly of capsules can provide sufficiently high SAR values of the order of 250-400 W/g at moderate amplitudes H0 = 50-100 Oe and frequencies f = 100-200 kHz of alternating magnetic field, being appropriate for application in clinics.
Collapse
Affiliation(s)
- R A Rytov
- National University of Science and Technology «MISiS», Moscow, Russia, 119049.
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, Russia, 142190.
| | - V A Bautin
- National University of Science and Technology «MISiS», Moscow, Russia, 119049
| | - N A Usov
- National University of Science and Technology «MISiS», Moscow, Russia, 119049
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, Russia, 142190
| |
Collapse
|
31
|
Bianchi L, Cavarzan F, Ciampitti L, Cremonesi M, Grilli F, Saccomandi P. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia 2022; 39:297-340. [DOI: 10.1080/02656736.2022.2028908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Fabiana Cavarzan
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Lucia Ciampitti
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Matteo Cremonesi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Francesca Grilli
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
32
|
Tucci C, Trujillo M, Berjano E, Iasiello M, Andreozzi A, Vanoli GP. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106569. [PMID: 34906785 DOI: 10.1016/j.cmpb.2021.106569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Thermal ablation of tumors plays a key role to fight cancer, since it is a minimally invasive treatment which involves some advantages compared to surgery and chemotherapy, such as shorter hospital stays and consequently lower costs, along with minor side effects. In this context, computational modeling of heat transfer during thermal ablation is relevant to accurately predict the obtained ablation zone in order to avoid tumor recurrence risk caused by incomplete ablation, and the same time to save the surrounding healthy tissue. The aim of this work is to develop a more realistic porous media-based mathematical model to simulate a microwave thermal ablation (MWA) of an in vivo liver tumor surrounded by healthy tissue. METHODS The domain is made up of a spherical tumor bounded by a cylindrical healthy liver tissue. The simulated microwave antenna is a 14 G HS Amica-Gen Probe, and the supplied power of 60 W is applied for 300 s and 600 s. The model consists in coupling modified Local Thermal Non Equilibrium (LTNE) equations with the electromagnetic equations. The LTNE equations include a variable porosity function which fits the porosity changing from the tumor core to the rim based on experimental measures in in vivo cases. Moreover, four different blood vessels' uniform distributions are investigated to compare the effects of different vascularizations of the considered target tissue. RESULTS The results are shown in terms of temperature fields, ablation diameters and volumes based on the Arrhenius thermal damage model with 99% of cell death probability. The outcomes show a very good agreement with a clinical study on human patients with hepatocellular carcinoma using the same antenna and energy setting, when terminal arteries distribution is included. CONCLUSIONS In this work, an in vivo microwave ablation of liver tumor surrounded by healthy tissue is modeled with a variable-porosity medium approach based on experimental measures. The outcomes shown for distinct vascularizations underline the key relevance of modeling more and more accurately tumor MWA, by considering increasingly realistic features, avoiding tumor recurrence, and improving both medical protocols and devices.
Collapse
Affiliation(s)
- Claudio Tucci
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy.
| | - Macarena Trujillo
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, Camino de Vera, 46022, Valencia, Spain
| | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Camino de Vera, 46022, Valencia, Spain
| | - Marcello Iasiello
- Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Assunta Andreozzi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Giuseppe Peter Vanoli
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy
| |
Collapse
|
33
|
A New Thermal Damage-Controlled Protocol for Thermal Ablation Modeled with Modified Porous Media-Based Bioheat Equation with Variable Porosity. Processes (Basel) 2022. [DOI: 10.3390/pr10020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thermal ablation of tumors is a minimally invasive technique more and more employed in cancer treatments. The main shortcomings of this technique are, on the one hand, the risk of an incomplete ablation, and on the other hand, the destruction of the surrounding healthy tissue. In this work, thermal ablation of a spherical hepatocellular carcinoma tumor (HCC) surrounded by healthy tissue is modeled. A modified porous media-based bioheat model is employed, including porosity variability from tumor core to healthy tissue, following experimental in vivo measures. Moreover, three different protocols are investigated: a constant heating protocol, a pulsating protocol, and a new developed damage-controlled protocol. The proposed damage-controlled protocol changes the heating source from constant to pulsating according to the thermal damage probability on the tumor rim. The equations are numerically solved by means of the commercial software COMSOL Multiphysics, and the outcomes show that the new proposed protocol is able to achieve the complete ablation in less time than the completely pulsating protocol, and to reach tissue temperature on the tumor rim 10 °C smaller than the constant protocol. These results are relevant to develop and improve different patient-based and automated protocols which can be embedded in medical devices’ software or in mobile applications, supporting medical staff with innovative technical solutions.
