1
|
Kanai N, Willis SA, Gupta A, Kawamura I, Price WS. Evaluating the Stability of Cellulose Nanofiber Pickering Emulsions Using MRI and Relaxometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3905-3913. [PMID: 36881384 DOI: 10.1021/acs.langmuir.2c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic resonance imaging (MRI) relaxometry and diffusion methods were used to highlight the instability mechanisms of oil-in-water Pickering emulsions stabilized by cellulose nanofibers (CNFs). Four different Pickering emulsions using different oils (n-dodecane and olive oil) and concentrations of CNFs (0.5 and 1.0 wt %) were systematically investigated over a period of one month after emulsification. The separation into a free oil, emulsion layer, and serum layer and the distribution of flocculated/coalesced oil droplets in several hundred micrometers were captured in MR images using fast low-angle shot (FLASH) and rapid acquisition with relaxation enhancement (RARE) sequences. The components of the Pickering emulsions (e.g., free oil, emulsion layer, oil droplets, and serum layer) were observable by different voxelwise relaxation times and apparent diffusion coefficients (ADCs) and reconstructing in the apparent T1, T2, and ADC maps. The mean T1, T2, and ADC of the free oil and serum layer corresponded well with MRI results for pure oils and water, respectively. Comparing the relaxation properties and translational diffusion coefficients of pure dodecane and olive oil obtained from NMR and MRI resulted in similar T1 and ADC but significantly different T2 depending on the sequence used. The diffusion coefficients of olive oil measured by NMR were much slower than dodecane. The ADC of the emulsion layer for dodecane emulsions did not correlate with the viscosity of the emulsions as the CNF concentration increased, suggesting the effects of restricted diffusion of oil/water molecules due to droplet packing.
Collapse
Affiliation(s)
- Noriko Kanai
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Scott A Willis
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Research Infrastructure, Research Services, Office of the Deputy Vice-Chancellor (Research, Enterprise and International), Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Translational Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
2
|
Ishikawa M, Ide H, Tsujii T, Stait-Gardner T, Kubo H, Matsushita N, Fukuda K, Price WS, Arata Y. Preferential freezing avoidance localised in anthers and embryo sacs in wintering Daphne kamtschatica var. jezoensis flower buds visualised by magnetic resonance imaging. PLANT, CELL & ENVIRONMENT 2022; 45:2109-2125. [PMID: 34985134 DOI: 10.1111/pce.14255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
To explore diversity in cold hardiness mechanisms, high resolution magnetic resonance imaging (MRI) was used to visualise freezing behaviours in wintering Daphne kamtschatica var. jezoensis flower buds, which have naked florets and no bud scales. MRI images showed that anthers remained stably supercooled to the range from -14 to -21°C or lower while most other tissues froze by -7°C. Freezing of some anthers detected in MRI images between -14 and -21°C corresponded with numerous low temperature exotherms and also with the 'all-or-nothing' type of anther injuries. In ovules/pistils, only embryo sacs remained supercooled at -7°C or lower, but slowly dehydrated during further cooling. Cryomicroscopic observation revealed ice formation in the cavities of calyx tubes and pistils but detected no ice in embryo sacs or in anthers. The distribution of ice nucleation activity in floral tissues corroborated the tissue freezing behaviours. Filaments likely work as the ice blocking barrier that prevents ice intrusion from extracellularly frozen calyx tubes to connecting unfrozen anthers. Unique freezing behaviours were demonstrated in Daphne flower buds: preferential freezing avoidance in male and female gametophytes and their surrounding tissues (by stable supercooling in anthers and by supercooling with slow dehydration in embryo sacs) while the remaining tissues tolerate extracellular freezing.
