1
|
Chen YH, Zhang JX, Min Y, Liu Y, Wang JM, Bai LQ, Luo XX. Two new strains of Streptomyces with metabolic potential for biological control of pear black spot disease. BMC Microbiol 2024; 24:550. [PMID: 39741279 DOI: 10.1186/s12866-024-03609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/25/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Pear black spot is caused by Alternaria tenuissima. It is one of the diseases of concern limiting pear production worldwide. Existing cultivation methods and fungicides are not sufficient to control early blight. Therefore, the aim of this study was to isolate and characterize two strains of Streptomyces and evaluate their potential for biological control of crop diseases caused by Alternaria tenuissima while promoting plant growth. It enriches the resources of biocontrol strains. METHODS In this study, the genetic background of the strain was elucidated through 16S rRNA gene analysis and multiphase taxonomic identification methods. The metabolic potential of the strain was assessed using a variety of approaches, including antiSMASH, COG, and KEGG databases, RGI tools, as well as the scanning of CAZY and plant-promoting genes. The biocontrol potential of the strain was further substantiated through a combination of plate experiments, gene cluster biopathway resolution and mass spectrometry validation of metabolites. Finally, the biocontrol efficacy of the strain was confirmed through fruit control experiments. RESULTS The study identified the potential new species status of the strains. Strain TRM 76130 exhibited a gene size of 5.94 Mbp and a G + C content of 73.65%, while strain TRM 76172 had a gene size of 8.30 Mbp and a G + C content of 71.38%. Both strains contained genes related to amino acid transport and metabolism, along with several CAZY genes and 19 plant growth factors. The resistance genes of strain TRM 76172 were classified as macrolides, and genomic prediction revealed the biosynthetic pathway of the active compound Candidin. Mass spectrometry analysis indicated that strains TRM 76172 and TRM 76130 contained the active compounds amphotericin A and daptomycin, respectively. The pear assays demonstrated that both strains of Streptomyces were capable of reducing the symptoms of pear black spot. CONCLUSION The present study concludes that strains TRM76172 and TRM76130 possess significant potential to control Alternaria tenuissima and promote plant growth, thereby enriching the biocontrol fungal library.
Collapse
Affiliation(s)
- Yi-Huang Chen
- State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China
- School of Life Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Jia-Xing Zhang
- State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China
- School of Life Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Yan Min
- State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China
- School of Life Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Yang Liu
- State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China
- School of Life Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Jian-Ming Wang
- State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China
- School of Life Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China
| | - Lin-Quan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiao-Xia Luo
- State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China.
- School of Life Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, China.
| |
Collapse
|
2
|
Solans M, Tadey M, Messuti MI, Cortada A, Zambrano VL, Riádigos E, Wall LG, Scervino JM. Do Streptomyces sp. Help Mycorrhization in Raspberry? Curr Microbiol 2024; 81:399. [PMID: 39382706 DOI: 10.1007/s00284-024-03928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Actinobacteria may help the mycorrhizal symbiosis by producing various bioactive metabolites. Mycorrhizae, in turn, are very important since they increase the absorption of nutrients, promoting the growth of their host plant and making inoculation with arbuscular mycorrhizae fungi (AM) a common practice applied in agriculture and forestry. The cultivation of Rubus idaeus (raspberry) is widespread in Patagonia, Argentina; however, the potential benefits of using actinobacteria-mycorrhizal inoculums to enhance crop growth and yield remain unexplored. The objective of this work was to study the interaction between actinobacteria (Streptomyces, Actinomycetota) and AM in raspberry plants. We performed an experiment applying 4 treatments to raspberry plants growing in two substrates, sterile soil and natural (non-sterile) soil. The treatments consisted in a control (without inoculation) and three inoculations treatments (AM, Streptomyces SH9 strain, and AM + Streptomyces). After 3 months of inoculation, mycorrhization parameters (%) and plant growth were recorded. When comparing both substrates, the mycorrhization parameters were higher in natural soil than in sterile soil. The co-inoculation with AM + Streptomyces SH9 showed the highest mycorrhization. Both factors (treatment x substrate) interacted showing that in sterile soil the treatments with the highest effect on mycorrhization parameters were AM and the co-inoculation, while in natural soil all inoculations improved mycorrhization parameters, being highest with the co-inoculation. These results show that Streptomyces SH9 strain helps the mycorrhizal symbiosis in raspberry, being the first report about the effect of a native rhizospheric actinobacterium on an economically important species, promising potential for environmentally friendly improvements in raspberry crops within the temperate Southern Patagonian region.
Collapse
Affiliation(s)
| | - Mariana Tadey
- INIBIOMA-UNComahue-CONICET, 8400, Bariloche, Argentina
| | | | | | | | | | | | | |
Collapse
|
3
|
Chen Z, Liu Q, Chen D, Wu Y, Hamid Y, Lin Q, Zhang S, Feng Y, He Z, Yin X, Yang X. Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum alfredii Hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173029. [PMID: 38719039 DOI: 10.1016/j.scitotenv.2024.173029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.
Collapse
Affiliation(s)
- Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yasir Hamid
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiang Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijun Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, United States
| | - Xianyuan Yin
- Beautiful Rural Construction Center Quzhou District, Quzhou 324003, Zhejiang, China
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Lu L, Liu N, Fan Z, Liu M, Zhang X, Tian J, Yu Y, Lin H, Huang Y, Kong Z. A novel PGPR strain, Streptomyces lasalocidi JCM 3373 T, alleviates salt stress and shapes root architecture in soybean by secreting indole-3-carboxaldehyde. PLANT, CELL & ENVIRONMENT 2024; 47:1941-1956. [PMID: 38369767 DOI: 10.1111/pce.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.
Collapse
Affiliation(s)
- Liang Lu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zihui Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hou-Ji Laboratory in Shanxi province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
5
|
Zhang H, Nie M, Du X, Chen S, Liu H, Wu C, Tang Y, Lei Z, Shi G, Zhao X. Selenium and Bacillus proteolyticus SES increased Cu-Cd-Cr uptake by ryegrass: highlighting the significance of key taxa and soil enzyme activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29113-29131. [PMID: 38568308 DOI: 10.1007/s11356-024-32959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
Many studies have focused their attention on strategies to improve soil phytoremediation efficiency. In this study, a pot experiment was carried out to investigate whether Se and Bacillus proteolyticus SES promote Cu-Cd-Cr uptake by ryegrass. To explore the effect mechanism of Se and Bacillus proteolyticus SES, rhizosphere soil physiochemical properties and rhizosphere soil bacterial properties were determined further. The findings showed that Se and Bacillus proteolyticus SES reduced 23.04% Cu, 36.85% Cd, and 9.85% Cr from the rhizosphere soil of ryegrass. Further analysis revealed that soil pH, organic matter, soil enzyme activities, and soil microbial properties were changed with Se and Bacillus proteolyticus SES application. Notably, rhizosphere key taxa (Bacteroidetes, Actinobacteria, Firmicutes, Patescibacteria, Verrucomicrobia, Chloroflexi, etc.) were significantly enriched in rhizosphere soil of ryegrass, and those taxa abundance were positively correlated with soil heavy metal contents (P < 0.01). Our study also demonstrated that in terms of explaining variations of soil Cu-Cd-Cr content under Se and Bacillus proteolyticus SES treatment, soil enzyme activities (catalase and acid phosphatase) and soil microbe properties showed 42.5% and 12.2% contributions value, respectively. Overall, our study provided solid evidence again that Se and Bacillus proteolyticus SES facilitated phytoextraction of soil Cu-Cd-Cr, and elucidated the effect of soil key microorganism and chemical factor.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Xiaoping Du
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China
| | - Suhua Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization (Nanchang Hangkong University), Nanchang, 330063, China
| | - Hanliang Liu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, Hebei, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China.
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China.
| |
Collapse
|
6
|
Huang J, Li X, Zhan X, Pan S, Pan C, Li J, Fan S, Zhang L, Du K, Du Z, Zhang J, Huang H, Li J, Zhang H, Qin Z. A Streptomyces species from the ginseng rhizosphere exhibits biocontrol potential. PLANT PHYSIOLOGY 2024; 194:2709-2723. [PMID: 38206193 DOI: 10.1093/plphys/kiae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Plants and their associated microbes live in complicated, changeable, and unpredictable environments. They usually interact with each other in many ways through multidimensional, multiscale, and multilevel coupling manners, leading to challenges in the coexistence of randomness and determinism or continuity and discreteness. Gaining a deeper understanding of these diverse interaction mechanisms can facilitate the development of data-mining theories and methods for complex systems, coupled modeling for systems with different spatiotemporal scales and functional properties, or even a universal theory of information and information interactions. In this study, we use a "closed-loop" model to present a plant-microbe interaction system and describe the probable functions of microbial natural products. Specifically, we report a rhizosphere species, Streptomyces ginsengnesis G7, which produces polyketide lydicamycins and other active metabolites. Interestingly, these distinct molecules have the potential to function both as antibiotics and as herbicides for crop protection. Detailed laboratory experiments conducted in Arabidopsis (Arabidopsis thaliana), combined with a comprehensive bioinformatics analysis, allow us to rationalize a model for this specific plant-microbe interaction process. Our work reveals the benefits of exploring otherwise neglected resources for the identification of potential functional molecules and provides a reference to better understand the system biology of complex ecosystems.
