1
|
Cheng D, Sheng S, Hu J, Cai S, Liu Y, Gan R, Zhu Z, Ge L, Chen W, Cheng X. Ershen Zhenwu Decoction suppresses myocardial fibrosis of chronic heart failure with heart-kidney Yang deficiency by down-regulating the Ras Homolog Gene Family Member A/Rho-Associated Coiled-Coil Kinases signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119146. [PMID: 39580131 DOI: 10.1016/j.jep.2024.119146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE The therapeutic efficacy of Ershen Zhenwu Decoction (ESZWD)-a famous formulation from Xin'an for patients with chronic heart failure heart-kidney Yang deficiency (CHF-HKYD)-is well established. Still, the underlying molecular mechanism is not clear. AIM OF THE STUDY This study investigated mechanisms by which ESZWD suppresses cardiac pathology, including myocardial fibrosis, in CHF-HKYD model rats and Ang II-stimulated cardiac fibroblasts (CFs). MATERIALS AND METHODS The components in ESZWD were analyzed by ultra-high-performance liquid chromatography coupled with Quadrupole Time-Of-Flight mass spectrometry (UHPLC-Q-TOF-MS). CHF-HKYD model was established in the male Sprague-Dawley rats through bilateral thyroidectomy and intraperitoneal administration of 0.02% doxorubicin (DOX), twice weekly for 3 weeks. Subsequently, the CHF-HKYD model rats were randomly categorized into the Model, ESZWD-L (3.96 g/kg/d ESZWD), ESZWD-M (7.92 g/kg/d ESZWD), ESZWD-H (15.84 g/kg/d ESZWD), and Sac/Val (68 mg/kg/d sacubitril/valsartan) groups and treated daily for 4 weeks. As a control, the sham surgery group (Sham) was used. Primary cardiac fibroblasts (CFs) were categorized into Control, Model, ESZWD, and Sac/Val groups. Then, the CFs were stimulated with Ang-II. The ESZWD and Sac/Val groups were incubated with different concentrations of drug-containing sera and their effects on CF viability were assessed via the CCK-8 assay. The ESZWD and Sac/Val groups received drug-containing serum concentrations determined by CCK-8 assay results. The cardioprotective effects of ESZWD were determined using echocardiography, Hematoxylin & Eosin (H&E) staining, Masson staining, and Sirius red staining, and the Enzyme Linked Immunosorbent Assay (ELISA). ESZWD's effects on the Ras Homolog Gene Family Member A (RhoA)/Rho-Associated Coiled-Coil Kinases (ROCKs) signaling pathway and myocardial fibrosis were assessed by Western blotting and Quantitative Real-Time PCR (qRT-PCR) analyses. Immunofluorescence was used to observe fibrotic markers in CFs. RESULTS ESZWD treatment improved cardiac function in the CHF-HKYD rats by significantly reducing myocardial fibrosis and ventricular remodeling. ESZWD treatment increased the rats' body temperature (Tb) and 24-h urine volume, left ventricular ejection fraction (LVEF) and LV fractional shortening (LVFS), and decreased LV internal systolic diameter (LVIDs), LV internal diastolic diameter (LVIDd), and heart weight/body weight (HW/BW) compared to the Model group. In comparison to the model rats, ESZWD treatment decreased serum levels of B-type natriuretic peptide precursor (NT-proBNP), tumor necrosis factor-alpha (TNF-α), interleukin-11 (IL-11), and IL-17A. ESZWD treatment significantly down-regulated the protein and mRNA expression levels of collagen I A1, α-SMA, RhoA, ROCK1, and ROCK2 in the heart tissues of the CHF-HKYD rats and the Ang II-stimulated CFs. CONCLUSION ESZWD significantly improved cardiac function and attenuated myocardial fibrosis and inflammation in the CHF-HKYD rats by inhibiting the RhoA/ROCKs signaling pathway.
Collapse
Affiliation(s)
- Dan Cheng
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Shuguang Hospital Affiliated with Shanghai University of Chinese Medicine, Anhui Hospital, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Sheng Sheng
- Shuguang Hospital Affiliated with Shanghai University of Chinese Medicine, Anhui Hospital, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Hu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Cai
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Liu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ruixi Gan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhenpeng Zhu
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Lan Ge
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Xiaoyu Cheng
- First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Xin'an Key Laboratory of Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
Zhu H, Kulyar MFEA, Ding Y, Yao W, Mo Q, Li J. Ginsenoside Rg1 regulates thiram-induced chondrocytes' apoptosis and angiogenesis in broiler chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34188-34202. [PMID: 36508105 DOI: 10.1007/s11356-022-24598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Tibial dyschondroplasia (TD) is a developmental cartilaginous disease due to thiram toxicity. The abnormity of chondrocytes and insufficient angiogenesis within the growth plate are the major factors leading to the occurrence of TD in most cases. In the current study, we evaluated the beneficial effects of ginsenoside (Rg1) against thiram-induced TD for knowing the possible underlying mechanisms in broiler chickens through in vivo and in vitro assessment. Arbor acres broilers (1-day-old, n = 120) were randomly divided for the in vivo evaluation. The control broilers were fed under normal conditions during the whole experiment cycle (18 days). The TD broilers were fed with 50 mg/kg thiram, while the treatment group was given 40 mg/kg of Rg1. According to our findings, thiram caused a decrease in production performance and tibia parameters (p < 0.05), which were significantly reversed by Rg1 administration. In addition, the results from the histological evaluation showed that the proliferative zone had a smaller number of blood vessels, surrounded by inviable chondrocytes, proving apoptosis during the occurrence of TD, while Rg1 treatment significantly increased blood vessels and decreased apoptotic cells. Furthermore, it was found that Rg1 effectively ameliorated the angiogenesis by regulation of HIF-1α/VEGFA/VEGFR2 signaling pathway and the chondrocytes' apoptosis via the mitochondrial pathway. Hence, these findings suggest that Rg1 might be a perfect choice in the prevention and treatment of TD via regulating chondrocytes apoptosis and angiogenesis. Also, it might be a potential therapeutic drug for humans to overcome different bone disorders, involving chondrocytes.
