1
|
Kamel H, Ben Ammar C, Tbini M, Ben Salah M. Cervical Cystic Lymphangioma in Young Adults: A Case Report and Literature Review. EAR, NOSE & THROAT JOURNAL 2024:1455613241272486. [PMID: 39219212 DOI: 10.1177/01455613241272486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cystic lymphangioma is a rare benign congenital malformation of the lymphatic system. It usually presents in childhood and rarely in young adults. Its management lacks consensus, and its prognosis varies depending on the location. We report a case of cervical cystic lymphangioma in a young adult with chronic left lateral cervical swelling. Examination revealed a high jugulocarotid swelling, non-pulsatile, and transilluminable. Radiographic exploration suggested a cystic lymphangioma. Histopathology confirmed the diagnosis. The patient underwent a sclerotherapy session, followed by surgical excision. Our case illustrates a rare presentation of cervical cystic lymphangioma in a young adult and aims to increase awareness of this rare entity and provide literature insights into its diagnosis and treatment in adult patients.
Collapse
Affiliation(s)
- Houssem Kamel
- ENT Department, Charles Nicolle Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Chaima Ben Ammar
- ENT Department, Charles Nicolle Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Makram Tbini
- ENT Department, Charles Nicolle Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mamia Ben Salah
- ENT Department, Charles Nicolle Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
2
|
Fu F, Yang X, Li R, Li Y, Zhou H, Cheng K, Huang R, Wang Y, Guo F, Zhang L, Pan M, Han J, Zhen L, Li L, Lei T, Li D, Liao C. Single-cell RNA sequencing reveals cellular and molecular landscape of fetal cystic hygroma. BMC Med Genomics 2024; 17:96. [PMID: 38650036 PMCID: PMC11036587 DOI: 10.1186/s12920-024-01859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.
Collapse
Affiliation(s)
- Fang Fu
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xin Yang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yingsi Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ken Cheng
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - You Wang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fei Guo
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Lina Zhang
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Min Pan
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Jin Han
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Li Zhen
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Lushan Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Tingying Lei
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China
| | - Can Liao
- Department of Prenatal Diagnostic Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
3
|
Clapp A, Shawber CJ, Wu JK. Pathophysiology of Slow-Flow Vascular Malformations: Current Understanding and Unanswered Questions. JOURNAL OF VASCULAR ANOMALIES 2023; 4:e069. [PMID: 37662560 PMCID: PMC10473035 DOI: 10.1097/jova.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 09/05/2023]
Abstract
Background Slow-flow vascular malformations include venous, lymphatic, and lymphaticovenous malformations. Recent studies have linked genetic variants hyperactivating either the PI3K/AKT/mTOR and/or RAS/RAF/MAPK signaling pathways with slow-flow vascular malformation development, leading to the use of pharmacotherapies such as sirolimus and alpelisib. It is important that clinicians understand basic and translational research advances in slow-flow vascular malformations. Methods A literature review of basic science publications in slow-flow vascular malformations was performed on Pubmed, using search terms "venous malformation," "lymphatic malformation," "lymphaticovenous malformation," "genetic variant," "genetic mutation," "endothelial cells," and "animal model." Relevant publications were reviewed and summarized. Results The study of patient tissues and the use of primary pathogenic endothelial cells from vascular malformations shed light on their pathological behaviors, such as endothelial cell hyperproliferation and disruptions in vessel architecture. The use of xenograft and transgenic animal models confirmed the pathogenicity of genetic variants and allowed for preclinical testing of potential therapies. These discoveries underscore the importance of basic and translational research in understanding the pathophysiology of vascular malformations, which will allow for the development of improved biologically targeted treatments. Conclusion Despite basic and translation advances, a cure for slow-flow vascular malformations remains elusive. Many questions remain unanswered, including how genotype variants result in phenotypes, and genotype-phenotype heterogeneity. Continued research into venous and lymphatic malformation pathobiology is critical in understanding the mechanisms by which genetic variants contribute to vascular malformation phenotypic features.