Collapse
Affiliation(s)
- Jiaquan Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xiaojie Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xuanlin Zhan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Shiyu Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Chao Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jixiao Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Liner Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Kehan Du
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiying Du
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiayu Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Han Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jie Li
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| |
Collapse
|
7
|
Wan Y, Xiao Q, Xiao X, Huang Y, Liu S, Feng W, Liu T, Ren Z, Ren W, Luo X, Luo S. Response of tomatoes to inactivated endophyte LSE01 under combined stress of high-temperature and drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108321. [PMID: 38181639 DOI: 10.1016/j.plaphy.2023.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Endophytes can assist crops in adapting to high temperatures and drought conditions, thereby reducing agricultural losses. However, the mechanism through which endophytes regulate crop resistance to high temperatures and drought stress remains unclear, and concerns regarding safety and stability exist with active endophytes. Thus, heat-treated endophytic bacteria LSE01 (HTB) were employed as a novel microbial fertilizer to investigate their effects on plant adaptation to high temperatures and drought conditions. The results indicated that the diameter and weight of tomatoes treated with HTB under stress conditions increased by 23.04% and 71.15%, respectively, compared to the control. Tomato yield did not significantly decrease compared to non-stress conditions. Additionally, the contents of vitamin C, soluble sugars, and proteins treated with HTB increased by 18.81%, 11.54%, and 99.75%, respectively. Mechanistic research revealed that HTB treatment enhances tomato's stress resistance by elevating photosynthetic pigment and proline contents, enhancing antioxidant enzyme activities, and reducing the accumulation of MDA. Molecular biology research demonstrates that HTB treatment upregulates the expression of drought-resistant genes (GA2ox7, USP1, SlNAC3, SlNAC4), leading to modifications in stomatal conductance, plant morphology, photosynthetic intensity, and antioxidant enzyme synthesis to facilitate adaptation to dry conditions. Furthermore, the upregulation of the heat-resistant gene (SlCathB2-2) can increases the thickness of tomato cell walls, rendering them less vulnerable to heat stress. In summary, HTB endows tomatoes with the ability to adapt to high temperatures and drought conditions, providing new opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Yuke Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Qicheng Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Yutian Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Shiqi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Weiran Feng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhong Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an, 343009, PR China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| |
Collapse
|
8
|
Kaur T, Khanna K, Sharma S, Manhas RK. Mechanistic insights into the role of actinobacteria as potential biocontrol candidates against fungal phytopathogens. J Basic Microbiol 2023; 63:1196-1218. [PMID: 37208796 DOI: 10.1002/jobm.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Worldwide mounting demand for better food production to nurture exasperating population emphasizes on reduced crop losses. The incidence of pathogens into the agricultural fields has tend to dwindle plethora of cereal, vegetable, and other fodder crops. This, in turn, has seriously impacted the economic losses on global scale. Apart from this, it is quite challenging to feed the posterity in the coming decades. To counteract this problem, various agrochemicals have been commercialized in the market that no doubt shows positive results but along with adversely affecting the ecosystem. Therefore, the excessive ill-fated use of agrochemicals to combat the plant pests and diseases highlights that alternatives to chemical pesticides are need of the hour. In recent days, management of plant diseases using plant-beneficial microbes is gaining interest as safer and potent alternatives to replace chemically based pesticides. Among these beneficial microbes, actinobacteria especially streptomycetes play considerable role in combating plant diseases along with promoting the plant growth and development along with their productivity and yield. The mechanisms exhibited by actinobacteria include antibiosis (antimicrobial compounds and hydrolytic enzymes), mycoparasitism, nutrient competition, and induction of resistance in plants. Thus, in cognizance with potential of actinobacteria as potent biocontrol agents, this review summarizes role of actinobacteria and the multifarious mechanisms exhibited by actinobacteria for commercial applications.
Collapse
Affiliation(s)
- Talwinder Kaur
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kanika Khanna
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sonika Sharma
- Faculty of Agricultural Sciences, Jalandhar, Punjab, India
| | - Rajesh K Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
9
|
Metze D, Schnecker J, Canarini A, Fuchslueger L, Koch BJ, Stone BW, Hungate BA, Hausmann B, Schmidt H, Schaumberger A, Bahn M, Kaiser C, Richter A. Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions. Nat Commun 2023; 14:5895. [PMID: 37736743 PMCID: PMC10516970 DOI: 10.1038/s41467-023-41524-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soils exposed to ambient conditions, drought, and potential future climate conditions (i.e., soils exposed to 6 years of elevated temperatures and elevated CO2 levels). For this purpose, we combined 18O-water vapor equilibration with quantitative stable isotope probing (termed 'vapor-qSIP') to measure taxon-specific microbial growth in dry soils. In our experiments, drought caused >90% of bacterial and archaeal taxa to stop dividing and reduced the growth rates of persisting ones. Under drought, growing taxa accounted for only 4% of the total community as compared to 35% in the controls. Drought-tolerant communities were dominated by specialized members of the Actinobacteriota, particularly the genus Streptomyces. Six years of pre-exposure to future climate conditions (3 °C warming and + 300 ppm atmospheric CO2) alleviated drought effects on microbial growth, through more drought-tolerant taxa across major phyla, accounting for 9% of the total community. Our results provide insights into the response of active microbes to drought today and in a future climate, and highlight the importance of studying drought in combination with future climate conditions to capture interactive effects and improve predictions of future soil-climate feedbacks.
Collapse
Affiliation(s)
- Dennis Metze
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
| | - Jörg Schnecker
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Benjamin J Koch
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bram W Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Schaumberger
- Agricultural Research and Education Centre Raumberg-Gumpenstein, Irdning, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- International Institute for Applied Systems Analysis, Advancing Systems Analysis Program, Laxenburg, Austria.
| |
Collapse
|
10
|
Boykova I, Yuzikhin O, Novikova I, Ulianich P, Eliseev I, Shaposhnikov A, Yakimov A, Belimov A. Strain Streptomyces sp. P-56 Produces Nonactin and Possesses Insecticidal, Acaricidal, Antimicrobial and Plant Growth-Promoting Traits. Microorganisms 2023; 11:microorganisms11030764. [PMID: 36985337 PMCID: PMC10053667 DOI: 10.3390/microorganisms11030764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Streptomycetes produce a huge variety of bioactive metabolites, including antibiotics, enzyme inhibitors, pesticides and herbicides, which offer promise for applications in agriculture as plant protection and plant growth-promoting products. The aim of this report was to characterize the biological activities of strain Streptomyces sp. P-56, previously isolated from soil as an insecticidal bacterium. The metabolic complex was obtained from liquid culture of Streptomyces sp. P-56 as dried ethanol extract (DEE) and possessed insecticidal activity against vetch aphid (Medoura viciae Buckt.), cotton aphid (Aphis gossypii Glov.), green peach aphid (Myzus persicae Sulz.), pea aphid (Acyrthosiphon pisum Harr.) and crescent-marked lily aphid (Neomyzus circumflexus Buckt.), as well as two-spotted spider mite (Tetranychus urticae). Insecticidal activity was associated with production of nonactin, which was purified and identified using HPLC-MS and crystallographic techniques. Strain Streptomyces sp. P-56 also showed antibacterial and antifungal activity against various phytopathogenic bacteria and fungi (mostly for Clavibacfer michiganense, Alternaria solani and Sclerotinia libertiana), and possessed a set of plant growth-promoting traits, such as auxin production, ACC deaminase and phosphate solubilization. The possibilities for using this strain as a biopesticide producer and/or biocontrol and a plant growth-promoting microorganism are discussed.
Collapse
Affiliation(s)
- Irina Boykova
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Oleg Yuzikhin
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Irina Novikova
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Pavel Ulianich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
| | - Igor Eliseev
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopin Str., 8/3-A, Saint-Petersburg 194021, Russia
| | - Alexander Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
| | - Alexander Yakimov
- Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, Polytechnicheskaya, 29, Saint-Petersburg 195251, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
- Correspondence:
| |
Collapse
|
11
|
Shepherdson EM, Baglio CR, Elliot MA. Streptomyces behavior and competition in the natural environment. Curr Opin Microbiol 2023; 71:102257. [PMID: 36565538 DOI: 10.1016/j.mib.2022.102257] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Streptomyces are ubiquitous terrestrial bacteria that are renowned for their robust metabolic capabilities and their behavioral flexibility. In competing for environmental niches, these bacteria can employ novel growth and dispersal behaviors. They also wield their diverse metabolic repertoire for everything from maximizing nutrient uptake, to preventing phage replication or inhibiting bacterial and fungal growth. Increasingly, they are found to live in association with plants and insects, often conferring protective benefits to their host courtesy of their ability to produce pathogen-inhibitory antimicrobial compounds. Here, we highlight recent advances in understanding the competitive and cooperative interactions between Streptomyces and phage, microbes, and higher organisms in their environment.
Collapse
Affiliation(s)
- Evan Mf Shepherdson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada
| | - Christine R Baglio
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada.
| |
Collapse
|
12
|
Hnini M, Taha K, Aurag J. Molecular identification and characterization of phytobeneficial osmotolerant endophytic bacteria inhabiting root nodules of the Saharan tree Vachellia tortilis subsp. raddiana. Arch Microbiol 2022; 205:45. [PMID: 36576567 DOI: 10.1007/s00203-022-03358-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022]
Abstract
Nodular endophytes of drought-tolerant legumes are understudied. For this reason, we have isolated and studied non-symbiotic endophytic bacteria from nodules of Vachellia tortilis subsp. raddiana, a leguminous tree adapted to the harsh arid climate of Southern Morocco. Rep-PCR analysis followed by 16S rDNA sequencing revealed two main genera, Pseudomonas and Bacillus. Isolates responded variably to salt and water stresses, and mostly produced exopolysaccharides. Differences concerned also plant growth-promoting activities: phosphate, potassium, and zinc solubilization; biological nitrogen fixation; auxin, siderophore, ammonia, and HCN production; and ACC deaminase activity. Some strains exhibited antagonistic activities against phytopathogenic fungi (Fusarium oxysporum and Botrytis cinerea) and showed at least two enzymatic activities (cellulase, protease, chitinase). Four selected strains inoculated to vachellia plants under controlled conditions have shown significant positive impacts on plant growth parameters. These strains are promising bio-inoculants for vachellia plants to be used in reforestation programs in arid areas increasingly threatened by desertification.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Kaoutar Taha
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco.
| |
Collapse
|
13
|
Marghoob MU, Rodriguez-Sanchez A, Imran A, Mubeen F, Hoagland L. Diversity and functional traits of indigenous soil microbial flora associated with salinity and heavy metal concentrations in agricultural fields within the Indus Basin region, Pakistan. Front Microbiol 2022; 13:1020175. [PMID: 36419426 PMCID: PMC9676371 DOI: 10.3389/fmicb.2022.1020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Soil salinization and heavy metal (HM) contamination are major challenges facing agricultural systems worldwide. Determining how soil microbial communities respond to these stress factors and identifying individual phylotypes with potential to tolerate these conditions while promoting plant growth could help prevent negative impacts on crop productivity. This study used amplicon sequencing and several bioinformatic programs to characterize differences in the composition and potential functional capabilities of soil bacterial, fungal, and archaeal communities in five agricultural fields that varied in salinity and HM concentrations within the Indus basin region of Pakistan. The composition of bacteria with the potential to fix atmospheric nitrogen (N) and produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase were also determined. Microbial communities were dominated by: Euryarchaeota (archaea), Actinobacteria, Proteobacteria, Planctomycetota, Firimicutes, Patescibacteria and Acidobacteria (bacteria), and Ascomycota (fungi), and all soils contained phylotypes capable of N-fixation and ACC-deaminase production. Salinity influenced bacterial, but not archaeal or fungal communities. Both salinity and HM altered the relative abundance of many phylotypes that could potentially promote or harm plant growth. These stress factors also appeared to influence the potential functional capabilities of the microbial communities, especially in their capacity to cycle phosphorous, produce siderophores, and act as symbiotrophs or pathotrophs. Results of this study confirm that farms in this region are at risk due to salinization and excessive levels of some toxic heavy metals, which could negatively impact crop and human health. Changes in soil microbial communities and their potential functional capabilities are also likely to affect several critical agroecosystem services related to nutrient cycling, pathogen suppression, and plant stress tolerance. Many potentially beneficial phylotypes were identified that appear to be salt and HM tolerant and could possibly be exploited to promote these services within this agroecosystem. Future efforts to isolate these phylotypes and determine whether they can indeed promote plant growth and/or carry out other important soil processes are recommended. At the same time, identifying ways to promote the abundance of these unique phylotypes either through modifying soil and crop management practices, or developing and applying them as inoculants, would be helpful for improving crop productivity in this region.
