1
|
Tenland E, Pochert A, Krishnan N, Umashankar Rao K, Kalsum S, Braun K, Glegola-Madejska I, Lerm M, Robertson BD, Lindén M, Godaly G. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One 2019; 14:e0212858. [PMID: 30807612 PMCID: PMC6391042 DOI: 10.1371/journal.pone.0212858] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/12/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intracellular delivery of antimicrobial agents by nanoparticles, such as mesoporous silica particles (MSPs), offers an interesting strategy to treat intracellular infections. In tuberculosis (TB), Mycobacterium tuberculosis avoids components of the immune system by residing primarily inside alveolar macrophages, which are the desired target for TB therapy. METHODS AND FINDINGS We have previously identified a peptide, called NZX, capable of inhibiting both clinical and multi-drug resistant strains of M. tuberculosis at therapeutic concentrations. In this study we analysed the potential of MSPs containing NZX for the treatment of tuberculosis. The MSPs released functional NZX gradually into simulated lung fluid and the peptide filled MSPs were easily taken up by primary macrophages. In an intracellular infection model, the peptide containing particles showed increased mycobacterial killing compared to free peptide. The therapeutic potential of peptide containing MSPs was investigated in a murine infection model, showing that MSPs preserved the effect to eliminate M. tuberculosis in vivo. CONCLUSIONS In this study we found that loading the antimicrobial peptide NZX into MSPs increased the inhibition of intracellular mycobacteria in primary macrophages and preserved the ability to eliminate M. tuberculosis in vivo in a murine model. Our studies provide evidence for the feasibility of using MSPs for treatment of tuberculosis.
Collapse
Affiliation(s)
- Erik Tenland
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Komal Umashankar Rao
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sadaf Kalsum
- Department of Clinical and Experimental Medicine, Faculty Medicine and Health Sciences, Linköping, Sweden
| | - Katharina Braun
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Izabela Glegola-Madejska
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Maria Lerm
- Department of Clinical and Experimental Medicine, Faculty Medicine and Health Sciences, Linköping, Sweden
| | - Brian D. Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mika Lindén
- Inorganic Chemistry II, Ulm University, Ulm, Germany
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
2
|
Cao Z, Chen Y, Li D, Cheng J, Liu C. Fabrication of Phosphate-Imprinted PNIPAM/SiO₂ Hybrid Particles and Their Phosphate Binding Property. Polymers (Basel) 2019; 11:E253. [PMID: 30960237 PMCID: PMC6419039 DOI: 10.3390/polym11020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
A SiO₂ microsphere imprinted by phosphate ions was prepared with the use of phosphate ion as the template molecule and tetraethoxysilane as the precursor. Thereafter, the imprinted SiO₂ microspheres were modified with 3-(trimethoxysilyl)propyl methacrylate (TMSPMA@SiO₂), followed by introducing the double bond. In the presence of TMSPMA@SiO₂, using N-isopropylacrylamide as monomer, and potassium persulfate as initiator, polymer/inorganic hybrid particles (PNIPAM/SiO₂) were prepared. Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption test, and transmission electron microscope were employed for the characterization of molecular imprinted SiO₂ microspheres and PNIPAM/SiO₂ hybrid particles. The effects of phosphate concentration, pH value, and adsorption temperature on the phosphate binding properties of PNIPAM/SiO₂ hybrid particles were studied by UV-vis spectrophotometer. The experimental results shed light on the fact that the PNIPAM structure is beneficial for the improvement of the adsorption ability of phosphate-imprinted SiO₂ microspheres. With the increase in the initial phosphate concentration, the adsorption capacity of hybrid particles to phosphate ions increased to 274 mg/g at pH = 7 and 15 °C. The acid condition and the temperature below the low critical solution temperature (LCST) of PNIPAM are favorable to the adsorption of phosphate ions by PNIPAM/SiO₂ hybrid particles, and the maximum adsorption capacity can reach 287 mg/g (at pH = 5 and 15 °C). The phosphate imprinted polymer/inorganic hybrid material is expected to be put to use in the fields of phosphate ions adsorption, separation, and recovery.
Collapse
Affiliation(s)
- Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yuyuan Chen
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Dan Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou 213164, China.
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
- Huaide College, Changzhou University, Changzhou 213016, China.
| |
Collapse
|
3
|
Hou Y, Wang Z, Cai C, Hao X, Li D, Zhao N, Zhao Y, Chen L, Ma H, Xu J. Conformal Nanocoatings with Uniform and Controllable Thickness on Microstructured Surfaces: A General Assembly Route. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704131. [PMID: 29315825 DOI: 10.1002/adma.201704131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Assembling nanoparticles (NPs) on various surfaces are intensively investigated for the construction of functional nanocoatings; however, it is still a challenge to fabricate conformal nanocoatings uniformly on surfaces having micro- or nanostructures. Herein, it is demonstrated that the negatively charged SiO2 NPs and the positively charged silicon coupling agent can be assembled layer-by-layer on the microstructures based on the combination of electrostatic interaction and condensation reaction. Conformal nanocoatings with controllable thickness are formed on the microstructured surfaces with different compositions and morphologies. The formation mechanism is confirmed by using quartz crystal microbalance with dissipation (QCM-D) to study the assembly process in real time. The universality of this method is illustrated by using other reactive building blocks with opposite charge to build up the conformal nanocoatings. Application in the preparation of antireflective nanocoatings on nonplanar optical materials is demonstrated. This simple, versatile, and scalable strategy for the preparation of conformal nanocoatings is promising for practical applications.