Collapse
|
34
|
Bibi Farouk ZI, Jiang S, Yang Z, Umar A. A Brief Insight on Magnetic Resonance Conditional Neurosurgery Robots. Ann Biomed Eng 2022; 50:138-156. [PMID: 34993701 DOI: 10.1007/s10439-021-02891-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
The brain is a delicate organ in the human body that requires extreme care. Brain-related diseases are unavoidable. Perse, neurosurgery is a complicated procedure that demands high precision and accuracy. Developing a surgical robot is a complex task. To date, there are only a handful of neurosurgery robots in the market that distinctly undergo clinical procedures. These robots have exorbitant cost that hinders the utmost care progress in the area as they are unaffordable. This paper looked at the historical perspective and presented insight literature of the magnetic resonance conditional stereotactic neurosurgery robots that find their ways in clinics, abandoning research projects and promising research yet to undergo clinical use. In addition, the study also gives a thorough insight into the advantage of magnetic resonance imaging modalities and magnetic resonance conditional robots and the future challenges in automation use. Image compatibility test data and accuracy results are also examined because they guarantee that these systems work correctly in particular imaging settings. The primary differences between these systems include actuation and control technologies, construction materials, and the degree of freedom. Thus, one system has an advantage over the other.
Collapse
Affiliation(s)
- Z I Bibi Farouk
- Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin, 300354, China
| | - Shan Jiang
- Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin, 300354, China.
| | - Zhiyong Yang
- Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin, 300354, China
| | - Abubakar Umar
- Mechanical Engineering Department, Hebei University of Technology, Tianjin, China
| |
Collapse
|
35
|
Ragab M, Abouelregal AE, AlShaibi HF, Mansouri RA. Heat Transfer in Biological Spherical Tissues during Hyperthermia of Magnetoma. BIOLOGY 2021; 10:1259. [PMID: 34943174 PMCID: PMC8698268 DOI: 10.3390/biology10121259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
Hyperthermia therapy is now being used to treat cancer. However, understanding the pattern of temperature increase in biological tissues during hyperthermia treatment is essential. In recent years, many physicians and engineers have studied the use of computational and mathematical models of heat transfer in biological systems. The rapid progress in computing technology has intrigued many researchers. Many medical procedures also use engineering techniques and mathematical modeling to ensure their safety and assess the risks involved. One such model is the modified Pennes bioheat conduction equation. This paper provides an analytical solution to the modified Pennes bioheat conduction equation with a single relaxation time by incorporating in it the (MGT) equation. The suggested model examines heat transport in biological tissues as forming an infinite concentric spherical region during magnetic fluid hyperthermia. To investigate thermal reactions caused by temperature shock, specifically the influence of heat generation through heat treatment on a skin tumor [AEGP9], the Laplace transformation, and numerical inverse transformation methods are used. This model was able to explain the effects of different therapeutic approaches such as cryotherapy sessions, laser therapy, and physical occurrences, transfer, metabolism support, and blood perfusion. Comparison of the numerical results of the suggested model with those in the literature confirmed the validity of the model's numerical results.
Collapse
Affiliation(s)
- Mahmoud Ragab
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed E. Abouelregal
- Department of Mathematics, College of Science and Arts, Jouf University, Al-Qurayyat 75911, Saudi Arabia;
- Basic Sciences Research Unit, Jouf University, Sakaka 2014, Saudi Arabia
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Huda F. AlShaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (R.A.M.)