Collapse
Affiliation(s)
- Muhammad Usama Marghoob
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | | | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Liu Q, Zhang L, Wang L, Wu Q, Li K, Guo X. Autotoxin affects the rhizosphere microbial community structure by influencing the secretory characteristics of grapevine roots. Front Microbiol 2022; 13:953424. [PMID: 35958141 PMCID: PMC9360756 DOI: 10.3389/fmicb.2022.953424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Autotoxins secreted by roots into the soil can trigger rhizosphere microecological imbalances and affect root secretory properties resulting in conditions such as replanting disease. However, information on the effect of autotoxins on root secretion characteristics and regulation of the composition of rhizosphere microorganisms by altered root exudates is limited. In this study, autotoxin ρ-hydroxybenzoic acid (4-HBA) was added to the soil of potted grapevine seedlings, CO2 pulse-labeling, and DNA stable isotope probing were used to track the rhizosphere microbiome that assimilates root exudates. Bacterial and fungal microbiomes that assimilated plant-derived carbon were identified by high-throughput sequencing. Results showed that 4-HBA treatment altered bacterial and fungal communities in 13C-labeled organisms, with a lower abundance of beneficial bacteria (e.g., Gemmatimonas, Streptomyces, and Bacillus) and a higher abundance of potential pathogen fungi (e.g., Fusarium, Neocosmospora, Gibberella, and Fusicolla) by changing the composition of root exudates. The exogenous addition of upregulated compound mixtures of root exudates reduced the abundance of beneficial bacterial Bacillus and increased the abundance of potential pathogen fungi Gibberella. These results suggest that 4-HBA can alter root secretion properties and altered root exudates may enrich certain potential pathogens and reduce certain beneficial bacteria, thereby unbalancing the structure of the rhizosphere microbial community.
Collapse
Affiliation(s)
- Qianwen Liu
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Liheng Zhang
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Dalian Academy of Agricultural Sciences, Dalian, China
| | - Lu Wang
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Qingchun Wu
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Kun Li
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Kun Li,
| | - Xiuwu Guo
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Xiuwu Guo,
| |
Collapse
|
15
|
Jing L, Jia-min A, Xiao-dong L, Ying-ying J, Chao-chao Z, Rui-hua Z, Zhen-shan D. Environmental filtering drives the establishment of the distinctive rhizosphere, bulk, and root nodule bacterial communities of Sophora davidii in hilly and gully regions of the Loess Plateau of China. Front Microbiol 2022; 13:945127. [PMID: 35935225 PMCID: PMC9355530 DOI: 10.3389/fmicb.2022.945127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to the rhizobia, other non-rhizobial endophytes (NREs) have been simultaneously isolated from the root nodules. The existence of NREs in leguminous root nodules is a universal phenomenon, and they have the potential to enhance legume survival, especially under conditions of environmental stress. However, the diversity and biogeographic patterns of microbial communities inhabiting root nodules are not well studied or understood. Here, we explored and characterized the diversity of NRE bacteria by using 16S rRNA gene high-throughput amplicon sequencing. Additionally, we compared the biogeography and co-occurrence patterns in review of the bacterial microbiota inhabiting the rhizosphere, the bulk soil and the root nodule bacterial communities associated with Sophora davidii, a native N-fixing wild leguminous shrub in hilly and gully regions of the Loess Plateau of China. The results showed the presence of a large diversity of bacteria belonging to 81 phyla, 154 classes, 333 orders, 463 families, and 732 genera inside the nodules. Proteobacteria were dominant in the nodule and rhizosphere soil samples, and Actinomycetes were dominant in the bulk soil samples. Mesorhizobium was the dominant genus in the nodules, accounting for between 60.15 and 83.74% of the bacteria. The microbial community composition of the NRE in the root nodules differed from that in the rhizosphere soil and the bulk soil of S. davidii. Moreover, we found that the biogeographic patterns and assembly process of the rhizobia and non-rhizobia communities differed in the root nodule, the rhizosphere soil and the bulk soil. Furthermore, the correlation analysis between the soil’s physical and chemical properties and the bacteria showed that available phosphorus was the predominant factor affecting the bacterial diversity within the rhizosphere soil. Finally, our results revealed that the microbial network diagram of co-occurrence patterns showed more complexes in the soil than in the root nodules. This indicates that only specific microorganisms could colonize and thrive in the rhizosphere through the selection and filtering effects of roots. In conclusion, there are significant differences in bacterial community composition in the nodules, rhizosphere and bulk soil in the hilly and gully region of the Loess Plateau, which is the result of environmental filtration. Our study improves the understanding of the biogeographic patterns and diversity of bacterial microbiota inhabiting root nodules and can help quantify and define the root nodule assemblage process of S. davidii.
Collapse
|
16
|
Francioli D, Cid G, Hajirezaei MR, Kolb S. Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.). Sci Rep 2022; 12:11197. [PMID: 35778470 PMCID: PMC9249782 DOI: 10.1038/s41598-022-15133-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leaf microbiota mediates foliar functional traits, influences plant fitness, and contributes to various ecosystem functions, including nutrient and water cycling. Plant phenology and harsh environmental conditions have been described as the main determinants of leaf microbiota assembly. How climate change may modulate the leaf microbiota is unresolved and thus, we have a limited understanding on how environmental stresses associated with climate change driven weather events affect composition and functions of the microbes inhabiting the phyllosphere. Thus, we conducted a pot experiment to determine the effects of flooding stress on the wheat leaf microbiota. Since plant phenology might be an important factor in the response to hydrological stress, flooding was induced at different plant growth stages (tillering, booting and flowering). Using a metabarcoding approach, we monitored the response of leaf bacteria to flooding, while key soil and plant traits were measured to correlate physiological plant and edaphic factor changes with shifts in the bacterial leaf microbiota assembly. In our study, plant growth stage represented the main driver in leaf microbiota composition, as early and late plants showed distinct bacterial communities. Overall, flooding had a differential effect on leaf microbiota dynamics depending at which developmental stage it was induced, as a more pronounced disruption in community assembly was observed in younger plants.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.
| | - Geeisy Cid
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research E.V. (ZALF), Müncheberg, Germany.,Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
17
|
Gebauer L, Breitkreuz C, Heintz-Buschart A, Reitz T, Buscot F, Tarkka M, Bouffaud ML. Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Front Microbiol 2022; 13:824437. [PMID: 35770171 PMCID: PMC9234553 DOI: 10.3389/fmicb.2022.824437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
Water deficit tolerance is critical for plant fitness and survival, especially when successive drought events happen. Specific soil microorganisms are however able to improve plant tolerance to stresses, such as those displaying a 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Microorganisms adapted to dry conditions can be selected by plants over time because of properties such as sporulation, substrate preference, or cell-wall thickness. However, the complexity and interconnection between abiotic factors, like drought or soil management, and biotic factors, like plant species identity, make it difficult to elucidate the general selection processes of such microorganisms. Using a pot experiment in which wheat and barley were grown on conventional and organic farming soils, we determined the effect of water deficit history on soil microorganisms by comparing single and successive events of water limitation. The analysis showed that water deficit strongly impacts the composition of both the total microbial community (16S rRNA genes) and one of ACC deaminase-positive (acdS+) microorganisms in the rhizosphere. In contrast, successive dry conditions moderately influence the abundance and diversity of both communities compared to a single dry event. We revealed interactive effects of the farming soil type and the water deficit conditioning treatment. Indeed, possibly due to better nutrient status, plants grown on soils from conventional farming showed higher growth and were able to select more adapted microbial taxa. Some of them are already known for their plant-beneficial properties like the Actinobacteria Streptomyces, but interestingly, some Proteobacteria were also enriched after a water deficit history under conventional farming. Our approach allowed us to identify key microbial taxa promoting drought adaptation of cereals, thus improving our understanding of drought effects on plant-microbe interactions.
Collapse
Affiliation(s)
- Lucie Gebauer
- Helmholtz Centre for Environmental Research, Halle, Germany
| | | | - Anna Heintz-Buschart
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas Reitz
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tarkka
- Helmholtz Centre for Environmental Research, Halle, Germany
| | - Marie-Lara Bouffaud
- Helmholtz Centre for Environmental Research, Halle, Germany
- *Correspondence: Marie-Lara Bouffaud
| |
Collapse
|
18
|
Han G, Mannaa M, Jeon H, Jung H, Kim JC, Park AR, Seo YS. Dysbiosis in the Rhizosphere Microbiome of Standing Dead Korean Fir ( Abies koreana). PLANTS (BASEL, SWITZERLAND) 2022; 11:990. [PMID: 35406970 PMCID: PMC9002731 DOI: 10.3390/plants11070990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
Abstract
The Korean fir (Abies koreana), a native coniferous tree species mainly found on Mt. Halla in Jeju, South Korea, is suffering from continuous population decline and has been declared an endangered species. Research efforts have focused on the possible abiotic causes behind this worrying decline. However, the potential link between tree vitality and the rhizosphere microbiome remains unclear. In this study, a comparative metagenomic 16S rRNA sequence analysis was used to investigate the composition of the rhizosphere microbiota of samples collected from healthy and die-back-affected trees on Mt. Halla. The results indicated a significant reduction in the richness and diversity of microbiota in the rhizosphere of die-back-affected trees. Moreover, the relative abundance of Proteobacteria, Actinobacteria, and Bacteroidetes were significantly higher in healthy trees than in standing dead trees. Many bacterial genera were significantly more abundant in the rhizosphere of healthy trees, including those known for promoting plant growth and tolerance to biotic and abiotic stresses (e.g., Bradyrhizobium, Rhizomicrobium, Caulobacter, Nitrosospira, Rhizobacter, Paraburkholderia, Rhizobium, Devosia, Caballeronia, Niveispirillum, Dyella, Herbaspirillum, Frankia, Streptomyces, Actinoallomurus, Lysobacter, Luteibacter, Mucilaginibacter, and Variovorax). To our knowledge, this is the first report on rhizosphere bacterial microbiome dysbiosis in die-back-affected Korean fir trees, suggesting that the influence of rhizosphere microbiota should be considered to save this endangered species by investigating possible intervention strategies in future work.
Collapse
Affiliation(s)
- Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (H.J.)
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (H.J.)
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Hyoseong Jeon
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.J.); (J.-C.K.); (A.R.P.)
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (H.J.)
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.J.); (J.-C.K.); (A.R.P.)
| | - Ae Ran Park
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.J.); (J.-C.K.); (A.R.P.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (G.H.); (M.M.); (H.J.)
| |
Collapse
|
19
|
Cobos R, Ibañez A, Diez-Galán A, Calvo-Peña C, Ghoreshizadeh S, Coque JJR. The Grapevine Microbiome to the Rescue: Implications for the Biocontrol of Trunk Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070840. [PMID: 35406820 PMCID: PMC9003034 DOI: 10.3390/plants11070840] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 05/13/2023]
Abstract
Grapevine trunk diseases (GTDs) are one of the most devastating pathologies that threaten the survival and profitability of vineyards around the world. Progressive banning of chemical pesticides and their withdrawal from the market has increased interest in the development of effective biocontrol agents (BCAs) for GTD treatment. In recent years, considerable progress has been made regarding the characterization of the grapevine microbiome, including the aerial part microbiome (flowers, berries and leaves), the wood microbiome, the root environment and vineyard soil microbiomes. In this work, we review these advances especially in relation to the etiology and the understanding of the composition of microbial populations in plants affected by GTDs. We also discuss how the grapevine microbiome is becoming a source for the isolation and characterization of new, more promising BCAs that, in the near future, could become effective tools for controlling these pathologies.