Collapse
Affiliation(s)
- Averill Clapp
- Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - June K. Wu
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
4
|
Connor T, Sleebs N, Lokmic-Tomkins Z. Multiparameter Fluorescence-Activated Cell Sorting of Human Lymphatic Endothelial Cells. Methods Mol Biol 2022; 2475:47-59. [PMID: 35451748 DOI: 10.1007/978-1-0716-2217-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiparameter fluorescence-activated cell sorting (FACS) procedure separates target cells from a total population of cells by using specific signatures that the target cell expresses on their cell surface. For human lymphatic endothelial cells (LECs) this relates to cell surface expression of the CD34LowCD31HighVEGFR-3HighPodoplaninHigh profile that permits their separation from blood vascular endothelial cells and other cells likely to be present in the digested tissue sample. In addition, FACS allows the evaluation of LEC size, volume, granularity, and purity at the time of sorting.
Collapse
Affiliation(s)
- Theresa Connor
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Nerida Sleebs
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Zerina Lokmic-Tomkins
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Lymphatic Endothelial Cell Defects in Congenital Cardiac Patients With Postoperative Chylothorax. ACTA ACUST UNITED AC 2021; 2. [PMID: 34590077 PMCID: PMC8478352 DOI: 10.1097/jova.0000000000000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objectives Chylothorax following cardiac surgery for congenital cardiac anomalies is a complication associated with severe morbidities and mortality. We hypothesize that there are intrinsic defects in the lymphatics of congenital cardiac patients. Methods Postsurgical chylothorax lymphatic endothelial cells (pcLECs) (n = 10) were isolated from the chylous fluid from congenital cardiac defect patients, and characterized by fluorescent-activated cell sorting, immunofluorescent staining, and quantitative RT-PCR. Results were compared to normal human dermal lymphatic endothelial cells (HdLECs). pcLECs (n = 3) and HdLECs were xenografted into immunocompromised mice. Implants and postoperative chylothorax patient's pulmonary tissues were characterized by immunostaining for lymphatic endothelial proteins. Results pcLECs expressed endothelial markers VECADHERIN, CD31, VEGFR2, lymphatic endothelial markers PROX1, podoplanin, VEGFR3, and progenitor endothelial markers CD90 and CD146. However, pcLECs had key differences relative to HdLECs, including altered expression and mislocalization of junctional proteins (VECADHERIN and CD31), and essential endothelial proteins, VEGFR2, VEGFR3, and PROX1. When xenografted in mice, pcLECs formed dilated lymphatic channels with poor cell-cell association. Similar to congenital lymphatic anomalies, the pulmonary lymphatics were dilated in a patient who developed postoperative chylothorax after cardiac surgery. Conclusions Recent studies have shown that some postoperative chylothoraces in congenital cardiac anomalies are associated with anatomical lymphatic defects. We found that pcLECs have defects in expression and localization of proteins necessary to maintain lymphatic specification and function. This pcLEC phenotype is similar to that observed in lymphatic endothelial cells from congenital lymphatic anomalies. Co-existence of lymphatic anomalies should be considered as a feature of congenital cardiac anomalies.