Collapse
Affiliation(s)
- Masaya Ishikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Ibaraki, Japan
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ide
- Water Research Institute, Ibaraki, Japan
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | | | - Timothy Stait-Gardner
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - Hikaru Kubo
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Norihisa Matsushita
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenji Fukuda
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - William S Price
- Water Research Institute, Ibaraki, Japan
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - Yoji Arata
- Water Research Institute, Ibaraki, Japan
| |
Collapse
|
3
|
Gauthier ARP, Stocek N, Newling B. Diffusion tensor imaging of anisotropic inhomogeneous turbulent flow. Phys Rev E 2022; 106:015108. [PMID: 35974538 DOI: 10.1103/physreve.106.015108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Inhomogeneous anisotropic turbulent flow is difficult to measure, and yet it commonly occurs in nature and in many engineering applications. This work aims to introduce a technique based on magnetic resonance imaging which can spatially map the degree of turbulence as well as the degree of anisotropy. Our interpretation relies on the eddy diffusion model of turbulence, and combines this with the technique of diffusion tensor imaging. The result is an eddy diffusion tensor, which is represented by a symmetric three-by-three matrix. This tensor contains a wealth of information about the magnitude and directions of the turbulent fluctuations; however, the correlation time must be considered before interpreting this information. In the constricted pipe flow used in this study, the turbulence is greatest in magnitude in the space surrounding the core of the turbulent jet, and the turbulence is highly anisotropic.
Collapse
Affiliation(s)
- Amy-Rae P Gauthier
- UNB MRI Centre, University of New Brunswick, 8 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Noah Stocek
- UNB MRI Centre, University of New Brunswick, 8 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Benedict Newling
- UNB MRI Centre, University of New Brunswick, 8 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
4
|
|
5
|
Fillbrook LL, Nothling MD, Stenzel MH, Price WS, Beves JE. Rapid Online Analysis of Photopolymerization Kinetics and Molecular Weight Using Diffusion NMR. ACS Macro Lett 2022; 11:166-172. [PMID: 35574764 DOI: 10.1021/acsmacrolett.1c00719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Online, high-throughput molecular weight analysis of polymerizations is rare, with most studies relying on tedious sampling techniques and batchwise postanalysis. The ability to track both monomer conversion and molecular weight evolution in real time could underpin precision polymer development and facilitate study of rapid polymerization reactions. Here, we use a single time-resolved diffusion nuclear magnetic resonance (NMR) experiment to simultaneously study the kinetics and molecular weight evolution during a photopolymerization, with in situ irradiation inside the NMR instrument. As a model system, we used a photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The data allow diffusion coefficients and intensities to be calculated every 14 s from which the polymer size and monomer conversion can be extracted. Key to this approach is (1) the use of shuffled gradient amplitudes in the diffusion NMR experiment to access reactions of any rate, (2) the addition of a relaxation agent to increase achievable time resolution and, (3) a sliding correction that accounts for viscosity changes during polymerization. Diffusion NMR offers a uniquely simple, translatable handle for online monitoring of polymerization reactions.
Collapse
Affiliation(s)
| | | | | | - William S. Price
- Nanoscale Group, School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | | |
Collapse
|
6
|
Graham TR, Chun J, Schenter GK, Zhang X, Clark SB, Pearce CI, Rosso KM. 27 Al NMR diffusometry of Al 13 Keggin nanoclusters. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:226-238. [PMID: 34536037 DOI: 10.1002/mrc.5218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Although nanometer-sized aluminum hydroxide clusters (i.e., ϵ-Al13 , [Al13 O4 (OH)24 (H2 O)12 ]7+ ) command a central role in aluminum ion speciation and transformations between minerals, measurement of their translational diffusion is often limited to indirect methods. Here, 27 Al pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has been applied to the AlO4 core of the ϵ-Al13 cluster with complementary theoretical simulations of the diffusion coefficient and corresponding hydrodynamic radii from a boundary element-based calculation. The tetrahedral AlO4 center of the ϵ-Al13 cluster is symmetric and exhibits only weak quadrupolar coupling, which results in favorable T1 and T2 27 Al NMR relaxation coefficients for 27 Al PFGSTE NMR studies. Stokes-Einstein relationship was used to relate the 27 Al diffusion coefficient of the ϵ-Al13 cluster to the hydrodynamic radius for comparison with theoretical simulations, dynamic light scattering from literature, and previously published 1 H PFGSTE NMR studies of chelated Keggin clusters. This first-of-its-kind observation proves that 27 Al PFGSTE NMR diffusometry can probe symmetric Al environments in polynuclear clusters of greater molecular weight than previously considered.