Collapse
Affiliation(s)
- Huaisen Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci 2022; 79:349. [PMID: 35672585 PMCID: PMC10171722 DOI: 10.1007/s00018-022-04348-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
4
|
Yue PYK, Leung HM, Li AJ, Chan TNC, Lum TS, Chung YL, Sung YH, Wong MH, Leung KSY, Zeng EY. Angiosuppressive properties of marine-derived compounds-a mini review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8990-9001. [PMID: 26520098 DOI: 10.1007/s11356-015-5536-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Angiogenesis, formation of new blood vessels from preexisting one, is a critical step of tumorgenesis of solid tumors. Therefore, antiangiogenic therapy is one of the promising approaches to control tumor growth. In the past 20 years, a lot of compounds have been tested for their antiangiogenic properties. Bevacizumab, Avastin®, the first antiangiogenic drug approved by the US FDA, has been widely used in clinic for treating cancer. Indeed, many synthetic compounds are highly toxic and exert side effects even though they are effective in inhibiting neovessel formation and cancer cell growth. Using natural compounds or their derivatives is one of the ways to solve these problems. Sinomenine and ginsenosides are common antiangiogenic and anticancer compounds that are extracted from herbal medicines. Recent findings suggested that marine algae-derived natural pigments also possess similar activities. It has been reported that fucoxanthin from Undaria pinnatifida, Siphonaxanthin from Codium fragile, can inhibit angiogenesis and cancer growth effectively. In conclusion, natural compounds derived from marine algae could provide a novel and safe source for new drug development in anticancer and antiangiogenic properties in the future.
Collapse
Affiliation(s)
- Patrick Y K Yue
- Department of Biology, Faculty of Science, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong.
| | - H M Leung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong
| | - Adela J Li
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong
| | - Tracy N C Chan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong
| | - T S Lum
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong
| | - Y L Chung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong
| | - Y H Sung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong
| | - M H Wong
- Department of Science and Environmental Studies, Hong Kong Institute of Education, HKSAR, Kowloon Tong, Hong Kong
| | - Kelvin S Y Leung
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, HKSAR, Kowloon Tong, Hong Kong
| | - Eddy Y Zeng
- School of Environment and Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Poon PY, Yue PYK, Wong RNS. A Device for Performing Cell Migration/Wound Healing in a 96-Well Plate. J Vis Exp 2017. [PMID: 28362371 DOI: 10.3791/55411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cell migration/wounding assay is a commonly used method to study cell migration and other biological processes, such as angiogenesis and tumor metastasis. In this assay, cells are grown to form a confluent monolayer and a mechanical wound is created by scratching with a device. Then the migration rate of the cells towards the denuded area can be monitored by imaging. Our 8-channel mechanical wounder is designed to tackle most of the problems associated with the cell migration assay. Firstly, our wounder can be easily sterilized by autoclaving or with common disinfectants. Secondly, the individual adjustable pins allow even contact with the cell culture plate so that sharp and reproducible wounds can be created. Thirdly, the guiding bars on both sides of the wounder ensure consistent wounding position in each well. The use of disposable plastic pipette tips for wounding can further provide better handling of the wounder as well as to minimize cross-contamination. In conclusion, our cell wounder can provide researchers with a user friendly and reproducible device for performing the cell migration assay using the standard 96-well culture plate.
Collapse
Affiliation(s)
- Po Ying Poon
- Department of Biology, Hong Kong Baptist University
| | | | | |
Collapse
|
6
|
Li J, Chen Y, Zhang L, Xing L, Xu H, Wang Y, Shi Q, Liang Q. Total saponins of panaxnotoginseng promotes lymphangiogenesis by activation VEGF-C expression of lymphatic endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:293-302. [PMID: 27553977 PMCID: PMC5108701 DOI: 10.1016/j.jep.2016.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lymphatic system plays an important role in maintaining the fluid homeostasis and normal immune responses, anatomic or functional obstruction of which leads to lymphedema, and treatments for therapeutic lymphangiogenesis are efficiency for secondary lymphedema. Total saponins of panaxnotoginseng (PNS) are a mixture isolated from Panaxnotoginseng (Burkill) F.H.Chen, which has been used as traditional Chinese medicine in China for treatment of cardio- and cerebro-vascular diseases. The aim of this study was to determine the effect and mechanism of PNS on lymphangiogenesis. METHODS The Tg (fli1: egfp; gata1: dsred) transgenic zebrafish embryos were treated with different concentrations of PNS (10, 50, 100μM) for 48h with or without the 6h pretreatment of the 30μM Vascular endothelial growth factors receptor (VEGFR)-3 kinase inhibitor, followed with morphological observation and lympangiogenesis of thoracic duct assessment. The effect of PNS on cell viability, migration, tube formation and Vascular endothelial growth factors (VEGF)-C mRNA and protein expression of lymphatic endothelial cells (LECs) were determined. The role of phosphatidylinositol-3 (PI-3)-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2 pathways, c-Jun N-terminal kinase (JNK) and P38 mitogen activated protein kinases (MAPK) signaling in PNS-induced VEGF-C expression of LECs by using pharmacological agents to block each signal. RESULTS PNS promotes lymphangiogenesis of thoracic duct in zebrafish with or without VEGFR3 Kinase inhibitor pre-impairment. PNS promotes proliferation, migration and tube formation of LECs. The tube formation induced by PNS could be blocked by VEGFR3 Kinase inhibitor. PNS induce VEGF-C expression of LEC, which could be blocked by ERK1/2, PI3K and P38MAPK signaling inhibitors. CONCLUSION PNS activates lymphangiogenesis both in vivo and in vitro by up-regulating VEGF-C expression and activation of ERK1/2, PI3K and P38MAPK signaling. These findings provide a novel insight into the role of PNS in lymphangiogenesis and suggest that it might be an attractive and suitable therapeutic agent for treating secondary lymphedema or other lymphatic system impairment related disease.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yan Chen
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Li Zhang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Hao Xu
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yongjun Wang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qi Shi
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qianqian Liang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
7
|
Korean Red Ginseng extract induces angiogenesis through activation of glucocorticoid receptor. J Ginseng Res 2016; 41:477-486. [PMID: 29021694 PMCID: PMC5628332 DOI: 10.1016/j.jgr.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Our previous studies have demonstrated that ginsenoside-Rg1 can promote angiogenesis in vitro and in vivo through activation of the glucocorticoid receptor (GR). Furthermore, microRNA (miRNA) expression profiling has shown that Rg1 can modulate the expression of a subset of miRNAs to induce angiogenesis. Moreover, Rb1 was shown to be antiangiogenic through activation of a different pathway. These studies highlight the important functions of miRNAs on ginseng-regulated physiological processes. The aim of this study was to determine the angiogenic properties of Korean Red Ginseng extract (KGE). METHODS AND RESULTS Combining in vitro and in vivo data, KGE at 500 μg/mL was found to induce angiogenesis. According to the miRNA sequencing, 484 differentially expressed miRNAs were found to be affected by KGE. Among them, angiogenic-related miRNAs; miR-15b, -23a, -214, and -377 were suppressed by KGE. Meanwhile, their corresponding angiogenic proteins were stimulated, including vascular endothelial growth factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and MET transmembrane tyrosine kinase. The miRNAs-regulated signaling pathways of KGE were then found by Cignal 45-Pathway Reporter Array, proving that KGE could activate GR. CONCLUSION KGE was found capable of inducing angiogenesis both in vivo and in vitro models through activating GR. This study provides a valuable insight into the angiogenic mechanisms depicted by KGE in relation to specific miRNAs.