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (R.A.M.)
| |
Collapse
|
36
|
Jin ZH. Thermal therapy induced fluid pressure and stress reductions in a solid tumor. Microvasc Res 2021; 139:104250. [PMID: 34516982 DOI: 10.1016/j.mvr.2021.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
This paper presents an investigation on the interstitial fluid pressure and stress reductions in a vascularized solid tumor using a thermal therapy approach. The solid tumor is modeled as a fluid infiltrated poroelastic medium with a pressure source subjected to spatial heating. The distributions of temperature, interstitial fluid pressure, strains and stresses in a spherical tumor are obtained using a thermoporoelasticity theory in which the extracellular solid matrix and the interstitial fluid have different coefficient of thermal expansion (CTE). The numerical results for a solid tumor subjected to uniform spatial heating indicate that the CTE of the solid matrix of the tumor plays a crucial role in the reductions in the fluid pressure and effective stresses caused by the thermal therapy. The pore pressure and effective stresses are reduced when the CTE of the solid matrix is higher than that of the interstitial fluid. The reductions in fluid pressure and stresses may become significant depending on the difference between the CTEs of the solid matrix and interstitial fluid. The reductions reach the maximum at the tumor center and decrease with increasing radial distance from the tumor center. Finally, the thermally induced fluid flow is directed from the surface towards the center thereby potentially improving the microcirculation in the solid tumor.
Collapse
Affiliation(s)
- Z-H Jin
- Department of Mechanical Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
37
|
Fluid–Structure Interaction and Non-Fourier Effects in Coupled Electro-Thermo-Mechanical Models for Cardiac Ablation. FLUIDS 2021. [DOI: 10.3390/fluids6080294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, a fully coupled electro-thermo-mechanical model of radiofrequency (RF)-assisted cardiac ablation has been developed, incorporating fluid–structure interaction, thermal relaxation time effects and porous media approach. A non-Fourier based bio-heat transfer model has been used for predicting the temperature distribution and ablation zone during the cardiac ablation. The blood has been modeled as a Newtonian fluid and the velocity fields are obtained utilizing the Navier–Stokes equations. The thermal stresses induced due to the heating of the cardiac tissue have also been accounted. Parametric studies have been conducted to investigate the effect of cardiac tissue porosity, thermal relaxation time effects, electrode insertion depths and orientations on the treatment outcomes of the cardiac ablation. The results are presented in terms of predicted temperature distributions and ablation volumes for different cases of interest utilizing a finite element based COMSOL Multiphysics software. It has been found that electrode insertion depth and orientation has a significant effect on the treatment outcomes of cardiac ablation. Further, porosity of cardiac tissue also plays an important role in the prediction of temperature distribution and ablation volume during RF-assisted cardiac ablation. Moreover, thermal relaxation times only affect the treatment outcomes for shorter treatment times of less than 30 s.
Collapse
|
38
|
Numerical Investigation of a Thermal Ablation Porous Media-Based Model for Tumoral Tissue with Variable Porosity. COMPUTATION 2021. [DOI: 10.3390/computation9050050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Thermal ablation is a minimally or noninvasive cancer therapy technique that involves fewer complications, shorter hospital stays, and fewer costs. In this paper, a thermal-ablation bioheat model for cancer treatment is numerically investigated, using a porous media-based model. The main objective is to evaluate the effects of a variable blood volume fraction in the tumoral tissue (i.e., the porosity), in order to develop a more realistic model. A modified local thermal nonequilibrium model (LTNE) is implemented including the water content vaporization in the two phases separately and introducing the variable porosity in the domain, described by a quadratic function changing from the core to the rim of the tumoral sphere. The equations are numerically solved employing the finite-element commercial code COMSOL Multiphysics. Results are compared with the results obtained employing two uniform porosity values (ε = 0.07 and ε = 0.23) in terms of coagulation zones at the end of the heating period, maximum temperatures reached in the domain, and temperature fields and they are presented for different blood vessels. The outcomes highlight how important is to predict coagulation zones achieved in thermal ablation accurately. In this way, indeed, incomplete ablation, tumor recurrence, or healthy tissue necrosis can be avoided, and medical protocols and devices can be improved.