Collapse
Affiliation(s)
- Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Ana Ibañez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Alba Diez-Galán
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Carla Calvo-Peña
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Seyedehtannaz Ghoreshizadeh
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Juan José R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Correspondence: ; Tel.: +34-987291811
| |
Collapse
|
20
|
Wang YF, Chen P, Wang FH, Han WX, Qiao M, Dong WX, Hu CS, Zhu D, Chu HY, Zhu YG. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. ENVIRONMENT INTERNATIONAL 2022; 161:107133. [PMID: 35149447 DOI: 10.1016/j.envint.2022.107133] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Long-term fertilization is known to impact the biodiversity and community structures of soil organisms, which are responsible for multiple soil ecosystem functions (multifunctionality). However the relationship between the alterations of soil organisms and ecosystem multifunctionality remains unclear, especially in the case of long-term fertilization. To explore the contribution of soil organismal biodiversity and community structures to ecosystem multifunctionality, we took soil samples from a nearly 25-year field fertilization experiment. Organic matter significantly improved the soil ecosystem multifunctionality. Ecosystem multifunctionality was found to be closely linked to the biodiversity and communities of soil organisms within the major ecological clustering of soil organisms (Module 1) according to the trophic co-occurrence network, rather than the entire community of soil organisms. This indicated that ecological clusters of soil organisms within the network were critical in maintaining soil ecosystem multifunctionality. The application of organic fertilization could enrich specialized soil organisms and increase interactions of soil organisms in the ecological cluster. As a result, our findings emphasize the role of ecological clusters in the soil organismal co-occurrence network in controlling soil multifunctionality after long-term fertilization, presenting a novel perspective on the link between soil biodiversity and ecosystem multifunctionality.
Collapse
Affiliation(s)
- Yi-Fei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Feng-Hua Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment Sciences, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang 050024, China
| | - Wan-Xue Han
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Xu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Chun-Sheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hai-Yan Chu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
21
|
Salwan R, Kaur R, Sharma V. Genomic Organization of Streptomyces flavotricini NGL1 and Streptomyces erythrochromogenes HMS4 Reveals Differential Plant Beneficial Attributes and Laccase Production Capabilities. Mol Biotechnol 2021; 64:447-462. [PMID: 34782960 DOI: 10.1007/s12033-021-00424-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
The genus Streptomyces has been explored in industrial sectors due to its endurance to environmental stresses, the production of a plethora of biomolecules, the biological remediation of soils, and alleviating plant stresses. The whole genome of NGL1 and HMS4 was sequenced due to the specific laccase activity against 2,6-dimethoxyphenol (2,6-DMP) and differential plant beneficial attributes. The deduced genome of 8.85 Mbp and 7.73 Mbp in size with a G+C content of 72.03% and 72.3% was obtained for NGL1 and HMS4, respectively. A total of 8438 and 7322 protein coding genes, 155 (130 tRNA, 25 rRNA) and 145 tRNA (121 tRNA, 24 rRNA) coding genes were predicted in NGL1 and HMS4, respectively. The comparative genomics of NGL1 and HMS4 showed 185 and 162 genes encoding for carbohydrate-active enzymes, respectively. The genomic ability of these strains to encode carbohydrate-active enzymes, laccase, and diversity of BGCs, along with plant beneficial attributes to suppress the plant pathogens can be used for several industrial and agricultural applications.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture & Forestry, Neri, Hamirpur, HP, 177 001, India.
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| |
Collapse
|
22
|
Lin Y, Huang L, Zhang X, Yang J, Chen X, Li F, Liu J, Huang R. Multi-Omics Analysis Reveals Anti- Staphylococcus aureus Activity of Actinomycin D Originating from Streptomyces parvulus. Int J Mol Sci 2021; 22:ijms222212231. [PMID: 34830114 PMCID: PMC8621895 DOI: 10.3390/ijms222212231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that causes various serious diseases, including chronic infections. Discovering new antibacterial agents is an important aspect of the pharmaceutical field because of the lack of effective antibacterial drugs. In our research, we found that one anti-S. aureus substance is actinomycin D, originating from Streptomyces parvulus (S. parvulus); then, we further focused on the anti-S. aureus ability and the omics profile of S. aureus in response to actinomycin D. The results revealed that actinomycin D had a significant inhibitory activity on S. aureus with a minimum inhibitory concentration (MIC) of 2 μg/mL and a minimum bactericidal concentration (MBC) of 64 μg/mL. Bacterial reactive oxygen species (ROS) increased 3.5-fold upon treatment with actinomycin D, as was measured with the oxidation-sensitive fluorescent probe DCFH-DA, and H2O2 increased 3.5 times with treatment by actinomycin D. Proteomics and metabolomics, respectively, identified differentially expressed proteins in control and treatment groups, and the co-mapped correlation network of proteomics and metabolomics annotated five major pathways that were potentially related to disrupting the energy metabolism and oxidative stress of S. aureus. All findings contributed to providing new insight into the mechanisms of the anti-S. aureus effects of actinomycin D originating from S. parvulus.
Collapse
Affiliation(s)
- Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Li Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Fengming Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
| | - Jun Liu
- Laboratory of Pathogenic Biology, The Marine Biomedical Research Institute, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Zhanjiang 524023, China
- Correspondence: (J.L.); (R.H.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.H.); (J.Y.); (X.C.); (F.L.)
- Correspondence: (J.L.); (R.H.)
| |
Collapse
|
23
|
Continuous Sugarcane Planting Negatively Impacts Soil Microbial Community Structure, Soil Fertility, and Sugarcane Agronomic Parameters. Microorganisms 2021; 9:microorganisms9102008. [PMID: 34683329 PMCID: PMC8537732 DOI: 10.3390/microorganisms9102008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/28/2023] Open
Abstract
Continuous planting has a negative impact on sugarcane plant growth and reduces global sugarcane crop production, including in China. The response of soil bacteria, fungal, and arbuscular mycorrhizae (AM) fungal communities to continuous sugarcane cultivation has not been thoroughly documented. Using MiSeq sequencing technology, we analyzed soil samples from sugarcane fields with 1, 10, and 30 years of continuous cropping to see how monoculture time affected sugarcane yield, its rhizosphere soil characteristics and microbiota. The results showed that continuous sugarcane planting reduced sugarcane quality and yield. Continuous sugarcane planting for 30 years resulted in soil acidification, as well as C/N, alkali hydrolyzable nitrogen, organic matter, and total sulfur content significantly lower than in newly planted fields. Continuous sugarcane planting affected soil bacterial, fungal, and AM fungal communities, according to PCoA and ANOSIM analysis. Redundancy analysis (RDA) results showed that bacterial, fungal, and AM fungal community composition were strongly associated with soil properties and attributes, e.g., soil AN, OM, and TS were critical environmental factors in transforming the bacterial community. The LEfSe analysis revealed bacterial families (e.g., Gaiellaceae, Pseudomonadaceae, Micromonosporaceae, Nitrosomonadaceae, and Methyloligellaceae) were more prevalent in the newly planted field than in continuously cultivated fields (10 and 30 years), whereas Sphingomonadaceae, Coleofasciculaceae, and Oxyphotobacteria were depleted. Concerning fungal families, the newly planted field was more dominated than the continuously planted field (30 years) with Mrakiaceae and Ceratocystidaceae, whereas Piskurozymaceae, Trimorphomycetaceae, Lachnocladiaceae, and Stigmatodisc were significantly enriched in the continuously planted fields (10 and 30 years). Regarding AMF families, Diversisporaceae was considerably depleted in continuously planted fields (10 and 30 years) compared to the newly planted field. These changes in microbial composition may ultimately lead to a decrease in sugarcane yield and quality in the monoculture system, which provides a theoretical basis for the obstruction mechanism of the continuous sugarcane planting system. However, continuous planting obstacles remain uncertain and further need to be coupled with root exudates, soil metabolomics, proteomics, nematodes, and other exploratory methods.
Collapse
|
24
|
Undabarrena A, Pereira CF, Kruasuwan W, Parra J, Sélem-Mojica N, Vind K, Schniete JK. Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001084. [PMID: 34515628 PMCID: PMC8549240 DOI: 10.1099/mic.0.001084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Camila F Pereira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Worarat Kruasuwan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jonathan Parra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Nelly Sélem-Mojica
- Centro de Ciencias Matemáticas, Antigua Carretera a Pátzcuaro # 8701, Col. Ex Hacienda San José de la Huerta, Morelia C.P. 58089, Michoacán, México
| | - Kristiina Vind
- NAICONS Srl, Viale Ortles 22/4, 20139 Milan (MI), Italy
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1 6708 WD, Wageningen, Netherlands
| | - Jana K. Schniete
- Biology, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| |
Collapse
|
25
|
Kawasaki A, Dennis PG, Forstner C, Raghavendra AKH, Richardson AE, Watt M, Mathesius U, Gilliham M, Ryan PR. The microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) exhibit significant differences in structure between root types and along root axes. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:871-888. [PMID: 33934748 DOI: 10.1071/fp20351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
There is increasing interest in understanding how the microbial communities on roots can be manipulated to improve plant productivity. Root systems are not homogeneous organs but are comprised of different root types of various ages and anatomies that perform different functions. Relatively little is known about how this variation influences the distribution and abundance of microorganisms on roots and in the rhizosphere. Such information is important for understanding how root-microbe interactions might affect root function and prevent diseases. This study tested specific hypotheses related to the spatial variation of bacterial and fungal communities on wheat (Triticum aestivum L.) and rice (Oryza sativa L.) roots grown in contrasting soils. We demonstrate that microbial communities differed significantly between soil type, between host species, between root types, and with position along the root axes. The magnitude of variation between different root types and along individual roots was comparable with the variation detected between different plant species. We discuss the general patterns that emerged in this variation and identify bacterial and fungal taxa that were consistently more abundant on specific regions of the root system. We argue that these patterns should be measured more routinely so that localised root-microbe interactions can be better linked with root system design, plant health and performance.