Collapse
|
8
|
Hwang SH, Lee BH, Choi SH, Kim HJ, Won KJ, Lee HM, Rhim H, Kim HC, Nah SY. Effects of gintonin on the proliferation, migration, and tube formation of human umbilical-vein endothelial cells: involvement of lysophosphatidic-acid receptors and vascular-endothelial-growth-factor signaling. J Ginseng Res 2015; 40:325-333. [PMID: 27746684 PMCID: PMC5052429 DOI: 10.1016/j.jgr.2015.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022] Open
Abstract
Background Ginseng extracts are known to have angiogenic effects. However, to date, only limited information is available on the molecular mechanism underlying the angiogenic effects and the main components of ginseng that exert these effects. Human umbilical-vein endothelial cells (HUVECs) are used as an in vitro model for screening therapeutic agents that promote angiogenesis and wound healing. We recently isolated gintonin, a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand, from ginseng. LPA plays a key role in angiogenesis and wound healing. Methods In the present study, we investigated the in vitro effects of gintonin on proliferation, migration, and tube formation of HUVECs, which express endogenous LPA1/3 receptors. Results Gintonin stimulated proliferation and migration of HUVECs. The LPA1/3 receptor antagonist, Ki16425, short interfering RNA against LPA1 or LPA3 receptor, and the Rho kinase inhibitor, Y-27632, significantly decreased the gintonin-induced proliferation, migration, and tube formation of HUVECs, which indicates the involvement of LPA receptors and Rho kinase activation. Further, gintonin increased the release of vascular endothelial growth factors from HUVECs. The cyclooxygenase-2 inhibitor NS-398, nuclear factor kappa B inhibitor BAY11-7085, and c-Jun N-terminal kinase inhibitor SP600125 blocked the gintonin-induced migration, which shows the involvement of cyclooxygenase-2, nuclear factor kappa B, and c-Jun N-terminal kinase signaling. Conclusion The gintonin-mediated proliferation, migration, and vascular-endothelial-growth-factor release in HUVECs via LPA-receptor activation may be one of in vitro mechanisms underlying ginseng-induced angiogenic and wound-healing effects.
Collapse
Affiliation(s)
- Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Korea
| | - Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Sun-Hye Choi
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyeon-Joong Kim
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Kyung Jong Won
- Department of Physiology, School of Medicine, Konkuk University, Chungju, Korea
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Natural Science, Hoseo University, Asan, Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | - Seung-Yeol Nah
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|
9
|
Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression. J Ginseng Res 2015; 40:151-9. [PMID: 27158236 PMCID: PMC4845046 DOI: 10.1016/j.jgr.2015.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022] Open
Abstract
Background Ginsenoside-Rg3, the pharmacologically active component of red ginseng, has been found to inhibit tumor growth, invasion, metastasis, and angiogenesis in various cancer models. Previously, we found that 20(R)-ginsenoside-Rg3 (Rg3) could inhibit angiogenesis. Since microRNAs (miRNAs) have been shown to affect many biological processes, they might play an important role in ginsenoside-mediated angiomodulation. Methods In this study, we examined the underlying mechanisms of Rg3-induced angiosuppression through modulating the miRNA expression. In the miRNA-expression profiling analysis, six miRNAs and three miRNAs were found to be up- or down-regulated in vascular-endothelial-growth-factor-induced human-umbilical-vein endothelial cells (HUVECs) after Rg3 treatment, respectively. Results A computational prediction suggested that mature hsa-miR-520h (miR-520h) targets ephrin receptor (Eph) B2 and EphB4, and hence, affecting angiogenesis. The up-regulation of miR-520h after Rg3 treatment was validated by quantitative real-time polymerase chain reaction, while the protein expressions of EphB2 and EphB4 were found to decrease, respectively. The mimics and inhibitors of miR-520h were transfected into HUVECs and injected into zebra-fish embryos. The results showed that overexpression of miR-520h could significantly suppress the EphB2 and EphB4 protein expression, proliferation, and tubulogenesis of HUVECs, and the subintestinal-vessel formation of the zebra fish. Conclusion These results might provide further information on the mechanism of Rg3-induced angiosuppression and the involvement of miRNAs in angiogenesis.