Collapse
|
39
|
Tucci C, Trujillo M, Berjano E, Iasiello M, Andreozzi A, Vanoli GP. Pennes' bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation. Sci Rep 2021; 11:5272. [PMID: 33674658 PMCID: PMC7970869 DOI: 10.1038/s41598-021-84546-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to compare three different heat transfer models for radiofrequency ablation of in vivo liver tissue using a cooled electrode and three different voltage levels. The comparison was between the simplest but less realistic Pennes' equation and two porous media-based models, i.e. the Local Thermal Non-Equilibrium (LTNE) equations and Local Thermal Equilibrium (LTE) equation, both modified to take into account two-phase water vaporization (tissue and blood). Different blood volume fractions in liver were considered and the blood velocity was modeled to simulate a vascular network. Governing equations with the appropriate boundary conditions were solved with Comsol Multiphysics finite-element code. The results in terms of coagulation transverse diameters and temperature distributions at the end of the application showed significant differences, especially between Pennes and the modified LTNE and LTE models. The new modified porous media-based models covered the ranges found in the few in vivo experimental studies in the literature and they were closer to the published results with similar in vivo protocol. The outcomes highlight the importance of considering the three models in the future in order to improve thermal ablation protocols and devices and adapt the model to different organs and patient profiles.
Collapse
Affiliation(s)
- Claudio Tucci
- Dipartimento Di Medicina E Scienze Della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy.
| | - Macarena Trujillo
- BioMIT, Department of Applied Mathematics, Universitat Politècnica de València, 46022, Camino de Vera, Valencia, Spain
| | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, 46022, Camino de Vera, Valencia, Spain
| | - Marcello Iasiello
- Dipartimento Di Ingegneria Industriale, Università Degli Studi Di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Assunta Andreozzi
- Dipartimento Di Ingegneria Industriale, Università Degli Studi Di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Giuseppe Peter Vanoli
- Dipartimento Di Medicina E Scienze Della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy
| |
Collapse
|
40
|
Andreozzi A, Brunese L, Iasiello M, Tucci C, Vanoli GP. Numerical analysis of the pulsating heat source effects in a tumor tissue. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105887. [PMID: 33280933 DOI: 10.1016/j.cmpb.2020.105887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Hyperthermia treatment is nowadays recognized as the fourth additional cancer therapy technique following surgery, chemotherapy, and radiation; it is a minimally or non-invasive technique which involves fewer complications, a shorter hospital stay, and fewer costs. In this paper, pulsating heat effects on heat transfer in a tumor tissue under hyperthermia are analyzed. The objective of the paper is to find and quantify the advantages of pulsatile heat protocols under different periodical heating schemes and for different tissue morphologies. METHODS The tumor tissue is modeled as a porous sphere made up of a solid phase (tissue, interstitial space, etc.) and a fluid phase (blood). A Local Thermal Non-Equilibrium (LTNE) model is employed to consider the local temperature difference between the two phases. Governing equations with the appropriate boundary conditions are solved with the finite-element code COMSOL Multiphysics®. The pulsating effect is modeled with references to a cosine function with different frequencies, and such different heating protocols are compared at equal delivered energy, i. e. different heating times at equal maximum power. RESULTS Different tissue properties in terms of blood vessels sizes and blood volume fraction in tissue (porosity) are investigated. The results are shown in terms of tissue temperature and percentage of necrotic tissue obtained. The most powerful result achieved using a pulsating heat source instead of a constant one is the decreasing of maximum temperature in any considered case, even reaching about 30% lower maximum temperatures. Furthermore, the evaluation of tissue damage at the end of treatment shows that pulsating heat allows to necrotize the same tumoral tissue area of the non-pulsating heat source. CONCLUSIONS Modeling pulsating heat protocols in thermal ablation under different periodical heating schemes and considering different tissues morphologies in a tumor tissue highlights how the application of pulsating heat sources allows to avoid high temperature peaks, and simultaneously to ablate the same tumoral area obtained with a non-pulsating heat source. This is a powerful result to improve medical protocols and devices in thermal ablation of tumors.