Collapse
|
6
|
Trinh CT, Tran NT, Vo BTT, Van HAT, Hoang VT, Nguyen MD. A case of retroperitoneal lymphangioma in an adult. HUMAN PATHOLOGY: CASE REPORTS 2021. [DOI: 10.1016/j.ehpc.2021.200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
7
|
Kilmister EJ, Hansen L, Davis PF, Hall SRR, Tan ST. Cell Populations Expressing Stemness-Associated Markers in Vascular Anomalies. Front Surg 2021; 7:610758. [PMID: 33634164 PMCID: PMC7900499 DOI: 10.3389/fsurg.2020.610758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment of vascular anomalies (VAs) is mostly empirical and, in many instances unsatisfactory, as the pathogeneses of these heterogeneous conditions remain largely unknown. There is emerging evidence of the presence of cell populations expressing stemness-associated markers within many types of vascular tumors and vascular malformations. The presence of these populations in VAs is supported, in part, by the observed clinical effect of the mTOR inhibitor, sirolimus, that regulates differentiation of embryonic stem cells (ESCs). The discovery of the central role of the renin-angiotensin system (RAS) in regulating stem cells in infantile hemangioma (IH) provides a plausible explanation for its spontaneous and accelerated involution induced by β-blockers and ACE inhibitors. Recent work on targeting IH stem cells by inhibiting the transcription factor SOX18 using the stereoisomer R(+) propranolol, independent of β-adrenergic blockade, opens up exciting opportunities for novel treatment of IH without the β-adrenergic blockade-related side effects. Gene mutations have been identified in several VAs, involving mainly the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways. Existing cancer therapies that target these pathways engenders the exciting possibility of repurposing these agents for challenging VAs, with early results demonstrating clinical efficacy. However, there are several shortcomings with this approach, including the treatment cost, side effects, emergence of treatment resistance and unknown long-term effects in young patients. The presence of populations expressing stemness-associated markers, including transcription factors involved in the generation of induced pluripotent stem cells (iPSCs), in different types of VAs, suggests the possible role of stem cell pathways in their pathogenesis. Components of the RAS are expressed by cell populations expressing stemness-associated markers in different types of VAs. The gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways interact with different components of the RAS, which may influence cell populations expressing stemness-associated markers within VAs. The potential of targeting these populations by manipulating the RAS using repurposed, low-cost and commonly available oral medications, warrants further investigation. This review presents the accumulating evidence demonstrating the presence of stemness-associated markers in VAs, their expression of the RAS, and their interaction with gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways, in the pathogenesis of VAs.
Collapse
Affiliation(s)
| | - Lauren Hansen
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Abstract
Lymphangioma is a common type of congenital vascular disease in children with a broad spectrum of clinical manifestations. The current classification of lymphangioma by International Society for the Study of Vascular Anomalies is largely based on the clinical manifestations and complications and is not sufficient for selection of therapeutic strategies and prognosis prediction. The clinical management and outcome of lymphangioma largely depend on the clinical classification and the location of the disease, ranging from spontaneous regression with no treatment to severe sequelae even with comprehensive treatment. Recently, rapid progression has been made toward elucidating the molecular pathology of lymphangioma and the development of treatments. Several signaling pathways have been revealed to be involved in the progression and development of lymphangioma, and specific inhibitors targeting these pathways have been investigated for clinical applications and clinical trials. Some drugs already currently in clinical use for other diseases were found to be effective for lymphangioma, although the mechanisms underlying the anti-tumor effects remain unclear. Molecular classification based on molecular pathology and investigation of the molecular mechanisms of current clinical drugs is the next step toward developing more effective individualized treatment of children with lymphangioma with reduced side effects.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Usui H, Tsurusaki Y, Shimbo H, Saitsu H, Harada N, Kitagawa N, Mochizuki K, Masuda M, Kurosawa K, Shinkai M. A novel method for isolating lymphatic endothelial cells from lymphatic malformations and detecting PIK3CA somatic mutation in these isolated cells. Surg Today 2020; 51:439-446. [PMID: 32876734 DOI: 10.1007/s00595-020-02122-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Tissue disaggregation and the cell sorting technique by surface markers has played an important role in isolating lymphatic endothelial cells (LECs) from lymphatic malformation (LM). However, this technique may have the drawback of impurities or result in isolation failure because it is dependent on surface marker expressions, the heterogeneity of which has been found in the lymphatic system. We developed a novel method for isolating LM-LECs without using whole tissue disaggregation. METHODS Seven LM surgical specimens were collected from seven patients with LMs. LM-LECs were detached from the LM cyst wall by "lumen digestion" and irrigating the cystic cavity with trypsin, and maintained in culture. RESULTS The cells formed a monolayer with a cobblestone-like appearance. Immunohistochemistry and quantitative RT-PCR of these cells revealed high expression of lymphatic-specific genes, confirming their identity as LM-LECs. The whole-exome sequencing and PIK3CA sequencing of these cells revealed somatic mutations in PIK3CA in all cases. CONCLUSIONS We established a novel technique for isolating LM-LECs from LM tissue by "lumen digestion" without whole-tissue disaggregation. The limited incorporation of non-LM LECs in the isolate in our method could make it an important tool for investigating the heterogeneity of gene expression as well as mutations in LM-LECs.