Collapse
|
10
|
Kwok HH, Chan LS, Poon PY, Yue PYK, Wong RNS. Ginsenoside-Rg1 induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. Toxicol Appl Pharmacol 2015; 287:276-83. [PMID: 26115870 DOI: 10.1016/j.taap.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg1 (Rg1), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg1-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg1 could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3'-UTR. Intriguingly, ginsenoside-Rg1 was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg1-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg1 could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg1, and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lai-Sheung Chan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Po-Ying Poon
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Patrick Ying-Kit Yue
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ricky Ngok-Shun Wong
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
11
|
Zhou X, Siu WS, Fung CH, Cheng L, Wong CW, Zhang C, Liu CL, Kwok HF, Lau CP, Wat E, Lau CBS, Leung PC, Ko CH, Hung LK. Pro-angiogenic effects of Carthami Flos whole extract in human microvascular endothelial cells in vitro and in zebrafish in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1256-1263. [PMID: 25172787 DOI: 10.1016/j.phymed.2014.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/01/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
AIM Carthami Flos (CF) is a Chinese herb traditionally used for cardiovascular disease and bone injury in China with pharmacological effects on improving blood circulation. The aim of this study was to investigate the angiogenic potential of CF whole extract (extracted by boiling with water, followed by ethanol) and the underlying mechanisms in human microvascular endothelial cells (HMEC-1) in vitro and in transgenic TG(fli1:EGFP)(y1)/+(AB) zebrafish with transgenic endothelial cells expressing EGFP (Enhanced Green Fluorescent Protein) in vivo. METHODS Effects of CF whole extract on cell proliferation, migration and tube formation in HMEC-1 cells in vitro were detected by MTT assay, wound healing assay and tube formation assay. Its angiogenic effect in zebrafish was investigated by monitoring the sprout number in the sub-intestinal vessel (SIV), and the underlying mechanisms were tested by quantitative real-time PCR. RESULTS CF whole extract increased cell proliferation, migration and tube formation in vitro in HMEC-1 cells. Its angiogenic effect was also confirmed in vivo in zebrafish by increasing the sprout number in the SIV. As determined by quantitative real-time PCR, CF whole extract up-regulated the expression of angiogenesis-related genes in zebrafish, including angiogenic and its associated growth factors and receptors (e.g. IGF1, CTGF, NRP2, and VEGFR3), transcription factor (e.g. HIF1A), matrix degradation and endothelial cell migration-related factors (e.g. MMP2, MMP9, TIMP2, PLG and PLAU), cell adhesion molecules (e.g. ITGAV, ITGB3, beta-catenin and PECAM1), tubule formation factors (e.g. ANGPT1, TIE-2, PDGFR-B, CDH5, S1PR1, FGF2, Shh, and TGFRB1), and blood vessel maturation/formation factor (e.g. Ephrin B2). CONCLUSIONS CF whole extract increased angiogenesis in HMEC-1 cells in vitro and in zebrafish in vivo with multiple mechanisms.
Collapse
Affiliation(s)
- Xuelin Zhou
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Chak-Hei Fung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ling Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Chun-Wai Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Cheng Zhang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Cheuk-Lun Liu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Ching-Po Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Chun-Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Leung-Kim Hung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Poudyal D, Cui X, Le PM, Hofseth AB, Windust A, Nagarkatti M, Nagarkatti PS, Schetter AJ, Harris CC, Hofseth LJ. A key role of microRNA-29b for the suppression of colon cancer cell migration by American ginseng. PLoS One 2013; 8:e75034. [PMID: 24130681 PMCID: PMC3794036 DOI: 10.1371/journal.pone.0075034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022] Open
Abstract
Metastasis of colon cancer cells increases the risk of colon cancer mortality. We have recently shown that American ginseng prevents colon cancer, and a Hexane extract of American Ginseng (HAG) has particularly potent anti-inflammatory and anti-cancer properties. Dysregulated microRNA (miR) expression has been observed in several disease conditions including colon cancer. Using global miR expression profiling, we observed increased miR-29b in colon cancer cells following exposure to HAG. Since miR-29b plays a role in regulating the migration of cancer cells, we hypothesized that HAG induces miR-29b expression to target matrix metalloproteinase-2 (MMP-2) thereby suppressing the migration of colon cancer cells. Results are consistent with this hypothesis. Our study supports the understanding that targeting MMP-2 by miR-29b is a mechanism by which HAG suppresses the migration of colon cancer cells.
Collapse
Affiliation(s)
- Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Xiangli Cui
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
- Shanxi Medical University, Shanxi, China
| | - Phuong Mai Le
- Institute for National Measurement Standards, National Research Council, Ottawa, Canada
| | - Anne B. Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Anthony Windust
- Institute for National Measurement Standards, National Research Council, Ottawa, Canada
| | - Mitzi Nagarkatti
- School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Prakash S. Nagarkatti
- School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Aaron J. Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lorne J. Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chan L, Yue PY, Wong Y, Wong RN. MicroRNA-15b contributes to ginsenoside-Rg1-induced angiogenesis through increased expression of VEGFR-2. Biochem Pharmacol 2013; 86:392-400. [DOI: 10.1016/j.bcp.2013.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/02/2013] [Accepted: 05/08/2013] [Indexed: 12/26/2022]
|
14
|
Current understanding on antihepatocarcinoma effects of xiao chai hu tang and its constituents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:529458. [PMID: 23853661 PMCID: PMC3703324 DOI: 10.1155/2013/529458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/25/2013] [Accepted: 05/27/2013] [Indexed: 02/07/2023]
Abstract
Xiao Chai Hu Tang (XCHT), a compound formula originally recorded in an ancient Chinese medical book Shanghanlun, has been used to treat chronic liver diseases for a long period of time in China. Although extensive studies have been demonstrated the efficacy of this formula to treat chronic hepatitis, hepatic fibrosis, and hepatocarcinoma, how it works against these diseases still awaits full understanding. Here, we firstly present an overview arranging from the entire formula to mechanism studies of single herb in XCHT and their active components, from a new perspective of "separation study," and we tried our best to both detailedly and systematically organize the antihepatocarcinoma effects of it, hoping that the review will facilitate the strive on elucidating how XCHT elicits its antihepatocarcinoma role.