Collapse
Affiliation(s)
- Yi Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhen Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chao Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xi Hao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongdong Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membranes Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, P. R. China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membranes Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, P. R. China
| | - Hongwei Ma
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Effect of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and phospholipase A2 (PLA2) on surface properties of silica materials. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Fen LB, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, McPhail DS, Shaffer MS, Schwander S, Gow A, Zhang J(J, Chung KF, Tetley TD, Porter AE, Ryan MP. The stability of silver nanoparticles in a model of pulmonary surfactant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11232-40. [PMID: 23988335 PMCID: PMC3990461 DOI: 10.1021/es403377p] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The growing use of silver nanoparticles (AgNPs) in consumer products has raised concerns about their potential impact on the environment and human health. Whether AgNPs dissolve and release Ag(+) ions, or coarsen to form large aggregates, is critical in determining their potential toxicity. In this work, the stability of AgNPs in dipalmitoylphosphatidylcholine (DPPC), the major component of pulmonary surfactant, was investigated as a function of pH. Spherical, citrate-capped AgNPs with average diameters of 14 ± 1.6 nm (n = 200) were prepared by a chemical bath reduction. The kinetics of Ag(+) ion release was strongly pH-dependent. After 14 days of incubation in sodium perchlorate (NaClO4) or perchloric acid (HClO4) solutions, the total fraction of AgNPs dissolved varied from ∼10% at pH 3, to ∼2% at pH 5, with negligible dissolution at pH 7. A decrease in pH from 7 to 3 also promoted particle aggregation and coarsening. DPPC (100 mg·L(-1)) delayed the release of Ag(+) ions, but did not significantly alter the total amount of Ag(+) released after two weeks. In addition, DPPC improved the dispersion of the AgNPs and inhibited aggregation and coarsening. TEM images revealed that the AgNPs were coated with a DPPC layer serving as a semipermeable layer. Hence, lung lining fluid, particularly DPPC, can modify the aggregation state and kinetics of Ag(+) ion release of inhaled AgNPs in the lung. These observations have important implications for predicting the potential reactivity of AgNPs in the lung and the environment.
Collapse
Affiliation(s)
- Leo Bey Fen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Mechanical Engineering, Faculty of Engineering Building, University of Malaya, Kuala Lumpur 50603, MALAYSIA
| | - Shu Chen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Yoshihiko Kyo
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Karla-Luise Herpoldt
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Nicholas J. Terrill
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Iain E. Dunlop
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - David S. McPhail
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Milo S. Shaffer
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Stephan Schwander
- Department of Environmental and Occupational Health, University of Medicine and Dentistry (UMDNJ) School of Public Health, New Jersey, USA
| | - Andrew Gow
- Department of Pharmacology and Toxicology at Rutgers University, Piscataway, NJ, USA
| | - Junfeng (Jim) Zhang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, UK
| | | | - Alexandra E. Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Corresponding Authors: ; phone: (+44)2075946755; fax: (+44)2075945017. ; phone: (+44)2075949691; fax: (+44)2075945017
| | - Mary P. Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Corresponding Authors: ; phone: (+44)2075946755; fax: (+44)2075945017. ; phone: (+44)2075949691; fax: (+44)2075945017
| |
Collapse
|
6
|
Chibowski E, Delgado AV, Rudzka K, Szcześ A, Hołysz L. Surface modification of glass plates and silica particles by phospholipid adsorption. J Colloid Interface Sci 2010; 353:281-9. [PMID: 20932536 DOI: 10.1016/j.jcis.2010.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/25/2022]
Abstract
The effect of phospholipid adsorption on the hydrophobicity of glass plates and on the surface charge of silica particles using contact angle and electrophoretic mobility measurements, respectively, was investigated. Deposition of successive statistical monolayers of dipalmitoylphosphatidylcholine (DPPC) on the glass surface showed zig-zag changes of water contact angle, especially on the first few monolayers. This behavior is qualitatively coherent with the oscillations observed in zeta potential values for increasing DPPC concentration. The results indicate that the phospholipid is adsorbed vertically on the plates, exposing alternately its polar head and non-polar hydrocarbon chains in successive layers. On the other hand, experiments conducted on glass plates prior hydrophobized by contact with n-tetradecane suggest that DPPC molecules may to some extent dissolve in the relatively thick n-alkane film and then expose their polar heads over the film surface thus producing polar electron-donor interactions. The effect of both DPPC and dioleoylphosphatidylcholine (DOPC) on the electrokinetic potential of silica spheres confirms adsorption of the phospholipids, leading to a decrease in the (originally negative) zeta potential of silica and even reversal of its sign to positive at acidic pH. Hydrophobic interactions between phospholipid molecules in the medium and those already adsorbed may explain the overcharging. The adsorption of neutral phospholipids may reduce the zeta potential as a consequence of the shift of the electrokinetic or slip plane. The effect is more evident in the case of DOPC, suggesting a less efficient packing of this phospholipid because of the presence of double bonds in its molecule, which in fact is well known.
Collapse
Affiliation(s)
- Emil Chibowski
- Department of Physical Chemistry-Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| | | | | | | | | |
Collapse
|