Collapse
Affiliation(s)
- Hidehito Usui
- Department of Surgery, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Japan.
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Japan
| | - Hiroko Shimbo
- Clinical Research Institute, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1, Hanndayama, Higashi-ku, Hamamatsu, Japan
| | - Noriaki Harada
- Department of Clinical Laboratory, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Japan
| | - Norihiko Kitagawa
- Department of Surgery, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Japan
| | - Kyoko Mochizuki
- Department of Surgery, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Japan
| | - Kenji Kurosawa
- Department of Medical Genetics, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Japan
| | - Masato Shinkai
- Department of Surgery, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Japan
| |
Collapse
|
10
|
Kaipainen A, Chen E, Chang L, Zhao B, Shin H, Stahl A, Fishman SJ, Mulliken JB, Folkman J, Huang S, Fannon M. Characterization of lymphatic malformations using primary cells and tissue transcriptomes. Scand J Immunol 2019; 90:e12800. [DOI: 10.1111/sji.12800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/22/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Arja Kaipainen
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Emy Chen
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Lynn Chang
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Bing Zhao
- Department of Ophthalmology and Visual Sciences University of Kentucky Lexington KY USA
| | - Hainsworth Shin
- Department of Biomedical Engineering University of Kentucky Lexington KY USA
| | - Andreas Stahl
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Steven J. Fishman
- Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - John B. Mulliken
- Department of Plastic and Oral Surgery, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Judah Folkman
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Sui Huang
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
| | - Michael Fannon
- Vascular Biology Program, Department of Surgery Harvard Medical School, Boston Children's Hospital Boston MA USA
- Department of Ophthalmology and Visual Sciences University of Kentucky Lexington KY USA
| |
Collapse
|
11
|
Le Cras TD, Boscolo E. Cellular and molecular mechanisms of PIK3CA-related vascular anomalies. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H33-H40. [PMID: 32923951 PMCID: PMC7439927 DOI: 10.1530/vb-19-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major mediator of growth factor signaling, cell proliferation and metabolism. Somatic gain-of-function mutations in PIK3CA, the catalytic subunit of PI3K, have recently been discovered in a number of vascular anomalies. The timing and origin of these mutations remain unclear although they are believed to occur during embryogenesis. The cellular origin of these lesions likely involves endothelial cells or an early endothelial cell lineage. This review will cover the diseases and syndromes associated with PIK3CA mutations and discuss the cellular origin, pathways and mechanisms. Activating PIK3CA 'hot spot' mutations have long been associated with a multitude of cancers allowing the development of targeted pharmacological inhibitors that are FDA-approved or in clinical trials. Current and future therapeutic approaches for PIK3CA-related vascular anomalies are discussed.
