1
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Dos Santos KS, Oliveira LT, de Lima Fontes M, Migliato KF, Fusco-Almeida AM, Mendes Giannini MJS, Moroz A. Alginate-Based 3D A549 Cell Culture Model to Study Paracoccidioides Infection. J Fungi (Basel) 2023; 9:634. [PMID: 37367570 DOI: 10.3390/jof9060634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
A three-dimensional (3D) lung aggregate model based on sodium alginate scaffolds was developed to study the interactions between Paracoccidioides brasiliensis (Pb) and lung epithelial cells. The suitability of the 3D aggregate as an infection model was examined using cell viability (cytotoxicity), metabolic activity, and proliferation assays. Several studies exemplify the similarity between 3D cell cultures and living organisms, which can generate complementary data due to the greater complexity observed in these designed models, compared to 2D cell cultures. A 3D cell culture system of human A549 lung cell line plus sodium alginate was used to create the scaffolds that were infected with Pb18. Our results showed low cytotoxicity, evidence of increased cell density (indicative of cell proliferation), and the maintenance of cell viability for seven days. The confocal analysis revealed viable yeast within the 3D scaffold, as demonstrated in the solid BHI Agar medium cultivation. Moreover, when ECM proteins were added to the alginate scaffolds, the number of retrieved fungi was significantly higher. Our results highlight that this 3D model may be promising for in vitro studies of host-pathogen interactions.
Collapse
Affiliation(s)
- Kelvin Sousa Dos Santos
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | - Lariane Teodoro Oliveira
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | - Marina de Lima Fontes
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | | | - Ana Marisa Fusco-Almeida
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | - Maria José Soares Mendes Giannini
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| | - Andrei Moroz
- Department of Clinical Analyses, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 85040-167, São Paulo, Brazil
| |
Collapse
|
3
|
Barros BCSC, Almeida BR, Barros DTL, Toledo MS, Suzuki E. Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. J Fungi (Basel) 2022; 8:jof8060548. [PMID: 35736031 PMCID: PMC9225092 DOI: 10.3390/jof8060548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
The respiratory epithelium is highly complex, and its composition varies along the conducting airways and alveoli. In addition to their primary function in maintaining the respiratory barrier and lung homeostasis for gas exchange, epithelial cells interact with inhaled pathogens, which can manipulate cell signaling pathways, promoting adhesion to these cells or hosting tissue invasion. Moreover, pathogens (or their products) can induce the secretion of chemokines and cytokines by epithelial cells, and in this way, these host cells communicate with the immune system, modulating host defenses and inflammatory outcomes. This review will focus on the response of respiratory epithelial cells to two human fungal pathogens that cause systemic mycoses: Aspergillus and Paracoccidioides. Some of the host epithelial cell receptors and signaling pathways, in addition to fungal adhesins or other molecules that are responsible for fungal adhesion, invasion, or induction of cytokine secretion will be addressed in this review.