Collapse
Affiliation(s)
- Assunta Andreozzi
- Dipartimento di Ingegneria Industriale, Università degli studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Luca Brunese
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, ITALY
| | - Marcello Iasiello
- Dipartimento di Ingegneria Industriale, Università degli studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Claudio Tucci
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, ITALY.
| | - Giuseppe Peter Vanoli
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, ITALY
| |
Collapse
|
41
|
Dutta J, Kundu B. An improved analytical model for heat flow in cancerous tumours to avoid thermal injuries during hyperthermia. Proc Inst Mech Eng H 2021; 235:500-514. [PMID: 33611979 DOI: 10.1177/0954411921990532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study highlights an analytical hybrid scheme consisted of a shift of variables and finite integral transform for analysing a local thermal non-equilibrium (LTNE) bioheat model. This model can have utilised to be a betterment of prediction of the temperature field in the localised hyperthermia therapy (LHT) for the treatment of cancer patients. As the hyperthermia treatment is only the application in living tissues, an appropriate initial condition for the therapeutic thermal response is proposed instead of a constant temperature taken in the previous studies based on the 1-D heat flow. The present analysis suggests the therapeutic exposure time of 7776.8s (2.16 h) with constant heat flux and the exposure time of 10969.9s (3.06 h) with a sinusoidal heat flux within the usual temperature range of the hyperthermia (in a combination of thermal ablation and medium temperature hyperthermia) to be more effective in the treatment protocol. The presented results show that fatal injuries (tissue trauma, thermal burn, etc.) of internal organs might be possible to avoid by the current therapeutic condition. Therefore, this study may nullify the adverse effect of the existing model with the constant heating and consequently, the repercussion of the several therapeutic variables is to estimate with the development of a thermal profile for the suitability of a therapeutic condition. On the other hand, the present study well matches with the published analysis in case of both the theoretical and experimental (live tissues of the pig due to unavailability of real-time data on the human body) studies and it found the maximum deviation of the thermal response as 2.26% and 2.66%, respectively.
Collapse
Affiliation(s)
- Jaideep Dutta
- Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal, India.,Department of Mechanical Engineering, MCKV Institute of Engineering, Howrah, West Bengal, India
| | - Balaram Kundu
- Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
42
|
Rubia-Rodríguez I, Santana-Otero A, Spassov S, Tombácz E, Johansson C, De La Presa P, Teran FJ, Morales MDP, Veintemillas-Verdaguer S, Thanh NTK, Besenhard MO, Wilhelm C, Gazeau F, Harmer Q, Mayes E, Manshian BB, Soenen SJ, Gu Y, Millán Á, Efthimiadou EK, Gaudet J, Goodwill P, Mansfield J, Steinhoff U, Wells J, Wiekhorst F, Ortega D. Whither Magnetic Hyperthermia? A Tentative Roadmap. MATERIALS (BASEL, SWITZERLAND) 2021; 14:706. [PMID: 33546176 PMCID: PMC7913249 DOI: 10.3390/ma14040706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.