Collapse
Affiliation(s)
- Timothy D Le Cras
- Division of Pulmonary Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Eady EK, Brasch HD, de Jongh J, Marsh RW, Tan ST, Itinteang T. Expression of Embryonic Stem Cell Markers in Microcystic Lymphatic Malformation. Lymphat Res Biol 2019; 17:496-503. [PMID: 30901291 DOI: 10.1089/lrb.2018.0046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: To investigate the expression of embryonic stem cell (ESC) markers in microcystic lymphatic malformation (mLM). Methods and Results: Cervicofacial mLM tissue samples from nine patients underwent 3,3'-diaminobenzidine (DAB) immunohistochemical (IHC) staining for ESC markers octamer-binding protein 4 (OCT4), homeobox protein NANOG, sex determining region Y-box 2 (SOX2), Krupple-like factor (KLF4), and proto-oncogene c-MYC. Transcriptional activation of these ESC markers was investigated using real-time polymerase chain reaction (RT-qPCR) and colorimetric in situ hybridization (CISH) on four and five of these mLM tissue samples, respectively. Immunofluorescence (IF) IHC staining was performed on three of these mLM tissue samples to investigate localization of these ESC markers. DAB and IF IHC staining demonstrated the expression of OCT4, SOX2, NANOG, KLF4, and c-MYC on the endothelium of lesional vessels with abundant expression of c-MYC and SOX2, which was also present on the cells within the stroma, in all nine mLM tissue samples. RT-qPCR and CISH confirmed transcriptional activation of all these ESC markers investigated. Conclusions: These findings suggest the presence of a primitive population on the endothelium of lesional vessels and the surrounding stroma in mLM. The abundant expression of the progenitor-associated markers SOX2 and c-MYC suggests that the majority are of progenitor phenotype with a small number of ESC-like cells.
Collapse
Affiliation(s)
- Elizabeth K Eady
- Gillies McIndoe Research Institute, Hutt Hospital, Wellington, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Hutt Hospital, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | - Jennifer de Jongh
- Gillies McIndoe Research Institute, Hutt Hospital, Wellington, New Zealand
| | - Reginald W Marsh
- Gillies McIndoe Research Institute, Hutt Hospital, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Hutt Hospital, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | - Tinte Itinteang
- Gillies McIndoe Research Institute, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|
13
|
Yap KK, Yeoh GC, Morrison WA, Mitchell GM. The Vascularised Chamber as an In Vivo Bioreactor. Trends Biotechnol 2018; 36:1011-1024. [DOI: 10.1016/j.tibtech.2018.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
14
|
Lokmic Z. Utilizing lymphatic cell markers to visualize human lymphatic abnormalities. JOURNAL OF BIOPHOTONICS 2018; 11:e201700117. [PMID: 28869350 DOI: 10.1002/jbio.201700117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
In vivo visualization of the human lymphatic system is limited by the mode of delivery of tracing agents, depth of field and size of the area examined, and specificity of the cell markers used to distinguish lymphatic endothelium from the blood vessels and the surrounding tissues. These limitations are particularly problematic when imaging human lymphatic abnormalities. First, limited understanding of the lymphatic disease aetiology exists with respect to genetic causes and phenotypic presentations. Second, the ability of a tracer to reach the entire lymphatic network within the diseased tissue is suboptimal. Third, what is known about the expression of lymphatic endothelial cell (LEC) markers, such as podoplanin, lymphatic vessel endothelial hyaluronan receptor, Drosophila melanogaster homeobox gene prospero-1 and vascular endothelial growth factor receptor-3 in rodent lymphatic vessels and healthy human LECs may not necessarily apply in human lymphatic disease settings. The aim of this review is to highlight challenges in visualizing lymphatic vessels in human lymphatic abnormalities with respect to distribution patterns of the cellular markers currently employed to visualize abnormal human lymphatic vessels in experimental settings. Allowing for these limitations within new diagnostic visualization technologies is likely to improve our ability to image human lymphatic diseases.
Collapse
Affiliation(s)
- Zerina Lokmic
- Department of General Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia
- School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Manevitz-Mendelson E, Leichner GS, Barel O, Davidi-Avrahami I, Ziv-Strasser L, Eyal E, Pessach I, Rimon U, Barzilai A, Hirshberg A, Chechekes K, Amariglio N, Rechavi G, Yaniv K, Greenberger S. Somatic NRAS mutation in patient with generalized lymphatic anomaly. Angiogenesis 2018; 21:287-298. [PMID: 29397482 DOI: 10.1007/s10456-018-9595-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022]
Abstract
Generalized lymphatic anomaly (GLA or lymphangiomatosis) is a rare disease characterized by a diffuse proliferation of lymphatic vessels in skin and internal organs. It often leads to progressive respiratory failure and death, but its etiology is unknown. Here, we isolated lymphangiomatosis endothelial cells from GLA tissue. These cells were characterized by high proliferation and survival rates, but displayed impaired capacities for migration and tube formation. We employed whole exome sequencing to search for disease-causing genes and identified a somatic mutation in NRAS. We used mouse and zebrafish model systems to initially evaluate the role of this mutation in the development of the lymphatic system, and we studied the effect of drugs blocking the downstream effectors, mTOR and ERK, on this disease.