Collapse
Affiliation(s)
- Bianca C. S. C. Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Bruna R. Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Debora T. L. Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Marcos S. Toledo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Leal Prado, São Paulo 04023-062, SP, Brazil;
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
- Correspondence:
| |
Collapse
|
4
|
Souza TN, Valdez AF, Rizzo J, Zamith-Miranda D, Guimarães AJ, Nosanchuk JD, Nimrichter L. Host cell membrane microdomains and fungal infection. Cell Microbiol 2021; 23:e13385. [PMID: 34392593 PMCID: PMC8664998 DOI: 10.1111/cmi.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 01/13/2023]
Abstract
Lipid microdomains or lipid rafts are dynamic and tightly ordered regions of the plasma membrane. In mammalian cells, they are enriched in cholesterol, glycosphingolipids, Glycosylphosphatidylinositol-anchored and signalling-related proteins. Several studies have suggested that mammalian pattern recognition receptors are concentrated or recruited to lipid domains during host-pathogen association to enhance the effectiveness of host effector processes. However, pathogens have also evolved strategies to exploit these domains to invade cells and survive. In fungal organisms, a complex cell wall network usually mediates the first contact with the host cells. This cell wall may contain virulence factors that interfere with the host membrane microdomains dynamics, potentially impacting the infection outcome. Indeed, the microdomain disruption can dampen fungus-host cell adhesion, phagocytosis and cellular immune responses. Here, we provide an overview of regulatory strategies employed by pathogenic fungi to engage with and potentially subvert the lipid microdomains of host cells. TAKE AWAY: Lipid microdomains are ordered regions of the plasma membrane enriched in cholesterol, glycosphingolipids (GSL), GPI-anchored and signalling-related proteins. Pathogen recognition by host immune cells can involve lipid microdomain participation. During this process, these domains can coalesce in larger complexes recruiting receptors and signalling proteins, significantly increasing their signalling abilities. The antifungal innate immune response is mediated by the engagement of pathogen-associated molecular patterns to pattern recognition receptors (PRRs) at the plasma membrane of innate immune cells. Lipid microdomains can concentrate or recruit PRRs during host cell-fungi association through a multi-interactive mechanism. This association can enhance the effectiveness of host effector processes. However, virulence factors at the fungal cell surface and extracellular vesicles can re-assembly these domains, compromising the downstream signalling and favouring the disease development. Lipid microdomains are therefore very attractive targets for novel drugs to combat fungal infections.
Collapse
Affiliation(s)
- Taiane N Souza
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro F Valdez
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia-MIP, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Braz JD, Sardi JDCO, Pitangui NDS, Voltan AR, Almeida AMF, Mendes-Giannini MJS. Gene expression of Paracoccidioides virulence factors after interaction with macrophages and fibroblasts. Mem Inst Oswaldo Cruz 2021; 116:e200592. [PMID: 33787770 PMCID: PMC8011670 DOI: 10.1590/0074-02760200592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Jaqueline Derissi Braz
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Janaina de Cássia Orlandi Sardi
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade Federal de Mato Grosso do Sul, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Campo Grande, MS, Brasil
| | - Nayla de Souza Pitangui
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| | - Aline Raquel Voltan
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Ana Marisa Fusco Almeida
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| | - Maria José Soares Mendes-Giannini
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, SP, Brasil
| |
Collapse
|
6
|
Mendes RP, Cavalcante RDS, Marques SA, Marques MEA, Venturini J, Sylvestre TF, Paniago AMM, Pereira AC, da Silva JDF, Fabro AT, Bosco SDMG, Bagagli E, Hahn RC, Levorato AD. Paracoccidioidomycosis: Current Perspectives from Brazil. Open Microbiol J 2017; 11:224-282. [PMID: 29204222 PMCID: PMC5695158 DOI: 10.2174/1874285801711010224] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This review article summarizes and updates the knowledge on paracoccidioidomycosis. P lutzii and the cryptic species of P. brasiliensis and their geographical distribution in Latin America, explaining the difficulties observed in the serological diagnosis. OBJECTIVES Emphasis has been placed on some genetic factors as predisposing condition for paracoccidioidomycosis. Veterinary aspects were focused, showing the wide distribution of infection among animals. The cell-mediated immunity was better characterized, incorporating the recent findings. METHODS Serological methods for diagnosis were also compared for their parameters of accuracy, including the analysis of relapse. RESULTS Clinical forms have been better classified in order to include the pictures less frequently observesiod. CONCLUSION Itraconazole and the trimethoprim-sulfamethoxazole combination was compared regarding efficacy, effectiveness and safety, demonstrating that azole should be the first choice in the treatment of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Rinaldo Poncio Mendes
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Ricardo de Souza Cavalcante