Collapse
Affiliation(s)
| | | | - Simo Spassov
- Geophysical Centre of the Royal Meteorological Institute, 1 rue du Centre Physique, 5670 Dourbes, Belgium;
| | - Etelka Tombácz
- Soós Water Technology Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Christer Johansson
- RISE Research Institutes of Sweden, Sensors and Materials, Arvid Hedvalls Backe 4, 411 33 Göteborg, Sweden;
| | - Patricia De La Presa
- Instituto de Magnetismo Aplicado UCM-ADIF-CSIC, A6 22,500 km, 29260 Las Rozas, Spain;
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Avda. Complutense s/n, 28048 Madrid, Spain
| | - Francisco J. Teran
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Nanotech Solutions, Ctra Madrid, 23, 40150 Villacastín, Spain
| | - María del Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Sabino Veintemillas-Verdaguer
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Nguyen T. K. Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK;
- Biophysics Group, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
| | - Maximilian O. Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Quentin Harmer
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Eric Mayes
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Bella B. Manshian
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Stefaan J. Soenen
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Yuanyu Gu
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Ángel Millán
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Eleni K. Efthimiadou
- Chemistry Department, Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Jeff Gaudet
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Patrick Goodwill
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - James Mansfield
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Uwe Steinhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - James Wells
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Daniel Ortega
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11002 Cádiz, Spain
- Condensed Matter Physics Department, Faculty of Sciences, Campus Universitario de Puerto Real s/n, 11510 Puerto Real, Spain
| |
Collapse
|
43
|
Zhang J, Lay RJ, Roberts SK, Chauhan S. Towards real-time finite-strain anisotropic thermo-visco-elastodynamic analysis of soft tissues for thermal ablative therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 198:105789. [PMID: 33069033 DOI: 10.1016/j.cmpb.2020.105789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Accurate and efficient prediction of soft tissue temperatures is essential to computer-assisted treatment systems for thermal ablation. It can be used to predict tissue temperatures and ablation volumes for personalised treatment planning and image-guided intervention. Numerically, it requires full nonlinear modelling of the coupled computational bioheat transfer and biomechanics, and efficient solution procedures; however, existing studies considered the bioheat analysis alone or the coupled linear analysis, without the fully coupled nonlinear analysis. METHODS We present a coupled thermo-visco-hyperelastic finite element algorithm, based on finite-strain thermoelasticity and total Lagrangian explicit dynamics. It considers the coupled nonlinear analysis of (i) bioheat transfer under soft tissue deformations and (ii) soft tissue deformations due to thermal expansion/shrinkage. The presented method accounts for anisotropic, finite-strain, temperature-dependent, thermal, and viscoelastic behaviours of soft tissues, and it is implemented using GPU acceleration for real-time computation. RESULTS The presented method can achieve thermo-visco-elastodynamic analysis of anisotropic soft tissues undergoing large deformations with high computational speeds in tetrahedral and hexahedral finite element meshes for surgical simulation of thermal ablation. We also demonstrate the translational benefits of the presented method for clinical applications using a simulation of thermal ablation in the liver. CONCLUSION The key advantage of the presented method is that it enables full nonlinear modelling of the anisotropic, finite-strain, temperature-dependent, thermal, and viscoelastic behaviours of soft tissues, instead of linear elastic, linear viscoelastic, and thermal-only modelling in the existing methods. It also provides high computational speeds for computer-assisted treatment systems towards enabling the operator to simulate thermal ablation accurately and visualise tissue temperatures and ablation zones immediately.
Collapse
Affiliation(s)
- Jinao Zhang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| | - Remi Jacob Lay
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Sunita Chauhan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
44
|
Pérez JJ, González-Suárez A, Nadal E, Berjano E. Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 195:105673. [PMID: 32750633 DOI: 10.1016/j.cmpb.2020.105673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES A constant voltage (DC voltage) is usually used in radiofrequency ablation (RFA) computer models to mimic the radiofrequency voltage. However, in some cases a low frequency sine wave voltage (AC voltage) may be used instead. Our objective was to assess the thermal impact of replacing DC voltage by low-frequency AC voltage in RFA computer modeling. METHODS A 2D model was used consisting of an ablation electrode placed perpendicular to the tissue fragment. The Finite Element method was used to solve a coupled electric-thermal problem. Quasi-static electrical approximation was implemented in two ways (both with equivalent electrical power): (1) by a constant voltage of 25 V in the ablation electrode (DC voltage), and (2) applying a sine waveform with peak amplitude of 25√2 V (AC voltage). The frequency of the sine signal (fAC) varied from 0.5 Hz to 50 Hz. RESULTS Sine wave thermal oscillations (at twice the fAC frequency) were observed in the case of AC voltage, in addition to the temperature obtained by DC voltage. The amplitude of the oscillations: (1) increased with temperature, remaining more or less constant after 30 s; (2) was of up to ±3 °C for very low fAC values (0.5 Hz); and (3) was reduced at higher fAC values and with distance from the electrode (almost negligible for distances > 5 mm). The evolution of maximum lesion depth and width were almost identical with both DC and AC. CONCLUSIONS Although reducing fAC reduces the computation time, thermal oscillations appear at points near the electrode, which suggests that a minimum value of fAC should be used. Replacing DC voltage by low-frequency AC voltage does not appear to have an impact on the lesion depth.