Collapse
Affiliation(s)
| | - Gil S Leichner
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | | | - Limor Ziv-Strasser
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Eran Eyal
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Itai Pessach
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatric Critical Care, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Uri Rimon
- Department of Radiology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Aviv Barzilai
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Keren Chechekes
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Ninette Amariglio
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Gideon Rechavi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Greenberger
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
Ren JG, Xia HF, Yang JG, Zhu JY, Zhang W, Chen G, Zhao JH, Sun YF, Zhao YF. Down-regulation of polycystin in lymphatic malformations: possible role in the proliferation of lymphatic endothelial cells. Hum Pathol 2017; 65:231-238. [DOI: 10.1016/j.humpath.2017.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 02/04/2023]
|
17
|
Zhang W, He KF, Yang JG, Ren JG, Sun YF, Zhao JH, Zhao YF. Infiltration of M2-polarized macrophages in infected lymphatic malformations: possible role in disease progression. Br J Dermatol 2016; 175:102-12. [PMID: 26873524 DOI: 10.1111/bjd.14471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lymphatic malformations (LMs), slow-flow vascular anomalies resulting from abnormal development of lymphatic channels, often progress rapidly after trauma or infection. OBJECTIVES To explore the possible mechanism by which local infection promotes the progression of LMs. METHODS Immunohistochemistry in serial sections and immunofluorescence were performed to label polarized macrophages. Tertiary lymphoid organs (TLOs) in LMs were identified using antibodies against CD3 (a T-cell marker), CD20 (a B-cell marker) and PNAd (a high endothelial venule marker). Pearson's correlation and cluster analysis were carried out to delineate the relationship between macrophage infiltration and TLO formation. Rat models of LM were established to examine the role of lipopolysaccharide in LM development. RESULTS Compared with normal skin tissues, both M1- and M2-polarized macrophages were prevalent in LMs. Moreover, M2-polarized macrophages were significantly increased in infected LMs with an elevated density of TLOs. M2-polarized macrophages were observed in the centre of TLOs accompanied by intensive staining of macrophage colony-stimulating factor, a strong chemotactic factor for monocytes/macrophages, suggesting that macrophages might be recruited through TLOs. Cluster analysis and Pearson's correlation suggested a close relationship between macrophage infiltration and TLO formation. Furthermore, the expression of CD68 was also correlated with that of vascular endothelial growth factor (VEGF)-C and Ki67. Importantly, in an established LM rat model, lipopolysaccharide promoted the progression of the malformations with increased macrophage infiltration and TLO formation. CONCLUSIONS M2-polarized macrophages that may be recruited through TLOs in infected LMs may contribute to the progression of the disease by secreting VEGF-C, and therefore accelerating the proliferation of lymphatic endothelial cells.