Collapse
Affiliation(s)
- Trent R Graham
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jaehun Chun
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gregory K Schenter
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Xin Zhang
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sue B Clark
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Crop & Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
7
|
Sharp CH, Bukowski BC, Li H, Johnson EM, Ilic S, Morris AJ, Gersappe D, Snurr RQ, Morris JR. Nanoconfinement and mass transport in metal-organic frameworks. Chem Soc Rev 2021; 50:11530-11558. [PMID: 34661217 DOI: 10.1039/d1cs00558h] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ubiquity of metal-organic frameworks in recent scientific literature underscores their highly versatile nature. MOFs have been developed for use in a wide array of applications, including: sensors, catalysis, separations, drug delivery, and electrochemical processes. Often overlooked in the discussion of MOF-based materials is the mass transport of guest molecules within the pores and channels. Given the wide distribution of pore sizes, linker functionalization, and crystal sizes, molecular diffusion within MOFs can be highly dependent on the MOF-guest system. In this review, we discuss the major factors that govern the mass transport of molecules through MOFs at both the intracrystalline and intercrystalline scale; provide an overview of the experimental and computational methods used to measure guest diffusivity within MOFs; and highlight the relevance of mass transfer in the applications of MOFs in electrochemical systems, separations, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Conor H Sharp
- National Research Council Associateship Program and Electronic Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hongyu Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Stefan Ilic
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Dilip Gersappe
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
8
|
Lee AM, Stait-Gardner T, Price WS. Explicit phenomenological solutions for magnetization exposed to an arbitrary NMR diffusion steady state pulse sequence. J Chem Phys 2021; 155:144204. [PMID: 34654301 DOI: 10.1063/5.0062190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Explicit phenomenological solutions to recurrence relations for the bulk transverse and longitudinal magnetization found using the Torrey-Bloch equations with relaxation effects are used to investigate nuclear magnetic resonance (NMR) diffusion measurements. Of particular interest are steady state NMR (self-)diffusion measurements that reduce experimental time that can extend the techniques to quickly reacting systems. The solutions for bulk transverse and longitudinal magnetization presented here are used to investigate the average behavior of the transverse and longitudinal magnetization in forming a steady state and are used to derive new expressions for the steady state longitudinal magnetization. These solutions can be applied to a noninteracting spin 1/2 ensemble undergoing free diffusion exposed to an arbitrary NMR pulse sequence containing arbitrary magnetic field gradient waveforms. The closed algebraic form method presented here has an advantage over iterative procedures for calculating transverse and longitudinal magnetization for the analysis and development of steady state pulse sequences. Previous theoretical results for steady state diffusion measurements are also reproduced. The Mathematica code for these solutions is provided in the supplementary material.
Collapse
Affiliation(s)
- Anthony M Lee
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, NSW 2751, Australia
| | - Timothy Stait-Gardner
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, NSW 2751, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
9
|
Fillbrook LL, Günther JP, Majer G, Price WS, Fischer P, Beves JE. Comment on "Using NMR to Test Molecular Mobility during a Chemical Reaction". J Phys Chem Lett 2021; 12:5932-5937. [PMID: 34162209 DOI: 10.1021/acs.jpclett.1c00995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A study reported in The Journal of Physical Chemistry Letters (Wang et al., 2021, 12, 2370) of "boosted mobility" measured by diffusion NMR experiments contains significant errors in data analysis and interpretation. We carefully reanalyzed the same data and find no evidence of boosted mobility, and we identify several sources of error.
Collapse
Affiliation(s)
| | - Jan-Philipp Günther
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Günter Majer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - William S Price
- Nanoscale Group, School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | | |
Collapse
|