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sílvio Alencar Marques
- Department of Dermatology, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | | | - James Venturini
- Laboratory of Experimental Immunology, Department of Biological Science, Faculty of Science, São Paulo State University – UNESP, São Paulo, Brazil
| | - Tatiane Fernanda Sylvestre
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Anamaria Mello Miranda Paniago
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina – Federal University of Mato Grosso do Sul – UFMS, Brazil
| | | | - Julhiany de Fátima da Silva
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Alexandre Todorovic Fabro
- Unit of Experimental Research, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sandra de Moraes Gimenes Bosco
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Rosane Christine Hahn
- Laboratory of Investigation and Mycology, Federal University of Mato Grosso, Faculty of Medicine Cuiabá, Mato Grosso, Brazil
| | - Adriele Dandara Levorato
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
7
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
8
|
de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva ACA, Da Silva JDF, Singulani JDL, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. Front Microbiol 2015; 6:1319. [PMID: 26635779 PMCID: PMC4658449 DOI: 10.3389/fmicb.2015.01319] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host-pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host's immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host's adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These included natural and/or derivate synthetic substances as well as vaccines, peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this review has the objective to summarize all of the recent discoveries on Paracoccidioides-host interaction, with particular emphasis on fungi surface proteins (molecules that play a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as well as advances in the treatment of PCM with new and well-established antifungal agents and approaches.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Patrícia A Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Caroline M Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana C A de Paula E Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Julhiany De Fátima Da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Kaila M Alarcon
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| |
Collapse
|
9
|
da Silva JDF, Vicentim J, de Oliveira HC, Marcos CM, Assato PA, Andreotti PF, da Silva JLM, Soares CP, Benard G, Almeida AMF, Mendes-Giannini MJS. Influence of the Paracoccidioides brasiliensis 14-3-3 and gp43 proteins on the induction of apoptosis in A549 epithelial cells. Mem Inst Oswaldo Cruz 2015; 110:476-84. [PMID: 26038961 PMCID: PMC4501410 DOI: 10.1590/0074-02760150057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.
Collapse
Affiliation(s)
- Julhiany de Fátima da Silva
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Juliana Vicentim
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Haroldo Cesar de Oliveira
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Caroline Maria Marcos
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Patricia Akemi Assato
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Patrícia Ferrari Andreotti
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Juliana Leal Monteiro da Silva
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Christiane Pienna Soares
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Gil Benard
- Laboratório de Alergia e Imunologia Clínica e Experimental
- Clínica de Doenças Infecciosas e Parasitárias, Faculdade de Medicina,
Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ana Marisa Fusco Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | - Maria José Soares Mendes-Giannini
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas
de Araraquara, Universidade Estadual Paulista, Araraquara, SP, Brasil
| |
Collapse
|
10
|
The involvement of FAK and Src in the invasion of cardiomyocytes by Trypanosoma cruzi. Exp Parasitol 2014; 139:49-57. [PMID: 24582948 DOI: 10.1016/j.exppara.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
The activation of signaling pathways involving protein tyrosine kinases (PTKs) has been demonstrated during Trypanosoma cruzi invasion. Herein, we describe the participation of FAK/Src in the invasion of cardiomyocytes by T. cruzi. The treatment of cardiomyocytes with genistein, a PTK inhibitor, significantly reduced T. cruzi invasion. Also, PP1, a potent Src-family protein inhibitor, and PF573228, a specific FAK inhibitor, also inhibited T. cruzi entry; maximal inhibition was achieved at concentrations of 25μM PP1 (53% inhibition) and 40μM PF573228 (50% inhibition). The suppression of FAK expression in siRNA-treated cells and tetracycline-uninduced Tet-FAK(WT)-46 cells significantly reduced T. cruzi invasion. The entry of T. cruzi is accompanied by changes in FAK and c-Src expression and phosphorylation. An enhancement of FAK activation occurs during the initial stages of T. cruzi-cardiomyocyte interaction (30 and 60min), with a concomitant increase in the level of c-Src expression and phosphorylation, suggesting that FAK/Src act as an integrated signaling pathway that coordinates parasite entry. These data provide novel insights into the signaling pathways that are involved in cardiomyocyte invasion by T. cruzi. A better understanding of the signal transduction networks involved in T. cruzi invasion may contribute to the development of more effective therapies for the treatment of Chagas' disease.