Collapse
Affiliation(s)
- W Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - K-F He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - J-G Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - J-G Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Y-F Sun
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - J-H Zhao
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Y-F Zhao
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
18
|
Rakocevic J, Kojic S, Orlic D, Stankovic G, Ostojic M, Petrovic O, Zaletel I, Puskas N, Todorovic V, Labudovic-Borovic M. Co-expression of vascular and lymphatic endothelial cell markers on early endothelial cells present in aspirated coronary thrombi from patients with ST-elevation myocardial infarction. Exp Mol Pathol 2016; 100:31-8. [DOI: 10.1016/j.yexmp.2015.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 11/29/2022]
|
19
|
Abstract
A protocol describing the isolation of foreskin lymphatic endothelial cells (LECs) and lymphatic malformation lymphatic endothelial cells (LM LECs) is presented herein. To isolate LECs and LM LECs, tissues are mechanically disrupted to make a single-cell suspension, which is then enzymatically digested in dispase and collagenase type II. LECs and LM LECs, in the resulting single-cell suspension, are then sequentially labeled with antibodies recognizing fibroblast and endothelial cell surface antigens CD34 and CD31 and separated from the remaining components in the cell suspension by capture with magnetic beads. Viable LECs and LM LECs are then seeded and expanded on fibronectin-coated flasks. LEC and LM LEC purity is determined immunohistochemically using cell surface markers CD31, CD34, podoplanin, VEGFR-3 and nuclear marker PROX-1. Cells whose purity is >98 % are used for experiments between passage 4 and 6.
Collapse
|
20
|
Lokmic Z, Ng ES, Burton M, Stanley EG, Penington AJ, Elefanty AG. Isolation of human lymphatic endothelial cells by multi-parameter fluorescence-activated cell sorting. J Vis Exp 2015:e52691. [PMID: 25992474 DOI: 10.3791/52691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymphatic system disorders such as primary lymphedema, lymphatic malformations and lymphatic tumors are rare conditions that cause significant morbidity but little is known about their biology. Isolating highly pure human lymphatic endothelial cells (LECs) from diseased and healthy tissue would facilitate studies of the lymphatic endothelium at genetic, molecular and cellular levels. It is anticipated that these investigations may reveal targets for new therapies that may change the clinical management of these conditions. A protocol describing the isolation of human foreskin LECs and lymphatic malformation lymphatic endothelial cells (LM LECs) is presented. To obtain a single cell suspension tissue was minced and enzymatically treated using dispase II and collagenase II. The resulting single cell suspension was then labelled with antibodies to cluster of differentiation (CD) markers CD34, CD31, Vascular Endothelial Growth Factor-3 (VEGFR-3) and PODOPLANIN. Stained viable cells were sorted on a fluorescently activated cell sorter (FACS) to separate the CD34(Low)CD31(Pos)VEGFR-3(Pos)PODOPLANIN(Pos) LM LEC population from other endothelial and non-endothelial cells. The sorted LM LECs were cultured and expanded on fibronectin-coated flasks for further experimental use.
Collapse
Affiliation(s)
- Zerina Lokmic
- Murdoch Childrens Research Institute, The Royal Childrens Hospital; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne;
| | - Elizabeth S Ng
- Murdoch Childrens Research Institute, The Royal Childrens Hospital; Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton
| | - Matthew Burton
- Murdoch Childrens Research Institute, The Royal Childrens Hospital
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, The Royal Childrens Hospital; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne; Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton
| | - Anthony J Penington
- Murdoch Childrens Research Institute, The Royal Childrens Hospital; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, The Royal Childrens Hospital; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne; Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton
| |
Collapse
|
21
|
Wu JK, Kitajewski C, Reiley M, Keung CH, Monteagudo J, Andrews JP, Liou P, Thirumoorthi A, Wong A, Kandel JJ, Shawber CJ. Aberrant lymphatic endothelial progenitors in lymphatic malformation development. PLoS One 2015; 10:e0117352. [PMID: 25719418 PMCID: PMC4342011 DOI: 10.1371/journal.pone.0117352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022] Open
Abstract