Collapse
Affiliation(s)
- Akitomo Kawasaki
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT 2601, Australia; and Present address: NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, Faculty of Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Christian Forstner
- School of Earth and Environmental Sciences, Faculty of Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Anil K H Raghavendra
- School of Earth and Environmental Sciences, Faculty of Sciences, The University of Queensland, St Lucia, Qld 4072, Australia; and Present address: NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Alan E Richardson
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT 2601, Australia
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT 2601, Australia; and Corresponding author.
| |
Collapse
|
26
|
Bhagat N, Sharma S, Ambardar S, Raj S, Trakroo D, Horacek M, Zouagui R, Sbabou L, Vakhlu J. Microbiome Fingerprint as Biomarker for Geographical Origin and Heredity in Crocus sativus: A Feasibility Study. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.688393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Host–microbiome interactions are specific and not random, making them defining entities for the host. The hypothesis proposed by various researchers earlier, that both plants and animals harbor specific inheritable core microbiome, is being augmented in the present study. Additionally, a case for using microbial fingerprint as a biomarker, not only for plant identification but also as a geographical indicator, has been investigated, taking Crocus sativus, saffron, as a study material. Crocus sativus, a monogenetic herb, on account of its male sterility and vegetative propagation, is reported to lack genome based molecular markers. Cormosphere microbiome (microbiome associated with corm) has been compared across three geographical locations, in two continents, to identify the core and unique microbiome, during the vegetative phase of its growth. Microbiome analysis done at phylum and genus level, using next generation sequencing technology, revealed that cormosphere at three locations harbored common phyla. At genus level, 24 genera were found common to all three geographical locations, indicating them to be part of the core microbiome of saffron. However, there were some bacterial genera unique to Kashmir, Kishtwar, and Morocco that can be used to develop microbial markers/geographical indicators for saffron grown in these regions. This is a preliminary study, indicating that the location specific bacterial community can be used to develop microbial barcodes but needs further augmentation with high coverage data from other saffron growing geographical regions.
Collapse
|
27
|
Welmillage SU, Zhang Q, Sreevidya VS, Sadowsky MJ, Gyaneshwar P. Inoculation of Mimosa Pudica with Paraburkholderia phymatum Results in Changes to the Rhizoplane Microbial Community Structure. Microbes Environ 2021; 36. [PMID: 33716243 PMCID: PMC7966945 DOI: 10.1264/jsme2.me20153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitrogen fixing symbiosis between rhizobia and legumes contributes significant amounts of N to agricultural and natural environments. In natural soils, rhizobia compete with indigenous bacterial communities to colonize legume roots, which leads to symbiotic interactions. However, limited information is currently available on the effects of the rhizobial symbiont on the resident microbial community in the legume rhizosphere, rhizoplane, and endosphere, which is partly due to the presence of native nodulating rhizobial strains. In the present study, we used a symbiotic system comprised of Paraburkholderia phymatum and Mimosa pudica to examine the interaction of an inoculant strain with indigenous soil bacteria. The effects of a symbiont inoculation on the native bacterial community was investigated using high throughput sequencing and an analysis of 16S rRNA gene amplicons. The results obtained revealed that the inoculation induced significant alterations in the microbial community present in the rhizoplane+endosphere of the roots, with 13 different taxa showing significant changes in abundance. No significant changes were observed in the rhizospheric soil. The relative abundance of P. phymatum significantly increased in the rhizoplane+endosphere of the root, but significant decreased in the rhizospheric soil. While the rhizosphere, rhizoplane, and root endosphere contained a wide diversity of bacteria, the nodules were predominantly colonized by P. phymatum. A network analysis revealed that the operational taxonomic units of Streptomyces and Phycicoccus were positively associated with P. phymatum as potential keystone taxa. Collectively, these results suggest that the success of an inoculated symbiont depends on its ability to colonize the roots in the face of competition by other soil bacteria. A more detailed understanding of the mechanisms by which an inoculated strain colonizes its plant host is crucial for realizing the full potential of microbial inoculants in sustainable agriculture.
Collapse
Affiliation(s)
| | - Qian Zhang
- Department of Soil and Water and Climate, University of Minnesota
| | | | | | | |
Collapse
|
28
|
Wang H, Narsing Rao MP, Gao Y, Li X, Gao R, Xie Y, Li Q, Li W. Insights into the endophytic bacterial community comparison and their potential role in the dimorphic seeds of halophyte Suaeda glauca. BMC Microbiol 2021; 21:143. [PMID: 33980153 PMCID: PMC8114534 DOI: 10.1186/s12866-021-02206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Seed dimorphism has been thought to be a bet-hedging strategy that helps plants survive in the disturbed environment and has been widely studied for its ecological adaptation mechanism. Many studies showed that seed-associated microorganisms play an important role in enhancing plant fitness, but information regarding endophytic bacteria associated with dimorphic seeds is limited. This study explores the influence of seed coat structure and seed phytochemical properties on the community composition and diversity of endophytic bacteria of dimorphic seeds of Suaeda glauca. In this study, we used 16S rRNA high-throughput gene sequencing method to compare the community composition and bacterial diversity between brown and black seeds of Suaeda glauca. RESULTS A significant difference was observed in seed coat structure and phytochemical properties between brown and black seeds of S. glauca. Total 9 phyla, 13 classes, 31 orders, 53 families, 102 genera were identified in the dimorphic seeds. The dominant phyla were Proteobacteria, Firmicutes, and Actinobacteria. The results showed that seed dimorphism had little impact on the diversity and richness of endophytic bacterial communities but significantly differs in the relative abundance of the bacterial community between brown and black seeds. At the phylum level, Actinobacteria tend to be enriched significantly in brown seeds. At the genus level, Rhodococcus, Ralstonia, Pelomonas and Bradyrhizobium tend to be enriched significantly in brown seeds, while Marinilactibacillus was mainly found in black seeds. Besides, brown seeds harbored a large number of bacteria with plant-growth-promoting traits, whereas black seeds presented bacteria with enzyme activities (i.e., pectinase, cellulolytic and xylanolytic activities). CONCLUSION The endophytic bacterial community compositions were significantly different between dimorphic seeds of Suaeda glauca, and play an important role in the ecological adaptation of dimorphic seeds by performing different biological function roles. The endophytic bacterial communities of the dimorphic seeds may be influenced mainly by the seed coat structureand partly by the seed phytochemical characteristics. These findings provide valuable information for better understanding of the ecological adaptation strategy of dimorphic seeds in the disturbed environment.
Collapse
Affiliation(s)
- Hongfei Wang
- The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, No.1 Liushu South Street, Dalian, 650081, China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanli Gao
- The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, No.1 Liushu South Street, Dalian, 650081, China
| | - Xinyang Li
- The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, No.1 Liushu South Street, Dalian, 650081, China
| | - Rui Gao
- Dandong Forestry and Grassland Development Service Center, Dandong, 118000, China
| | - Yuanguo Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiuli Li
- The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, No.1 Liushu South Street, Dalian, 650081, China.
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China. .,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
29
|
Bakhtiyarifar M, Enayatizamir N, Mehdi Khanlou K. Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers. Arch Microbiol 2021; 203:513-521. [PMID: 32965526 DOI: 10.1007/s00203-020-02038-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
This study was performed to isolate non-rhizobial endophytic bacteria from the root nodules of Glycine max (soybean), Vigna radiata (mung bean) and Vigna unguiculata (cowpea). The bacteria were characterized for plant growth promoting properties such as indole acetic acid production, phosphate and zinc solubilisation, nitrogen fixation and hydrogen cyanide production. Phylogenetic identification was performed using the Neighbour-Joining method on16S rRNA gene sequences. The impact of salt tolerant isolates on some properties of wheat cv. Chamran was evaluated by a completely randomised factorial design. Nine isolates having some characteristics related to plant growth promotion were identified as Staphylococcus hominis 7E, Streptomyces sp. 11E, Bacillus sp. 13E, Acinetobacter sp. 19E, from mung bean, Bacillus endophyticus 1E from cowpea, Staphylococcus hominis 9E, Bacillus endophyticus 14E, Brevundimonas sp. 16E and Kocuria sp. 26E from soybean nodules. Isolates 7E and 19E caused maximum growth inhibition of Fusarium on PDA plate. All isolates were able to grow at salinity levels of mixtures containing up to 400 mM of NaCl, CaCl2 and MgCl2, but their growth was inhibited by increasing salinity level. Only the growth of isolate 14E increased at three levels of salinity compared with control. Some isolates, i.e. 7E, 14E, 19E and 26E had higher colony diameter at 45 °C after 48 h of incubation compared to the growth at 30 and 40 °C. Inoculation of soil with isolate 1E and isolate 26E caused to ameliorate salinity stress in wheat and increased the weight of 1000-grains as compared with non-inoculated treatments.
Collapse
Affiliation(s)
- Marzieh Bakhtiyarifar
- Soil Science & Engineering Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Soil Science & Engineering Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Khosro Mehdi Khanlou
- Production Engineering & Plant Genetics Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
30
|
Gebauer L, Bouffaud ML, Ganther M, Yim B, Vetterlein D, Smalla K, Buscot F, Heintz-Buschart A, Tarkka MT. Soil Texture, Sampling Depth and Root Hairs Shape the Structure of ACC Deaminase Bacterial Community Composition in Maize Rhizosphere. Front Microbiol 2021; 12:616828. [PMID: 33613486 PMCID: PMC7891401 DOI: 10.3389/fmicb.2021.616828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 01/04/2023] Open
Abstract
Preservation of the phytostimulatory functions of plant growth-promoting bacteria relies on the adaptation of their community to the rhizosphere environment. Here, an amplicon sequencing approach was implemented to specifically target microorganisms with 1-aminocyclopropane-1-carboxylate deaminase activity, carrying the acdS gene. We stated the hypothesis that the relative phylogenetic distribution of acdS carrying microorganisms is affected by the presence or absence of root hairs, soil type, and depth. To this end, a standardized soil column experiment was conducted with maize wild type and root hair defective rth3 mutant in the substrates loam and sand, and harvest was implemented from three depths. Most acdS sequences (99%) were affiliated to Actinobacteria and Proteobacteria, and the strongest influence on the relative abundances of sequences were exerted by the substrate. Variovorax, Acidovorax, and Ralstonia sequences dominated in loam, whereas Streptomyces and Agromyces were more abundant in sand. Soil depth caused strong variations in acdS sequence distribution, with differential levels in the relative abundances of acdS sequences affiliated to Tetrasphaera, Amycolatopsis, and Streptomyces in loam, but Burkholderia, Paraburkholderia, and Variovorax in sand. Maize genotype influenced the distribution of acdS sequences mainly in loam and only in the uppermost depth. Variovorax acdS sequences were more abundant in WT, but Streptomyces, Microbacterium, and Modestobacter in rth3 rhizosphere. Substrate and soil depth were strong and plant genotype a further significant single and interacting drivers of acdS carrying microbial community composition in the rhizosphere of maize. This suggests that maize rhizosphere acdS carrying bacterial community establishes according to the environmental constraints, and that root hairs possess a minor but significant impact on acdS carrying bacterial populations.