Collapse
|
11
|
Larrosa M, Truchado P, Espín JC, Tomás-Barberán FA, Allende A, García-Conesa MT. Evaluation of Pseudomonas aeruginosa (PAO1) adhesion to human alveolar epithelial cells A549 using SYTO 9 dye. Mol Cell Probes 2012; 26:121-6. [PMID: 22464926 DOI: 10.1016/j.mcp.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an aerobic Gram-negative bacterium characterized by a natural resistance to several antibiotics. It is a major cause of nosocomial infections in patients with compromised host defence mechanisms mainly related to the respiratory tract. P. aeruginosa infection first step is the adhesion of the bacteria to the host cells and thus, the development of techniques that can easily assess adhesion of bacteria strains and of bacteria isolated from biological samples is fundamental. The aim of our work was to develop a fast and effective method to evaluate the adhesion of P. aeruginosa to bronchial epithelial cells. To meet our goal we optimized a staining protocol using the vital dye SYTO 9 and P. aeruginosa PAO1. We established the appropriate dying conditions as well as the stability of the stained bacteria. Adhesion was first measured using the traditional plate counting method and then, adhesion values were compared to those obtained using a fluorescence microplate reader and epifluorescence microscopy. Our results show that the use of SYTO 9 does not interfere with the bacteria viability, bacteria cell growth, and adhesion of P. aeruginosa to A549 epithelial cells. Both the fluorescence microplate reader and the epifluorescence microscopy gave similar results to those attained with the plate counting method, however, the epifluorescence microscopy also allowed for simultaneous discrimination of damaging effects on the human cells. Overall, our data indicate that the use of SYTO 9 combined with a fluorescence microplate reader or an epifluorescence microscope provides a rapid method to evaluate the adhesion of P. aeruginosa to human epithelial cells. However, to show unequivocally that a specific drug or compound has a truly inhibitory effect on the bacterial adhesion without affecting the number of human cells, the epifluorescence microscopy is recommended.
Collapse
Affiliation(s)
- Mar Larrosa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 2010; 102:391-407. [PMID: 20377525 PMCID: PMC7161784 DOI: 10.1042/bc20090138] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The lipid raft hypothesis proposed that these microdomains are small (10-200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Collapse
Affiliation(s)
- Flávia Sarmento Vieira
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
13
|
Takahashi HK, Toledo MS, Suzuki E, Tagliari L, Straus AH. Current relevance of fungal and trypanosomatid glycolipids and sphingolipids: studies defining structures conspicuously absent in mammals. AN ACAD BRAS CIENC 2010; 81:477-88. [PMID: 19722017 DOI: 10.1590/s0001-37652009000300012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 02/20/2009] [Indexed: 01/30/2023] Open
Abstract
Recently, glycosphingolipids have been attracting attention due to their role on biological systems as second messengers or modulators of signal transduction, affecting several events, which range from apoptosis to regulation of the cell cycle. In pathogenic fungi, glycolipids are expressed in two classes: neutral monohexosylceramides (glucosyl-or galactosylceramide) and acidic glycosylinositol phosphorylceramides (the latter class carries longer glycan chains). It is worth to mention that monohexosylceramides exhibit significant structural differences in their lipid moieties compared to their mammalian counterparts, whereas the glycosylinositol phosphorylceramides exhibit remarkable structural differences in their carbohydrate moieties in comparison to mammal glycosphingolipids counterpart. We observed that glycosylinositol phosphorylceramides are capable of promoting immune response in infected humans. In addition, inhibiting fungal glycosphingolipid biosynthetic pathways leads to an inhibition of colony formation, spore germination, cell cycle, dimorphism and hyphal growth. Other pathogens, such as trypanosomatids, also present unique glycolipids, which may have an important role for the parasite development and/or disease establishment. Regarding host-pathogen interaction, cell membrane rafts, which are enriched in sphingolipids and sterols, participate in parasite/fungal infection. In this review, it is discussed the different biological roles of (glyco) (sphingo)lipids of pathogenic/opportunistic fungi and trypanosomatids.