Collapse
|
15
|
Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013; 37:8-29. [PMID: 23717153 PMCID: PMC3659622 DOI: 10.5142/jgr.2013.37.8] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022] Open
Abstract
Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng’s therapeutic effects. These include Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Pharmacology, School of Medicine and Advanced Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701, Korea
| | | | | |
Collapse
|
16
|
Yang N, Chen P, Tao Z, Zhou N, Gong X, Xu Z, Zhang M, Zhang D, Chen B, Tao Z, Yang Z. Beneficial effects of ginsenoside-Rg1 on ischemia-induced angiogenesis in diabetic mice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:999-1005. [PMID: 23111241 DOI: 10.1093/abbs/gms092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neovascularization and the formation of collateral vessels are often impaired in diabetes mellitus (DM) population compared with non-diabetics. Alterations in vascular endothelial growth factor (VEGF) signaling and endothelial nitric oxide synthase (eNOS) dysfunction have been confirmed to play a crucial role in impaired neovascularization in diabetic mice. Accumulating data have suggested that Rg1, a main component of Panax ginseng, has the ability to promote tubulogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, and that the mechanism involves increased expression level of VEGF as well as increased eNOS activation. Thus, we speculated that Rg1 might also have therapeutic effects on the impairment of neovascularization in diabetic individuals. The aim of the present study was to investigate whether Rg1 could improve angiogenesis in ischemic hindlimb of diabetic mice in vivo. Our data demonstrated that Rg1 treatment resulted in improved angiogenesis in the diabetic ischemic hindlimb, and the potential mechanism might involve increased eNOS activation, upregulated VEGF expression, and inhibited apoptosis. Our results suggest that Rg1 may be used as a novel and useful adjunctive drug for the therapy of peripheral arterial disease in DM.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Blotting, Western
- Central Nervous System Agents/pharmacology
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Drugs, Chinese Herbal/pharmacology
- Fluorescent Antibody Technique
- Ginsenosides/pharmacology
- Hindlimb/blood supply
- Hindlimb/drug effects
- Ischemia/complications
- Laser-Doppler Flowmetry/methods
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Nitric Oxide Synthase Type III/metabolism
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Regional Blood Flow/drug effects
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Naiquan Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Systems biology of meridians, acupoints, and chinese herbs in disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:372670. [PMID: 23118787 PMCID: PMC3483864 DOI: 10.1155/2012/372670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/26/2012] [Indexed: 02/07/2023]
Abstract
Meridians, acupoints, and Chinese herbs are important components of traditional Chinese medicine (TCM). They have been used for disease treatment and prevention and as alternative and complementary therapies. Systems biology integrates omics data, such as transcriptional, proteomic, and metabolomics data, in order to obtain a more global and complete picture of biological activity. To further understand the existence and functions of the three components above, we reviewed relevant research in the systems biology literature and found many recent studies that indicate the value of acupuncture and Chinese herbs. Acupuncture is useful in pain moderation and relieves various symptoms arising from acute spinal cord injury and acute ischemic stroke. Moreover, Chinese herbal extracts have been linked to wound repair, the alleviation of postmenopausal osteoporosis severity, and anti-tumor effects, among others. Different acupoints, variations in treatment duration, and herbal extracts can be used to alleviate various symptoms and conditions and to regulate biological pathways by altering gene and protein expression. Our paper demonstrates how systems biology has helped to establish a platform for investigating the efficacy of TCM in treating different diseases and improving treatment strategies.
Collapse
|
18
|
Sefcik LS, Petrie Aronin CE, Botchwey EA. Engineering vascularized tissues using natural and synthetic small molecules. Organogenesis 2012; 4:215-27. [PMID: 19337401 DOI: 10.4161/org.4.4.6963] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 12/21/2022] Open
Abstract
Vascular growth and remodeling are complex processes that depend on the proper spatial and temporal regulation of many different signaling molecules to form functional vascular networks. The ability to understand and regulate these signals is an important clinical need with the potential to treat a wide variety of disease pathologies. Current approaches have focused largely on the delivery of proteins to promote neovascularization of ischemic tissues, most notably VEGF and FGF. Although great progress has been made in this area, results from clinical trials are disappointing and safer and more effective approaches are required. To this end, biological agents used for therapeutic neovascularization must be explored beyond the current well-investigated classes. This review focuses on potential pathways for novel drug discovery, utilizing small molecule approaches to induce and enhance neovascularization. Specifically, four classes of new and existing molecules are discussed, including transcriptional activators, receptor selective agonists and antagonists, natural product-derived small molecules, and novel synthetic small molecules.
Collapse
Affiliation(s)
- Lauren S Sefcik
- Department of Biomedical Engineering; and Department of Orthopaedic Surgery; University of Virginia; Charlottesville, Virginia USA; Center for Immunity, Inflammation and Regenerative Medicine (CIIR); University of Virginia; Charlottesville, Virginia USA
| | | | | |
Collapse
|
19
|
Shen K, Ji L, Gong C, Ma Y, Yang L, Fan Y, Hou M, Wang Z. Notoginsenoside Ft1 promotes angiogenesis via HIF-1α mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochem Pharmacol 2012; 84:784-92. [PMID: 22771629 DOI: 10.1016/j.bcp.2012.05.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 02/02/2023]
Abstract
Notoginsenoside Ft1 (Ft1) is a saponin isolated from Panax notoginseng, which has been used traditionally for the treatment of trauma injuries in East Asia. Here we show that Ft1 is a novel stimulator of angiogenesis. The results show that Ft1 induces proliferation, migration, and tube formation in cultured human umbilical vein endothelial cells (HUVECs). Ft1 increases translocalization of hypoxia-inducible factor-1α (HIF-1α) from cytoplasm to nuclei, where it binds to the vascular endothelial growth factor (VEGF) promoter, increasing the expression of VEGF mRNA and the subsequent secretion of the growth factor. Ft1 induces the activation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Pharmacological inhibition with LY294002, wortmanin or PD98059 reduces Ft1-induced angiogenesis, indicating the important role played by these pathways. In addition, Ft1 induces phosphorylation of the mammalian target of rapamycin (mTOR), and siRNA-mediated mTOR knockdown decreases tube formation, proliferation, transport of HIF-1α into nuclei and VEGF mRNA expression in response to Ft1. Finally, in vivo, Ft1 promotes the formation of blood vessels in Matrigel plug and wound healing in mice. Taken together, the present results reveal that Ft1 stimulates angiogenesis via HIF-1α-mediated VEGF expression, with PI3K/AKT and Raf/MEK/ERK signaling cascades concurrently participating in the process.