Collapse
Affiliation(s)
- Lucie Gebauer
- Helmholtz Centre for Environmental Research, Halle, Germany
| | | | - Minh Ganther
- Helmholtz Centre for Environmental Research, Halle, Germany
| | - Bunlong Yim
- Julius Kühn-Institute, Braunschweig, Germany
| | - Doris Vetterlein
- Helmholtz Centre for Environmental Research, Halle, Germany.,Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - François Buscot
- Helmholtz Centre for Environmental Research, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Anna Heintz-Buschart
- Helmholtz Centre for Environmental Research, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika T Tarkka
- Helmholtz Centre for Environmental Research, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Marra R, Coppola M, Pironti A, Grasso F, Lombardi N, d’Errico G, Sicari A, Bolletti Censi S, Woo SL, Rao R, Vinale F. The Application of Trichoderma Strains or Metabolites Alters the Olive Leaf Metabolome and the Expression of Defense-Related Genes. J Fungi (Basel) 2020; 6:jof6040369. [PMID: 33339378 PMCID: PMC7766153 DOI: 10.3390/jof6040369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Biocontrol fungal strains of the genus Trichoderma can antagonize numerous plant pathogens and promote plant growth using different mechanisms of action, including the production of secondary metabolites (SMs). In this work we analyzed the effects of repeated applications of selected Trichoderma strains or SMs on young olive trees on the stimulation of plant growth and on the development of olive leaf spot disease caused by Fusicladium oleagineum. In addition, metabolomic analyses and gene expression profiles of olive leaves were carried out by LC-MS Q-TOF and real-time RT-PCR, respectively. A total of 104 phenolic compounds were detected from olive leave extracts and 20 were putatively identified. Targeted and untargeted approaches revealed significant differences in both the number and type of phenolic compounds accumulated in olive leaves after Trichoderma applications, as compared to water-treated plants. Different secoiridoids were less abundant in treated plants than in controls, while the accumulation of flavonoids (including luteolin and apigenin derivatives) increased following the application of specific Trichoderma strain. The induction of defense-related genes, and of genes involved in the synthesis of the secoiridoid oleuropein, was also analyzed and revealed a significant variation of gene expression according to the strain or metabolite applied.
Collapse
Affiliation(s)
- Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Correspondence: ; Tel.: +39-0812532253
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Angela Pironti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Filomena Grasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
| | - Giada d’Errico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Andrea Sicari
- Linfa S.c.a r.l., 89900 Vibo Valentia, Italy; (A.S.); (S.B.C.)
| | | | - Sheridan L. Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Vinale
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, 80055 Naples, Italy
| |
Collapse
|
32
|
Streptomyces Endophytes Promote Host Health and Enhance Growth across Plant Species. Appl Environ Microbiol 2020; 86:AEM.01053-20. [PMID: 32561579 PMCID: PMC7414947 DOI: 10.1128/aem.01053-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants. Streptomyces bacteria are ubiquitous in soils and are well known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots, and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana. Here, we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface-washed A. thaliana roots and generated high-quality genome sequences for five strains, which we named L2, M2, M3, N1, and N2. Reinfection of A. thaliana plants with L2, M2, and M3 significantly increased plant biomass individually and in combination, whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad-spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the take-all fungus, Gaeumannomyces graminis var. tritici. N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA), suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against take-all disease. We conclude that at least some soil-dwelling streptomycetes confer growth-promoting benefits on A. thaliana, while others might be exploited to protect crops against disease. IMPORTANCE We must reduce reliance on agrochemicals, and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypotheses that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth-promoting properties, including production of indole-3-acetic acid (IAA), siderophores, and aminocyclopropane-1-carboxylate (ACC) deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants.
Collapse
|
33
|
Meidani C, Savvidis A, Lampropoulou E, Sagia A, Katsifas E, Monokrousos N, Hatzinikolaou DG, Karagouni AD, Giannoutsou E, Adamakis IDS, Ntalli NG. Τhe Nematicidal Potential of Bioactive Streptomyces Strains Isolated from Greek Rhizosphere Soils Tested on Arabidopsis Plants of Varying Susceptibility to Meloidogyne spp. PLANTS (BASEL, SWITZERLAND) 2020; 9:E699. [PMID: 32486213 PMCID: PMC7355556 DOI: 10.3390/plants9060699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 05/03/2023]
Abstract
A total of 461 indigenous Streptomycetes strains recovered from various Greek rhizosphere habitats were tested for their bioactivity. All isolates were examined for their ability to suppress the growth of 12 specific target microorganisms. Twenty-six were found to exert antimicrobial activity and were screened for potential nematicidal action. S. monomycini ATHUBA 220, S. colombiensis ATHUBA 438, S. colombiensis ATHUBA 431, and S. youssoufensis ATHUBA 546 were proved to have a nematicidal effect and thus were further sequenced. Batch culture supernatants and solvent extracts were assessed for paralysis on Meloidogyne javanica and Meloidogyne incognita second-stage juveniles (J2). The solvent extracts of S. monomycini ATHUBA 220 and S. colombiensis ATHUBA 438 had the highest paralysis rates, so these Streptomycetes strains were further on tested for nematodes' biological cycle arrest on two Arabidopsis thaliana plants; the wild type (Col-0) and the katanin mutant fra2, which is susceptible to M. incognita. Interestingly, S. monomycini ATHUBA 220 and S. colombiensis ATHUBA 438 were able to negatively affect the M. incognita biological cycle in Col-0 and fra2 respectively, and increased growth in Col-0 upon M. incognita infection. However, they were ineffective against M. javanica. Fra2 plants were also proved susceptible to M. javanica infestation, with a reduced growth upon treatments with the Streptomyces strains. The nematicidal action and the plant-growth modulating abilities of the selected Streptomycetes strains are discussed.
Collapse
Affiliation(s)
- Christianna Meidani
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Alexandros Savvidis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Evaggelia Lampropoulou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Aggeliki Sagia
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Efstathios Katsifas
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Nikolaos Monokrousos
- Department of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Dimitris G. Hatzinikolaou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Amalia D. Karagouni
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Eleni Giannoutsou
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Ioannis-Dimosthenis S. Adamakis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, 157 84 Athens, Greece; (C.M.); (A.S.); (E.L.); (A.S.); (E.K.); (D.G.H.); (E.G.); (I.-D.S.A.)
| | - Nikoletta G. Ntalli
- Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 14561 Athens, Greece
| |
Collapse
|
34
|
Bioactive properties of streptomyces may affect the dominance of Tricholoma matsutake in shiro. Symbiosis 2020. [DOI: 10.1007/s13199-020-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractTricholoma matsutake is known to be the dominant fungal species in matsutake fruitbody neighboring (shiro) soil. To understand the mechanisms behind matsutake dominance, we studied the bacterial communities in matsutake dominant shiro soil and non-shiro soil, isolated the strains of Streptomyces from matsutake mycorrhizal root tips both from shiro soil and from the Pinus densiflora seedlings cultivated in shiro soil. Further, we investigated three Streptomyces spp. for their ability to inhibit fungal growth and Pinus densiflora seedling root elongation as well as two strains for their antifungal and antioxidative properties.Our results showed that Actinobacteria was the most abundant phylum in shiro soil. However, the differences in the Actinobacterial community composition (phylum or order level) between shiro and non-shiro soils were not significant, as indicated by PERMANOVA analyses. A genus belonging to Actinobacteria, Streptomyces, was present on the matsutake mycorrhizas, although in minority. The two antifungal assays revealed that the broths of three Streptomyces spp. had either inhibitory, neutral or promoting effects on the growth of different forest soil fungi as well as on the root elongation of the seedlings. The extracts of two strains, including one isolated from the P. densiflora seedlings, inhibited the growth of either pathogenic or ectomycorrhizal fungi. The effect depended on the medium used to cultivate the strains, but not the solvent used for the extraction. Two Streptomyces spp. showed antioxidant activity in one out of three assays used, in a ferric reducing antioxidant power assay. The observed properties seem to have several functions in matsutake shiro soil and they may contribute to the protection of the shiro area for T. matsutake dominance.
Collapse
|
35
|
El-Shatoury SA, Ameen F, Moussa H, Abdul Wahid O, Dewedar A, AlNadhari S. Biocontrol of chocolate spot disease ( Botrytis cinerea) in faba bean using endophytic actinomycetes Streptomyces: a field study to compare application techniques. PeerJ 2020; 8:e8582. [PMID: 32195043 PMCID: PMC7067178 DOI: 10.7717/peerj.8582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Sustainable agriculture is needing economic applications for disease control. One possibility is offered by local medical plants. Endophytes of medical plants, such as actinomycetes Streptomyces sp. have previously shown antagonistic activities against fungal phytopathogens. In the present field experiment, we aimed to verify the efficiency of endophytic Streptomyces against one of the common pathogens, Botrytis cinerea, causing chocolate spot disease for faba bean (Vicia fabae L.). We tested two strains of Streptomyces (MG788011, MG788012) and three techniques to apply the biocontrol agent: (1) coating the seeds with spores, (2) spraying mycelia and (3) spraying the crude metabolites over the plants. The technique using the crude metabolites was the most efficient to prevent the disease symptoms. Both of the endophytic strains diminished the disease symptoms and improved the plant growth. The study offers a potential biological control technique to prevent chocolate spot disease and, at the same time, increase the yields of faba bean in sustainable agriculture.
Collapse
Affiliation(s)
- Sahar A El-Shatoury
- Botany Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Marine Biology, Al-Hodeidah University, Al-Hodeidah, Yemen
| | - Heba Moussa
- Botany Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Omar Abdul Wahid
- Botany Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Ahmed Dewedar
- Botany Department, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Saleh AlNadhari
- Department of Plant Protection, College of Agriculture, King Saud University, Riyadh, Saudi Arabia.,Department of Plant Protection, College of Agriculture & Veterinary Medicine Farms, Yemen, Ibb University, Ibb, Yemen
| |
Collapse
|
36
|
Salwan R, Sharma V, Sharma A, Singh A. Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses. Microbiol Res 2020; 235:126449. [PMID: 32114361 DOI: 10.1016/j.micres.2020.126449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Streptomyces and their biomolecules are well explored for antibiotics production, bioremediation and alleviating the plant stresses due to their plant beneficial attributes. Therefore, due to plethora of biological attributes, the accurate portraying of molecular capabilities of these microorganisms at genomic level is of paramount importance. Here, we have evaluated biochemical attributes of two Streptomyces sp. AC30and AC40 for different plant beneficial activities which are antagonistic to Fusarium oxysporum, Alternaria solani, Sclerotinia sclerotium and Phytopthora infestans. In parallel, the draft genomes of these strains were deduced to understand their genomic capabilities using Illumina platform. The complete genome of AC30and AC40 were 11,284,599 bp and 12,636,188 bp in size with total G + C content of 62.36 and 54.75 %, respectively. Overall, higher number of genes (14,024) was reported for AC40 as compared to AC30 (12,476). The comparative genome organization revealed sharing of a few biosynthetic clusters as well as some exclusive biosynthetic clusters among both the strains. Further, expansion in the chitinases and glucanases was found in the genome of AC40. In addition, genes for 3-phytase and glycosyl hydrolase family 19 were restricted to AC40 only. The comparative genome study revealed presence of plant induced nitrilase in AC40 which is predicted for its role in IAA biosynthesis, release of ammonia, biotransformation of nitrile compounds to corresponding acids and bioremediation of soil containing nitrile compounds. For IAA and secondary metabolites biosynthesis, flavin-dependent monooxygenase, a rate limiting factor in Trp-dependent auxin biosynthesis pathway was found exclusive to AC30 genome. The comparative study revealed the diversification of few pathways/strategies to suppress plant pathogens and promote plant growth by Streptomyces strains.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, (Dr YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, 177 001, HP, India.