Collapse
Affiliation(s)
- Helio K Takahashi
- Setor de Imunoquímica de Glicoconjugados, Departamento de Bioquímica, Ed. J.L. Prado, Rua Botucatu, 862, 04023-900 São Paulo, SP, Brasil
| | | | | | | | | |
Collapse
|
14
|
Del Vecchio A, Silva JDFD, Silva JLMD, Andreotti PF, Soares CP, Benard G, Giannini MJSM. Induction of apoptosis in A549 pulmonary cells by two Paracoccidioides brasiliensis samples. Mem Inst Oswaldo Cruz 2009; 104:749-54. [PMID: 19820837 DOI: 10.1590/s0074-02762009000500015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 06/04/2009] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioidomycosis presents a variety of clinical manifestations and Paracoccidioides brasiliensis can reach many tissues, most importantly the lungs. The ability of the pathogen to interact with host surface structures is essential to its virulence. The interaction between P. brasiliensis and epithelial cells has been studied, with particular emphasis on the induction of apoptosis. To investigate the expression of different apoptosis-inducing pathways in human A549 cells, we infected these cells with P. brasiliensis Pb18SP (subcultured) and 18R (recently isolated from cell culture and showing a high adhesion pattern) samples in vitro. The expressions of Bcl-2, Bak and caspase 3 were analysed by flow cytometry and DNA fragmentation using the TUNEL technique. Apoptosis of human A549 cells was induced by P. brasiliensis in a sample and time-dependent manner. Using an in vitro model, our data demonstrates that caspase 3, Bak, Bcl-2 and DNA fragmentation mediate P. brasiliensis-induced apoptosis in A549 cells. The overall mechanism is a complex process, which may involve several signal transduction pathways. These findings could partially explain the efficient behaviour of this fungus in promoting tissue infection and/or blood dissemination.
Collapse
Affiliation(s)
- Adriana Del Vecchio
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Martins C, de Resende M, da Silva D, Magalhães T, Modolo L, Pilli R, de Fátima Â. In vitro studies of anticandidal activity of goniothalamin enantiomers. J Appl Microbiol 2009; 107:1279-86. [DOI: 10.1111/j.1365-2672.2009.04307.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Maza PK, Straus AH, Toledo MS, Takahashi HK, Suzuki E. Interaction of epithelial cell membrane rafts with Paracoccidioides brasiliensis leads to fungal adhesion and Src-family kinase activation. Microbes Infect 2008; 10:540-7. [PMID: 18403242 DOI: 10.1016/j.micinf.2008.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/16/2008] [Accepted: 02/07/2008] [Indexed: 11/28/2022]
Abstract
Membrane rafts are cholesterol- and sphingolipid-enriched cell membrane domains, which are ubiquitous in mammals and play an essential role in different cellular functions, including host cell-pathogen interaction. In this work, by using several approaches, we demonstrated the involvement of epithelial cell membrane rafts in adhesion process of the pathogenic fungus Paracoccidioides brasiliensis. This conclusion was supported by the localization of ganglioside GM1, a membrane raft marker, at P. brasiliensis-epithelial cell contact sites, and by the inhibition of this fungus adhesion to host cells pre-treated with cholesterol-extractor (methyl-beta-cyclodextrin, MbetaCD) or -binding (nystatin) agents. In addition, at a very early stage of P. brasiliensis-A549 cell interaction, this fungus promoted activation of Src-family kinases (SFKs) and extracellular signal-regulated kinase 1/2 (ERK1/2) of these epithelial cells. Whereas SFKs were partially responsible for activation of ERK1/2, membrane raft disruption with MbetaCD in A549 cells led to total inhibition of SFK activation. Taking together, these data indicate for the first time that epithelial cell membrane rafts are essential for P. brasiliensis adhesion and activation of cell signaling molecules.
Collapse
Affiliation(s)
- Paloma K Maza
- Division of Glycoconjugate Immunochemistry, Department of Biochemistry, Universidade Federal de São Paulo, Rua Botucatu, 862, Ed J Leal Prado, São Paulo, SP 04023-900, Brazil
| | | | | | | | | |
Collapse
|
17
|
Mendes-Giannini MJS, Monteiro da Silva JL, de Fátima da Silva J, Donofrio FC, Miranda ET, Andreotti PF, Soares CP. Interactions of Paracoccidioides brasiliensis with host cells: recent advances. Mycopathologia 2007; 165:237-48. [DOI: 10.1007/s11046-007-9074-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 10/03/2007] [Indexed: 12/16/2022]
|
18
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|