Collapse
Affiliation(s)
- Juan J Pérez
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Ana González-Suárez
- Electrical and Electronic Engineering, National University of Ireland Galway, Ireland; Translational Medical Device Lab, National University of Ireland Galway, Ireland
| | - Enrique Nadal
- Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Valencia, Spain
| | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
45
|
Analytical Estimation of Temperature in Living Tissues Using the TPL Bioheat Model with Experimental Verification. MATHEMATICS 2020. [DOI: 10.3390/math8071188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study is to propose the analytical method associated with Laplace transforms and experimental verification to estimate thermal damages and temperature due to laser irradiation by utilizing measurement information of skin surface. The thermal damages to the tissues are totally estimated by denatured protein ranges using the formulations of Arrhenius. By using Laplace transformations, the exact solution of all physical variables is obtained. Numerical results for the temperature and thermal damage are presented graphically. Furthermore, the comparisons between the numerical calculations with experimental verification show that the three-phase lag bioheat mathematical model is an efficient tool for estimating the bioheat transfer in skin tissue.
Collapse
|
46
|
Kabiri A, Talaee MR. Thermal field and tissue damage analysis of moving laser in cancer thermal therapy. Lasers Med Sci 2020; 36:583-597. [PMID: 32594347 DOI: 10.1007/s10103-020-03070-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
In this paper, a closed-form analytical solution of hyperbolic Pennes bioheat equation is obtained for spatial evolution of temperature distributions during moving laser thermotherapy of the skin and kidney tissues. The three-dimensional cubic homogeneous perfused biological tissue is adopted as a media and the Gaussian distributed function in surface and exponentially distributed in depth is used for modeling of laser moving heat source. The solution procedure is Eigen value method which leads to a closed form solution. The effect of moving velocity, perfusion rate, laser intensity, absorption and scattering coefficients, and thermal relaxation time on temperature profiles and tissue thermal damage are investigated. Results are illustrated that the moving velocity and the perfusion rate of the tissues are the main important parameters in produced temperatures under moving heat source. The higher perfusion rate of kidney compared with skin may lead to lower induced temperature amplitude in moving path of laser due to the convective role of the perfusion term. Furthermore, the analytical solution can be a powerful tool for analysis and optimization of practical treatment in the clinical setting and laser procedure therapeutic applications and can be used for verification of other numerical heating models.