Collapse
Affiliation(s)
- Kaikai Shen
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim JW, Jung SY, Kwon YH, Lee JH, Lee YM, Lee BY, Kwon SM. Ginsenoside Rg3 attenuates tumor angiogenesis via inhibiting bioactivities of endothelial progenitor cells. Cancer Biol Ther 2012; 13:504-15. [PMID: 22406998 DOI: 10.4161/cbt.19599] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence suggests that Ginsenoside Rg3 appears to inhibit tumor growth including Lewis lung carcinoma, intestinal adenocarcinomas or B16 melanoma by inhibiting cell proliferation, tumor cell invasion and metastasis. Endothelial progenitor cells (EPCs) appear to play a key role in the growth of early tumors by intervening with the angiogenic switch promoting tumor neovessel formation by producing angiogenic cytokines during tumor progression. This paper reports a novel mechanism of Ginsenoside Rg3, a candidate anticancer bio-molecule, on tumor angiogenesis by inhibiting the multiple bioactivities of EPCs. When Ginsenoside Rg3 was applied to the ex vivo cultured outgrowth ECs, a type of EPCs, it inhibited the cell proliferation, cell migration and tubular formation of EPCs. Importantly, Ginsenoside Rg3 attenuated the phosphorylation cascade of the VEGF dependent p38/ERK signaling in vitro. The xenograft tumor model clearly showed that Ginsenoside Rg3 suppresses tumor growth and tumor angiogenesis by inhibiting the mobilization of EPCs from the bone marrow microenvironment to the peripheral circulation and modulates VEGF-dependent tumor angiogenesis. In conclusion, this study provides a potential therapeutic molecule, Ginsenoside Rg3, as an anticancer drug by inhibiting the EPC bioactivities.
Collapse
Affiliation(s)
- Jae-Won Kim
- Department of Biomedical Science, Laboratory for Functional Foods & Nutrigenomics, CHA University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Chan YK, Kwok HH, Chan LS, Leung KSY, Shi J, Mak NK, Wong RNS, Yue PYK. An indirubin derivative, E804, exhibits potent angiosuppressive activity. Biochem Pharmacol 2012; 83:598-607. [DOI: 10.1016/j.bcp.2011.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
|
22
|
Effects of ginsenoside Rb₁ on skin changes. J Biomed Biotechnol 2012; 2012:946242. [PMID: 22505819 PMCID: PMC3303758 DOI: 10.1155/2012/946242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/26/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
Ginseng roots (Panax ginseng CA Meyer) have been used traditionally for the treatment, especially prevention, of various diseases in China, Korea, and Japan. Both experimental and clinical studies suggest ginseng roots to have pharmacological effects in patients with life-style-related diseases such as non-insulin-dependent diabetic mellitus, atherosclerosis, hyperlipidemia, and hypertension. The topical use of ginseng roots to treat skin complaints including atopic suppurative dermatitis, wounds, and inflammation is also described in ancient Chinese texts; however, there have been relatively few studies in this area. In the present paper, we describe introduce the biological and pharmacological effects of ginsenoside Rb1 isolated from Red ginseng roots on skin damage caused by burn-wounds using male Balb/c mice (in vivo) and by ultraviolet B irradiation using male C57BL/6J and albino hairless (HR-1) mice (in vivo). Furthermore, to clarify the mechanisms behind these pharmacological actions, human primary keratinocytes and the human keratinocyte cell line HaCaT were used in experiments in vitro.
Collapse
|
23
|
Zheng GQ, Cheng W, Wang Y, Wang XM, Zhao SZ, Zhou Y, Liu SJ, Wang XT. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:724-728. [PMID: 21073942 DOI: 10.1016/j.jep.2010.01.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/11/2010] [Accepted: 01/25/2010] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng, the root of Panax ginseng C.A. Meyer, is one of the most commonly used healing herbs for stroke and chronic debilitating conditions in China. Ginsenosides are the main active principles for ginseng's efficacy, but the mechanisms have not been fully clarified. AIM OF THE STUDY To test the hypothesis whether or not the administration of Ginseng total saponins (GTS) can enhance neurogenesis after focal cerebral ischemia, and thereby improve neurological deficits. MATERIALS AND METHODS Male Wistar rats received intraperitoneal injections of GTS dissolved at a dose of 25 mg kg(-1) d(-1) or normal saline (NS) of same volume 3 days before the permanent middle cerebral artery occlusion (MCAO) model establishment until the animals were killed at the time points of 1d, 3d, 7d and 14d. The neurological function was assessed blindly. BrdU immunostaining and double staining were performed by following the 3-steps method. RESULTS (A) GTS-treated rats have better neurological scores compared with those in NS group at 14d time point (p<0.05); (B) the number of BrdU(+) cells and BrdU(+)/NeuN(+) cells in GTS group were significantly higher than those in NS group in the ipsilateral subventricular zone and in the ipsilateral infarct area after MCAO, respectively (p<0.05 or p<0.01); (C) the increase of the number of BrdU(+)/NeuN(+) cells highly correlated with the decrease of neurological scores. Coefficient correlation r=-0.828 (p<0.01). CONCLUSION GTS can improve neurological deficits after focal cerebral ischemia by inducing endogenous neural stem cells activation and thereby enhance adult central nervous system regeneration.