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, 140413, India.
| | - Anu Sharma
- University Centre for Research and Development, Chandigarh University, 140413, India
| | - Ankita Singh
- Bionivid Technology Private Limited Kasturi Nagar, Bangalore-560043, India
| |
Collapse
|
37
|
Vergnes S, Gayrard D, Veyssière M, Toulotte J, Martinez Y, Dumont V, Bouchez O, Rey T, Dumas B. Phyllosphere Colonization by a Soil Streptomyces sp. Promotes Plant Defense Responses Against Fungal Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:223-234. [PMID: 31544656 DOI: 10.1094/mpmi-05-19-0142-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Streptomycetes are soil-dwelling, filamentous actinobacteria and represent a prominent bacterial clade inside the plant root microbiota. The ability of streptomycetes to produce a broad spectrum of antifungal metabolites suggests that these bacteria could be used to manage plant diseases. Here, we describe the identification of a soil Streptomyces strain named AgN23 which strongly activates a large array of defense responses when applied on Arabidopsis thaliana leaves. AgN23 increased the biosynthesis of salicylic acid, leading to the development of salicylic acid induction deficient 2 (SID2)-dependent necrotic lesions. Size exclusion fractionation of plant elicitors secreted by AgN23 showed that these signals are tethered into high molecular weight complexes. AgN23 mycelium was able to colonize the leaf surface, leading to plant resistance against Alternaria brassicicola infection in wild-type Arabidopsis plants. AgN23-induced resistance was found partially compromised in salicylate, jasmonate, and ethylene mutants. Our data show that Streptomyces soil bacteria can develop at the surface of plant leaves to induce defense responses and protection against foliar fungal pathogens, extending their potential use to manage plant diseases.
Collapse
Affiliation(s)
- Sophie Vergnes
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| | - Damien Gayrard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
- De Sangosse, Bonnel, 47480 Pont-Du-Casse, France
| | - Marine Veyssière
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| | - Justine Toulotte
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| | - Yves Martinez
- CNRS, Plateforme Imagerie-Microscopie, Fédération de Recherche FR3450, Castanet-Tolosan, France
| | - Valérie Dumont
- CRITT-Bio-industries, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
- De Sangosse, Bonnel, 47480 Pont-Du-Casse, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
38
|
Leyva-Rojas JA, Coy-Barrera E, Hampp R. Interaction with Soil Bacteria Affects the Growth and Amino Acid Content of Piriformospora indica. Molecules 2020; 25:E572. [PMID: 32012990 PMCID: PMC7038203 DOI: 10.3390/molecules25030572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Exploration of the effect of soil bacteria on growth and metabolism of beneficial root endophytic fungi is relevant to promote favorable associations between microorganisms of the plant rhizosphere. Hence, the interaction between the plant-growth-promoting fungus Piriformospora indica and different soil bacteria was investigated. The parameters studied were fungal growth and its amino acid composition during the interaction. Fungus and bacteria were confronted in dual cultures in Petri dishes, either through agar or separated by a Perspex wall that only allowed the bacterial volatiles to be effective. Fungal growth was stimulated by Azotobacter chroococcum, whereas Streptomyces anulatus AcH 1003 inhibited it and Streptomyces sp. Nov AcH 505 had no effect. To analyze amino acid concentration data, targeted metabolomics was implemented under supervised analysis according to fungal-bacteria interaction and time. Orthogonal partial least squares-discriminant analysis (OPLS-DA) model clearly discriminated P. indica-A. chroococcum and P. indica-S. anulatus interactions, according to the respective score plot in comparison to the control. The most observable responses were in the glutamine and alanine size groups: While Streptomyces AcH 1003 increased the amount of glutamine, A. chroococcum decreased it. The fungal growth and the increase of alanine content might be associated with the assimilation of nitrogen in the presence of glucose as a carbon source. The N-fixing bacterium A. chroococcum should stimulate fungal amino acid metabolism via glutamine synthetase-glutamate synthase (GS-GOGAT). The data pointed to a stimulated glycolytic activity in the fungus observed by the accumulation of alanine, possibly via alanine aminotransferase. The responses toward the growth-inhibiting Streptomyces AcH 1003 suggest an (oxidative) stress response of the fungus.
Collapse
Affiliation(s)
- Jorge A. Leyva-Rojas
- Faculty of Basic and Biomedical Science, Universidad Simón Bolivar, Barranquilla 080002, Colombia
- Institute of Microbiology and Infection Biology (IMIT), University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany;
| | - Ericsson Coy-Barrera
- Faculty of Basic and Applied Science, Universidad Militar Nueva Granada, Cajica 250247, Colombia
| | - Rüdiger Hampp
- Institute of Microbiology and Infection Biology (IMIT), University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany;
| |
Collapse
|
39
|
Elsayed TR, Jacquiod S, Nour EH, Sørensen SJ, Smalla K. Biocontrol of Bacterial Wilt Disease Through Complex Interaction Between Tomato Plant, Antagonists, the Indigenous Rhizosphere Microbiota, and Ralstonia solanacearum. Front Microbiol 2020; 10:2835. [PMID: 31998244 PMCID: PMC6967407 DOI: 10.3389/fmicb.2019.02835] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022] Open
Abstract
Ralstonia solanacearum (biovar2, race3) is the causal agent of bacterial wilt and this quarantine phytopathogen is responsible for massive losses in several commercially important crops. Biological control of this pathogen might become a suitable plant protection measure in areas where R. solanacearum is endemic. Two bacterial strains, Bacillus velezensis (B63) and Pseudomonas fluorescens (P142) with in vitro antagonistic activity toward R. solanacearum (B3B) were tested for rhizosphere competence, efficient biological control of wilt symptoms on greenhouse-grown tomato, and effects on the indigenous rhizosphere prokaryotic communities. The population densities of B3B and the antagonists were estimated in rhizosphere community DNA by selective plating, real-time quantitative PCR, and R. solanacearum-specific fliC PCR-Southern blot hybridization. Moreover, we investigated how the pathogen and/or the antagonists altered the composition of the tomato rhizosphere prokaryotic community by 16S rRNA gene amplicon sequencing. B. velezensis (B63) and P. fluorescens (P142)-inoculated plants showed drastically reduced wilt disease symptoms, accompanied by significantly lower abundance of the B3B population compared to the non-inoculated pathogen control. Pronounced shifts in prokaryotic community compositions were observed in response to the inoculation of B63 or P142 in the presence or absence of the pathogen B3B and numerous dynamic taxa were identified. Confocal laser scanning microscopy (CLSM) visualization of the gfp-tagged antagonist P142 revealed heterogeneous colonization patterns and P142 was detected in lateral roots, root hairs, epidermal cells, and within xylem vessels. Although competitive niche exclusion cannot be excluded, it is more likely that the inoculation of P142 or B63 and the corresponding microbiome shifts primed the plant defense against the pathogen B3B. Both inoculants are promising biological agents for efficient control of R. solanacearum under field conditions.
Collapse
Affiliation(s)
- Tarek R Elsayed
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany.,Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Samuel Jacquiod
- Marine Microbiological Section, Department of Biology, Faculty of Natural and Life Sciences, University of Copenhagen, Copenhagen, Denmark.,Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Eman H Nour
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Søren J Sørensen
- Marine Microbiological Section, Department of Biology, Faculty of Natural and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
40
|
Soumare A, Boubekri K, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L. From Isolation of Phosphate Solubilizing Microbes to Their Formulation and Use as Biofertilizers: Status and Needs. Front Bioeng Biotechnol 2020; 7:425. [PMID: 31998701 PMCID: PMC6962098 DOI: 10.3389/fbioe.2019.00425] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
The production of biofertilizers at industrial level is a bottleneck because bacterial strains are generally developed and managed by research laboratories and not by production units. A seamless transition from laboratory to field application is, therefore necessary. This review provides an overview of the constraints that limiting the application or the implementation of Actinobacteria based biofertilizers especially in agricultural field and suggests solutions to overcome some of these limits. General processes of making and controlling the quality of the inoculum are briefly described. In addition, the paper underlines the opportunity of biofertilizers alone or in combination with chemical fertilizers. This review also, highlights the latest studies (until June 2019) and focuses on P-solubilization microorganisms mainly Actinobacteria. The biotechnology of these bacteria is a glimmer of hope for rock phosphate (RP) bioformulation. Since direct application of RP fertilizer is not always agronomically effective due to its sparse solubility.
Collapse
Affiliation(s)
- Abdoulaye Soumare
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Université Cheikh Anta Diop, Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
| | - Kenza Boubekri
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Faculté des Sciences Semlalia, Université Cadi Ayyad, Laboratoire of Microbial Biotechnologies, Agrosciences and Environment, Marrakesh, Morocco
| | - Karim Lyamlouli
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Mohamed Hafidi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Faculté des Sciences Semlalia, Université Cadi Ayyad, Laboratoire of Microbial Biotechnologies, Agrosciences and Environment, Marrakesh, Morocco
| | - Yedir Ouhdouch
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Faculté des Sciences Semlalia, Université Cadi Ayyad, Laboratoire of Microbial Biotechnologies, Agrosciences and Environment, Marrakesh, Morocco
| | - Lamfeddal Kouisni
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|
41
|
Berini F, Casartelli M, Montali A, Reguzzoni M, Tettamanti G, Marinelli F. Metagenome-Sourced Microbial Chitinases as Potential Insecticide Proteins. Front Microbiol 2019; 10:1358. [PMID: 31275279 PMCID: PMC6591435 DOI: 10.3389/fmicb.2019.01358] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Microbial chitinases are gaining interest as promising candidates for controlling plant pests. These enzymes can be used directly as biocontrol agents as well as in combination with chemical pesticides or other biopesticides, reducing their environmental impact and/or enhancing their efficacy. Chitinolytic enzymes can target two different structures in insects: the cuticle and the peritrophic matrix (PM). PM, formed by chitin fibrils connected to glycoproteins and proteoglycans, represents a physical barrier that plays an essential role in midgut physiology and insect digestion, and protects the absorptive midgut epithelium from food abrasion or pathogen infections. In this paper, we investigate how two recently discovered metagenome-sourced chitinases (Chi18H8 and 53D1) affect, in vitro and in vivo, the PM integrity of Bombyx mori, a model system among Lepidoptera. The two chitinases were produced in Escherichia coli or, alternatively, in the unconventional – but more environmentally acceptable – Streptomyces coelicolor. Although both the proteins dramatically altered the structure of B. mori PM in vitro, when administered orally only 53D1 caused adverse and marked effects on larval growth and development, inducing mortality and reducing pupal weight. These in vivo results demonstrate that 53D1 is a promising candidate as insecticide protein.