Lymphatic malformations (LMs) are vascular anomalies thought to arise from dysregulated lymphangiogenesis. These lesions impose a significant burden of disease on affected individuals. LM pathobiology is poorly understood, hindering the development of effective treatments. In the present studies, immunostaining of LM tissues revealed that endothelial cells lining aberrant lymphatic vessels and cells in the surrounding stroma expressed the stem cell marker, CD133, and the lymphatic endothelial protein, podoplanin. Isolated patient-derived CD133+ LM cells expressed stem cell genes (NANOG, Oct4), circulating endothelial cell precursor proteins (CD90, CD146, c-Kit, VEGFR-2), and lymphatic endothelial proteins (podoplanin, VEGFR-3). Consistent with a progenitor cell identity, CD133+ LM cells were multipotent and could be differentiated into fat, bone, smooth muscle, and lymphatic endothelial cells in vitro. CD133+ cells were compared to CD133− cells isolated from LM fluids. CD133− LM cells had lower expression of stem cell genes, but expressed circulating endothelial precursor proteins and high levels of lymphatic endothelial proteins, VE-cadherin, CD31, podoplanin, VEGFR-3 and Prox1. CD133− LM cells were not multipotent, consistent with a differentiated lymphatic endothelial cell phenotype. In a mouse xenograft model, CD133+ LM cells differentiated into lymphatic endothelial cells that formed irregularly dilated lymphatic channels, phenocopying human LMs. In vivo, CD133+ LM cells acquired expression of differentiated lymphatic endothelial cell proteins, podoplanin, LYVE1, Prox1, and VEGFR-3, comparable to expression found in LM patient tissues. Taken together, these data identify a novel LM progenitor cell population that differentiates to form the abnormal lymphatic structures characteristic of these lesions, recapitulating the human LM phenotype. This LM progenitor cell population may contribute to the clinically refractory behavior of LMs.
Collapse
Affiliation(s)
- June K Wu
- Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Christopher Kitajewski
- Department of Ob/Gyn, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Maia Reiley
- Department of Ob/Gyn, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Connie H Keung
- Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Julie Monteagudo
- Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - John P Andrews
- Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Peter Liou
- Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Arul Thirumoorthi
- Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Alvin Wong
- Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Jessica J Kandel
- Department of Surgery, the University of Chicago Medicine, Chicago, Illinois, United States of America
| | - Carrie J Shawber
- Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America; Department of Ob/Gyn, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
22
|
Boscolo E, Coma S, Luks VL, Greene AK, Klagsbrun M, Warman ML, Bischoff J. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis 2014; 18:151-62. [PMID: 25424831 DOI: 10.1007/s10456-014-9453-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023]
Abstract
Lymphatic malformations (LM) are characterized by abnormal formation of lymphatic vessels and tissue overgrowth. The lymphatic vessels present in LM lesions may become blocked and enlarged as lymphatic fluid collects, forming a mass or cyst. Lesions are typically diagnosed during childhood and are often disfiguring and life threatening. Available treatments consist of sclerotherapy, surgical removal and therapies to diminish complications. We isolated lymphatic endothelial cells (LM-LEC) from a surgically removed microcystic LM lesion. LM-LEC and normal human dermal-LEC (HD-LEC) expressed endothelial (CD31, VE-Cadherin) as well as lymphatic endothelial (Podoplanin, PROX1, LYVE1)-specific markers. Targeted gene sequencing analysis in patient-derived LM-LEC revealed the presence of two mutations in class I phosphoinositide 3-kinases (PI3K) genes. One is an inherited, premature stop codon in the PI3K regulatory subunit PIK3R3. The second is a somatic missense mutation in the PI3K catalytic subunit PIK3CA; this mutation has been found in association with overgrowth syndromes and cancer growth. LM-LEC exhibited angiogenic properties: both cellular proliferation and sprouting in collagen were significantly increased compared with HD-LEC. AKT-Thr308 was constitutively hyper-phosphorylated in LM-LEC. Treatment of LM-LEC with PI3-Kinase inhibitors Wortmannin and LY294 decreased cellular proliferation and prevented the phosphorylation of AKT-Thr308 in both HD-LEC and LM-LEC. Treatment with the mTOR inhibitor rapamycin also diminished cellular proliferation, sprouting and AKT phosphorylation, but only in LM-LEC. Our results implicate disrupted PI3K-AKT signaling in LEC isolated from a human lymphatic malformation lesion.
Collapse
Affiliation(s)
- Elisa Boscolo
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | | | | |
Collapse
|