Collapse
Affiliation(s)
- Guo-qing Zheng
- Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou 325027, PR China. gq
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jeong A, Lee HJ, Jeong SJ, Lee HJ, Lee EO, Bae H, Kim SH. Compound K inhibits basic fibroblast growth factor-induced angiogenesis via regulation of p38 mitogen activated protein kinase and AKT in human umbilical vein endothelial cells. Biol Pharm Bull 2011; 33:945-50. [PMID: 20522957 DOI: 10.1248/bpb.33.945] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Compound K (CK; 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol), an active ginseng saponin metabolite, exerts anticancer activity via apoptosis induction in various cancers. In the present study, we investigated the anti-angiogenic activity of CK and its molecular mechanisms in human umbilical vein endothelial cells (HUVECs). Angiogenesis was induced in HUVECS by basic fibroblast growth factor (bFGF), a potent angiogenic growth factor. CK significantly inhibited the proliferation and also attenuated the expression of a proliferating protein cyclin D1 in bFGF treated HUVECs. Also, CK significantly inhibited the migration and tube formation of bFGF treated HUVECs at non-cytotoxic concentrations, reduced secreted level of vascular endothelial growth factor (VEGF) and increased the secreted level of pigment epithelium-derived factor (PEDF) in HUVECs. In addition, CK effectively disrupted bFGF-induced neo-vascularization in the Matrigel plugs excised from mice in vivo. Notably, we have found that CK downregulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and AKT in bFGF treated HUVECs. Taken together, our findings for the first time indicate that CK exerts anti-angiogenic activity via inhibition of p38 MAPK and AKT in HUVECs with the potential of a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Arong Jeong
- College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Yue PYK, Leung EPY, Mak NK, Wong RNS. A simplified method for quantifying cell migration/wound healing in 96-well plates. ACTA ACUST UNITED AC 2010; 15:427-33. [PMID: 20208035 DOI: 10.1177/1087057110361772] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell migration plays a key role in both normal physiological and pathological conditions. The study of cell migration and its underlying mechanisms is of great significance in various fields of research, including basic biology and pharmaceutical development. The cell migration or scratch wounding assay is an easy and economical in vitro method that allows researchers to assess a large number of testing compounds. Even though this simple assay has been used for decades, researchers are still trying to modify such experimental protocols and wounding devices. In this study, an 8-channel mechanical "wounder" was designed for performing a cell migration assay, particularly in a 96-well culture plate format. With special designs of a guiding bar and adjustable pins for use with disposable pipette tips, this wounder confined the scratch area within the center of each well to ensure a perfect contact between the pins and the well surface. As a result, this mechanical wounder produces a uniform denudation of a cell monolayer in a 96-well plate with a wound size of around 600 microm. Using this improved wounding device, the effects of epidermal growth factor and DL-alpha-difluoromethylornithine on the reepithelialization of rat intestinal epithelial cells (IEC-6) and serum on the wound recovery of human umbilical vein endothelial cells were demonstrated. This wounder facilitates cell migration study and can be applicable for multiple sample analysis.
Collapse
Affiliation(s)
- Patrick Y K Yue
- 1Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR
| | | | | | | |
Collapse
|
26
|
Chan LS, Yue PYK, Mak NK, Wong RNS. Role of microRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci 2009; 38:370-7. [PMID: 19733659 DOI: 10.1016/j.ejps.2009.08.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/17/2009] [Accepted: 08/29/2009] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene modulators. Ginsenoside-Rg1, one of the active components of ginseng, has been confirmed as an angiogenesis inducer. Using miRNA microarray analysis, a total of 17 (including miR-214) and 5 miRNAs were found to be down- or up-regulated by Rg1 in human umbilical vein endothelial cells (HUVECs), respectively. Since miR-214 is closely related to endothelial nitric oxide synthase (eNOS) and hence angiogenesis, its expression was further validated by qRT-PCR. We also investigated the role of miR-214 on eNOS expression and in tubulogenesis and motility of HUVEC by transfection of specific miRNA inhibitor or precursor. Our results suggested that Rg1 can down-regulate miR-214 expression in HUVEC, leading to an increase in eNOS expression, and in vitro cell migration and tube formation which can possibly promote angiogenesis. These results signify a new understanding towards how a simple natural compound can affect physiological changes through modulation of miRNA expression.
Collapse
Affiliation(s)
- Lai-Sheung Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | | | | | | |
Collapse
|
27
|
Johnson M, Sharma M, Henderson BR. IQGAP1 regulation and roles in cancer. Cell Signal 2009; 21:1471-8. [PMID: 19269319 DOI: 10.1016/j.cellsig.2009.02.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 02/26/2009] [Indexed: 01/01/2023]
Abstract
IQGAP1 is a key mediator of several distinct cellular processes, in particular cytoskeletal rearrangements. Recent studies have implicated a potential role for IQGAP1 in cancer, supported by the over-expression and distinct membrane localisation of IQGAP1 observed in a range of tumours. IQGAP1 is thought to contribute to the transformed cancer cell phenotype by regulating signalling pathways involved in cell proliferation and transformation, weakening of cell:cell adhesion contacts and stimulation of cell motility and invasion. In this review we discuss these different functional and regulatory roles of IQGAP1 and its homologues in relation to their potential impact on tumourigenesis.