Collapse
Affiliation(s)
- Francesca Berini
- Laboratory of Microbial Biotechnology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Morena Casartelli
- Laboratory of Insect Physiology and Biotechnology, Department of Biosciences, University of Milan Milan, Italy
| | - Aurora Montali
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria Varese, Italy
| | - Marcella Reguzzoni
- Laboratory of Human Morphology, Department of Medicine and Surgery, University of Insubria Varese, Italy
| | - Gianluca Tettamanti
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria Varese, Italy
| | - Flavia Marinelli
- Laboratory of Microbial Biotechnology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
42
|
Newitt JT, Prudence SMM, Hutchings MI, Worsley SF. Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens 2019; 8:pathogens8020078. [PMID: 31200493 PMCID: PMC6630304 DOI: 10.3390/pathogens8020078] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
A growing world population and an increasing demand for greater food production requires that crop losses caused by pests and diseases are dramatically reduced. Concurrently, sustainability targets mean that alternatives to chemical pesticides are becoming increasingly desirable. Bacteria in the plant root microbiome can protect their plant host against pests and pathogenic infection. In particular, Streptomyces species are well-known to produce a range of secondary metabolites that can inhibit the growth of phytopathogens. Streptomyces are abundant in soils and are also enriched in the root microbiomes of many different plant species, including those grown as economically and nutritionally valuable cereal crops. In this review we discuss the potential of Streptomyces to protect against some of the most damaging cereal crop diseases, particularly those caused by fungal pathogens. We also explore factors that may improve the efficacy of these strains as biocontrol agents in situ, as well as the possibility of exploiting plant mechanisms, such as root exudation, that enable the recruitment of microbial species from the soil to the root microbiome. We argue that a greater understanding of these mechanisms may enable the development of protective plant root microbiomes with a greater abundance of beneficial bacteria, such as Streptomyces species.
Collapse
Affiliation(s)
- Jake T Newitt
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
43
|
González-García S, Álvarez-Pérez JM, Sáenz de Miera LE, Cobos R, Ibañez A, Díez-Galán A, Garzón-Jimeno E, Coque JJR. Developing tools for evaluating inoculation methods of biocontrol Streptomyces sp. strains into grapevine plants. PLoS One 2019; 14:e0211225. [PMID: 30677098 PMCID: PMC6345443 DOI: 10.1371/journal.pone.0211225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/09/2019] [Indexed: 01/27/2023] Open
Abstract
The endophytic Streptomyces sp. VV/E1, and rhizosphere Streptomyces sp. VV/R4 strains, isolated from grapevine plants were shown in a previous work to reduce the infection rate of fungal pathogens involved in young grapevine decline. In this study we cloned fragments from randomly amplified polymorphic DNA (RAPD), and developed two stably diagnostic sequence-characterized amplified region (SCAR) markers of 182 and 160 bp for the VV/E1 and VV/R4 strains, respectively. The SCAR markers were not found in another 50 actinobacterial strains isolated from grapevine plants. Quantitative real-time PCR protocols based on the amplification of these SCAR markers were used for the detection and quantification of both strains in plant material. These strains were applied on young potted plants using two methods: perforation of the rootstock followed by injection of the microorganisms or soaking the root system in a bacterial suspension. Both methods were combined with a booster treatment by direct addition of a bacterial suspension to the soil near the root system. Analysis of uprooted plants showed that those inoculated by injection exhibited the highest rate of colonization. In contrast, direct addition of either strain to the soil did not lead to reliable colonization. This study has developed molecular tools for analyzing different methods for inoculating grapevine plants with selected Streptomyces sp. strains which protect them from fungal infections that enter through their root system. These tools are of great applied interest since they could easily be established in nurseries to produce grafted grapevine plants that are protected against fungal pathogens. Finally, this methodology might also be applied to other vascular plants for their colonization with beneficial biological control agents.
Collapse
Affiliation(s)
| | | | | | | | - Ana Ibañez
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | | | | | - Juan José R. Coque
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| |
Collapse
|
44
|
Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere. Appl Environ Microbiol 2018; 84:AEM.02797-17. [PMID: 29654182 DOI: 10.1128/aem.02797-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Rhizospheric bacteria play important roles in plant tolerance and activation of heavy metals. Understanding the bacterial rhizobiome of hyperaccumulators may contribute to the development of optimized phytoextraction for metal-polluted soils. We used 16S rRNA gene amplicon sequencing to investigate the rhizospheric bacterial communities of the cadmium (Cd) hyperaccumulating ecotype (HE) Sedum alfredii in comparison to its nonhyperaccumulating ecotype (NHE). Both planting of two ecotypes of S. alfredii and elevated Cd levels significantly decreased bacterial alpha-diversity and altered bacterial community structure in soils. The HE rhizosphere harbored a unique bacterial community differing from those in its bulk soil and NHE counterparts. Several key taxa from Actinobacteria, Bacteroidetes, and TM7 were especially abundant in HE rhizospheres under high Cd stress. The actinobacterial genus Streptomyces was responsible for the majority of the divergence of bacterial community composition between the HE rhizosphere and other soil samples. In the HE rhizosphere, the abundance of Streptomyces was 3.31- to 16.45-fold higher than that in other samples under high Cd stress. These results suggested that both the presence of the hyperaccumulator S. alfredii and Cd exposure select for a specialized rhizosphere bacterial community during phytoextraction of Cd-contaminated soils and that key taxa, such as the species affiliated with the genus Streptomyces, may play an important role in metal hyperaccumulation.IMPORTANCESedum alfredii is a well-known Cd hyperaccumulator native to China. Its potential for extracting Cd relies not only on its powerful uptake, translocation, and tolerance for Cd but also on processes underground (especially rhizosphere microbes) that facilitate root uptake and tolerance of the metal. In this study, a high-throughput sequencing approach was applied to gain insight into the soil-plant-microbe interactions that may influence Cd accumulation in the hyperaccumulator S. alfredii Here, we report the investigation of rhizosphere bacterial communities of S. alfredii in phytoremediation of different levels of Cd contamination in soils. Moreover, some key taxa in its rhizosphere identified in the study, such as the species affiliated with genus Streptomyces, may shed new light on the involvement of bacteria in phytoextraction of contaminated soils and provide new materials for phytoremediation optimization.
Collapse
|
45
|
Seo H, Kim KJ. Structural and biochemical characterization of the type-II LOG protein from Streptomyces coelicolor A3. Biochem Biophys Res Commun 2018; 499:577-583. [PMID: 29596827 DOI: 10.1016/j.bbrc.2018.03.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 01/19/2023]
Abstract
Streptomyces coelicolor A3 contains Sc5140, a gene coding for poorly understood bacterial LOG-like protein. In this study, we determined the crystal structure of Sc5140 and found it resembles the overall structure of other type-II LOGs. In addition, Sc5140 exhibited phosphoribohydrolase activity against adenosine monophosphate (AMP), indicating that it had the same function as known type-II LOGs. Based on these results, we designated Sc5140 as ScLOGII. We performed docking calculations of AMP into the ScLOGII structure, which suggested the mode of binding for type-II LOG with their AMP substrate. The ScLOGII structure uniquely exhibited a long tail-like structure at the N-terminus that was involved in hexamerization of the protein; the disordered N-terminal region (DNR). Truncation of DNR in ScLOGII negatively affected both the phosphoribohydrolase activity and the oligomerization of the protein, suggesting that this region functioned in enzyme stabilization. However, results from truncation experiments using ScLOGII and CgLOGII, a type-II LOG homologue from Corynebacterium glutamicum, were quite different, leaving uncertainty regarding the general functions of DNR in type-II LOGs. Overall, the current structural work may help in understand the significance of type-II LOG protein at the molecular level.
Collapse
Affiliation(s)
- Hogyun Seo
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea.
| |
Collapse
|
46
|
Vurukonda SSKP, Giovanardi D, Stefani E. Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes. Int J Mol Sci 2018; 19:E952. [PMID: 29565834 PMCID: PMC5979581 DOI: 10.3390/ijms19040952] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 01/12/2023] Open
Abstract
There has been many recent studies on the use of microbial antagonists to control diseases incited by soilborne and airborne plant pathogenic bacteria and fungi, in an attempt to replace existing methods of chemical control and avoid extensive use of fungicides, which often lead to resistance in plant pathogens. In agriculture, plant growth-promoting and biocontrol microorganisms have emerged as safe alternatives to chemical pesticides. Streptomyces spp. and their metabolites may have great potential as excellent agents for controlling various fungal and bacterial phytopathogens. Streptomycetes belong to the rhizosoil microbial communities and are efficient colonizers of plant tissues, from roots to the aerial parts. They are active producers of antibiotics and volatile organic compounds, both in soil and in planta, and this feature is helpful for identifying active antagonists of plant pathogens and can be used in several cropping systems as biocontrol agents. Additionally, their ability to promote plant growth has been demonstrated in a number of crops, thus inspiring the wide application of streptomycetes as biofertilizers to increase plant productivity. The present review highlights Streptomyces spp.-mediated functional traits, such as enhancement of plant growth and biocontrol of phytopathogens.
Collapse
Affiliation(s)
| | - Davide Giovanardi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Emilio Stefani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy.
| |
Collapse
|
47
|
Keilhofer N, Nachtigall J, Kulik A, Ecke M, Hampp R, Süssmuth RD, Fiedler HP, Schrey SD. Streptomyces AcH 505 triggers production of a salicylic acid analogue in the fungal pathogen Heterobasidion abietinum that enhances infection of Norway spruce seedlings. Antonie Van Leeuwenhoek 2018; 111:691-704. [DOI: 10.1007/s10482-018-1017-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/11/2018] [Indexed: 03/19/2023]
|
48
|
Kaul S, Gupta S, Sharma T, Dhar MK. Unfolding the Role of Rhizomicrobiome Toward Sustainable Agriculture. SOIL BIOLOGY 2018. [DOI: 10.1007/978-3-319-75910-4_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Álvarez-Pérez JM, González-García S, Cobos R, Olego MÁ, Ibañez A, Díez-Galán A, Garzón-Jimeno E, Coque JJR. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline. Appl Environ Microbiol 2017; 83:e01564-17. [PMID: 28986378 PMCID: PMC5717199 DOI: 10.1128/aem.01564-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries.IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards.
Collapse
Affiliation(s)
| | | | | | | | - Ana Ibañez
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | - Alba Díez-Galán
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | | | - Juan José R Coque
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| |
Collapse
|
50
|
Gkarmiri K, Mahmood S, Ekblad A, Alström S, Högberg N, Finlay R. Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape. Appl Environ Microbiol 2017; 83:e01938-17. [PMID: 28887416 PMCID: PMC5666129 DOI: 10.1128/aem.01938-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. "Candidatus Nitrososphaera" was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napusIMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture.
Collapse
Affiliation(s)
- Konstantia Gkarmiri
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shahid Mahmood
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alf Ekblad
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Sadhna Alström
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nils Högberg
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roger Finlay
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|