Collapse
Affiliation(s)
- Ali Kabiri
- School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Talaee
- School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
47
|
Malla WA, Arora R, Khan RIN, Mahajan S, Tiwari AK. Apoptin as a Tumor-Specific Therapeutic Agent: Current Perspective on Mechanism of Action and Delivery Systems. Front Cell Dev Biol 2020; 8:524. [PMID: 32671070 PMCID: PMC7330108 DOI: 10.3389/fcell.2020.00524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide in humans and animals. Conventional treatment regimens often fail to produce the desired outcome due to disturbances in cell physiology that arise during the process of transformation. Additionally, development of treatment regimens with no or minimum side-effects is one of the thrust areas of modern cancer research. Oncolytic viral gene therapy employs certain viral genes which on ectopic expression find and selectively destroy malignant cells, thereby achieving tumor cell death without harming the normal cells in the neighborhood. Apoptin, encoded by Chicken Infectious Anemia Virus' VP3 gene, is a proline-rich protein capable of inducing apoptosis in cancer cells in a selective manner. In normal cells, the filamentous Apoptin becomes aggregated toward the cell margins, but is eventually degraded by proteasomes without harming the cells. In malignant cells, after activation by phosphorylation by a cancer cell-specific kinase whose identity is disputed, Apoptin accumulates in the nucleus, undergoes aggregation to form multimers, and prevents the dividing cancer cells from repairing their DNA lesions, thereby forcing them to undergo apoptosis. In this review, we discuss the present knowledge about the structure of Apoptin protein, elaborate on its mechanism of action, and summarize various strategies that have been used to deliver it as an anticancer drug in various cancer models.
Collapse
Affiliation(s)
- Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
48
|
Liu KC, Yang YC. Numerical analysis of local non-equilibrium heat transfer in layered spherical tissue during magnetic hyperthermia. Comput Methods Biomech Biomed Engin 2020; 23:968-980. [PMID: 32530754 DOI: 10.1080/10255842.2020.1779232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A solid multi-layered concentric sphere with Gaussian space source is considered as the tissue model for magnetic hyperthermia treatment. The generalized dual-phase-lag model of bioheat transfer is used to describe the behavior of heat transport in tissue in the hyperthermia treatment process for accounting the local non-equilibrium effect. The effects of blood perfusion with the transient temperature are included in the tissue model. The hybrid numerical scheme based on Laplace transform, change of variables, and the modified discretization technique is extended to solve the present problem. The analytical solution for constant heat generation in the inner sphere is presented and evidences the accuracy and rationality of the present numerical results. In an ideal hyperthermia treatment, all the diseased tissues should be selectively heated without affecting any healthy tissue. Attempting to achieve the ideal temperature distribution, the thermal dose is estimated at the specified condition. The corresponding thermal efficacy of tumor damage has also been assessed based on the Arrenius equation.
Collapse
Affiliation(s)
- Kuo-Chi Liu
- Department of Mechanical Engineering, Far East University, Hsin-Shih, Tainan, Taiwan
| | - Yu-Ching Yang
- Clean Energy Center, Department of Mechanical Engineering, Kun Shan University, Yung-Kang, Tainan, Taiwan
| |
Collapse
|
49
|
Annals of Biomedical Engineering 2019 Year in Review. Ann Biomed Eng 2020. [DOI: 10.1007/s10439-020-02533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Singh S, Melnik R. Domain Heterogeneity in Radiofrequency Therapies for Pain Relief: A Computational Study with Coupled Models. Bioengineering (Basel) 2020; 7:E35. [PMID: 32272567 PMCID: PMC7355452 DOI: 10.3390/bioengineering7020035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
The objective of the current research work is to study the differences between the predicted ablation volume in homogeneous and heterogeneous models of typical radiofrequency (RF) procedures for pain relief. A three-dimensional computational domain comprising of the realistic anatomy of the target tissue was considered in the present study. A comparative analysis was conducted for three different scenarios: (a) a completely homogeneous domain comprising of only muscle tissue, (b) a heterogeneous domain comprising of nerve and muscle tissues, and (c) a heterogeneous domain comprising of bone, nerve and muscle tissues. Finite-element-based simulations were performed to compute the temperature and electrical field distribution during conventional RF procedures for treating pain, and exemplified here for the continuous case. The predicted results reveal that the consideration of heterogeneity within the computational domain results in distorted electric field distribution and leads to a significant reduction in the attained ablation volume during the continuous RF application for pain relief. The findings of this study could provide first-hand quantitative information to clinical practitioners about the impact of such heterogeneities on the efficacy of RF procedures, thereby assisting them in developing standardized optimal protocols for different cases of interest.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada;
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada;
- BCAM—Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Spain
| |
Collapse
|