Collapse
Affiliation(s)
- Michael Johnson
- Westmead Institute for Cancer Research, Westmead Millennium Institute at Westmead Hospital, University of Sydney, NSW 2145, Australia
| | | | | |
Collapse
|
28
|
Angiogenic evaluation of ginsenoside Rg1 from Panax ginseng in fluorescent transgenic mice. Vascul Pharmacol 2008; 49:37-43. [DOI: 10.1016/j.vph.2008.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 05/07/2008] [Indexed: 11/23/2022]
|
29
|
Yue PYK, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DTP, Yeung HW, Wong RNS. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin Med 2007; 2:6. [PMID: 17502003 PMCID: PMC1876803 DOI: 10.1186/1749-8546-2-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 05/15/2007] [Indexed: 12/17/2022] Open
Abstract
In Chinese medicine, ginseng (Panax ginseng C.A. Meyer) has long been used as a general tonic or an adaptogen to promote longevity and enhance bodily functions. It has also been claimed to be effective in combating stress, fatigue, oxidants, cancer and diabetes mellitus. Most of the pharmacological actions of ginseng are attributed to one type of its constituents, namely the ginsenosides. In this review, we focus on the recent advances in the study of ginsenosides on angiogenesis which is related to many pathological conditions including tumor progression and cardiovascular dysfunctions. Angiogenesis in the human body is regulated by two sets of counteracting factors, angiogenic stimulators and inhibitors. The 'Yin and Yang' action of ginseng on angiomodulation was paralleled by the experimental data showing angiogenesis was indeed related to the compositional ratio between ginsenosides Rg1 and Rb1. Rg1 was later found to stimulate angiogenesis through augmenting the production of nitric oxide (NO) and vascular endothelial growth factor (VEGF). Mechanistic studies revealed that such responses were mediated through the PI3K-->Akt pathway. By means of DNA microarray, a group of genes related to cell adhesion, migration and cytoskeleton were found to be up-regulated in endothelial cells. These gene products may interact in a hierarchical cascade pattern to modulate cell architectural dynamics which is concomitant to the observed phenomena in angiogenesis. By contrast, the anti-tumor and anti-angiogenic effects of ginsenosides (e.g. Rg3 and Rh2) have been demonstrated in various models of tumor and endothelial cells, indicating that ginsenosides with opposing activities are present in ginseng. Ginsenosides and Panax ginseng extracts have been shown to exert protective effects on vascular dysfunctions, such as hypertension, atherosclerotic disorders and ischemic injury. Recent work has demonstrates the target molecules of ginsenosides to be a group of nuclear steroid hormone receptors. These lines of evidence support that the interaction between ginsenosides and various nuclear steroid hormone receptors may explain the diverse pharmacological activities of ginseng. These findings may also lead to development of more efficacious ginseng-derived therapeutics for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Patrick Ying Kit Yue
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Nai Ki Mak
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yuen Kit Cheng
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Kar Wah Leung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Tzi Bun Ng
- Department of Biochemistry, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Tai Ping Fan
- Angiogenesis & TCM Laboratory, Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, UK
| | - Hin Wing Yeung
- International Society for Chinese Medicine, A & C, 1floor, Block 2, University of Macau, Av. Padre Tomas Pereira, Taipa, Macao SAR, China
| | - Ricky Ngok Shun Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
30
|
Li XJ, Yue PYK, Ha WY, Wong DYL, Tin MMY, Wang PX, Wong RNS, Liu L. Effect of sinomenine on gene expression of the IL-1β-activated human synovial sarcoma. Life Sci 2006; 79:665-73. [PMID: 16566946 DOI: 10.1016/j.lfs.2006.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/23/2005] [Accepted: 02/13/2006] [Indexed: 02/07/2023]
Abstract
Sinomenine is an alkaloid with pharmacological effects of anti-inflammation, anti-angiogenesis, anti-arthritis and immunosuppression. This study aimed to investigate the effect of sinomenine on gene expression of human synovial sarcoma cells (Hs701.T) activated by IL-1 beta. The proliferative effect of sinomenine was examined in the presence or absence of IL-1 beta by the [3H]-thymidine incorporation and MTT assay, respectively. Using DNA microarray technology and RT-PCR, the activating action of IL-1 beta and modulatory effect of sinomenine on Hs701.T were simultaneously determined. Results showed that IL-1 beta could stimulate the proliferation and gene expression of Hs701.T cells. Sinomenine could significantly inhibit proliferation of IL-1 beta-activated Hs701.T cells and suppress expression of 17 genes including IL-6, PlGF, Daxx, and HSP27. These genes were found to be important in tumor progression through the mediation of inflammation, cell adhesion, proliferation, apoptosis and angiogenesis. In conclusion, our study provides supplementary information for the further studies on the pharmacological effects of sinomenine acting on synovial sarcoma.
Collapse
Affiliation(s)
- X J Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fan TP, Yeh JC, Leung KW, Yue PYK, Wong RNS. Angiogenesis: from plants to blood vessels. Trends Pharmacol Sci 2006; 27:297-309. [PMID: 16697473 DOI: 10.1016/j.tips.2006.04.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/10/2006] [Accepted: 04/24/2006] [Indexed: 01/09/2023]
Abstract
Angiogenesis is a major pathological component of diseases such as cancer and coronary heart disease. Although major advances have been made and encouraging clinical results obtained, safer and more effective approaches are required. The identification of new drugs from plants has a long and successful history, and certain proangiogenic and antiangiogenic plant components have been used in traditional Chinese medicine (TCM) for thousands of years. Similar to Western combination therapy, TCM uses mixtures of plant extracts, termed fufang, to maximize efficacy and minimize adverse effects or toxicity. More evidence-based research and chemical optimization of these compounds could further enhance the effectiveness of these plant-based medicines in angiotherapy.
Collapse
Affiliation(s)
- Tai-Ping Fan
- Angiogenesis and Traditional Chinese Medicine Laboratory, Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | | | | | | | | |
Collapse
|
32
|
Yue PYK, Wong DYL, Wu PK, Leung PY, Mak NK, Yeung HW, Liu L, Cai Z, Jiang ZH, Fan TPD, Wong RNS. The angiosuppressive effects of 20(R)- ginsenoside Rg3. Biochem Pharmacol 2006; 72:437-45. [PMID: 16793023 DOI: 10.1016/j.bcp.2006.04.034] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 04/24/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
Aberrant angiogenesis is an essential step for the progression of solid tumors. Thus anti-angiogenic therapy is one of the most promising approaches to control tumor growth. In this study, we examined the ability of 20(R)-ginsenoside Rg3 (Rg3), one of the active compounds present in ginseng root, to interfere with the various steps of angiogenesis. Rg3 was found to inhibit the proliferation of human umbilical vein endothelial cells (HUVEC) with an IC50 of 10 nM in Trypan blue exclusion assay. Rg3 (1-10(3) nM) also dose dependently suppressed the capillary tube formation of HUVEC on the Matrigel in the presence or absence of 20 ng/ml vascular endothelial growth factor (VEGF). The VEGF-induced chemoinvasion of HUVEC and ex vivo microvascular sprouting in rat aortic ring assay were both significantly attenuated by Rg3. In addition, Rg3 (150 and 600 nM) remarkably abolished the basic fibroblast growth factor (bFGF)-induced angiogenesis in an in vivo Matrigel plug assay. The Matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, which play an important role in the degradation of basement membrane in angiogenesis and tumor metastasis present in the culture supernatant of Rg3-treated aortic ring culture were found to decrease in their gelatinolytic activities. Taken together, these data underpin the anti-tumor property of Rg3 through its angiosuppressive activity.
Collapse
Affiliation(s)
- Patrick Y K Yue
- Hung Lai Ching Laboratory of Biomedical Science, Research and Development Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|