1
|
Singh A, Liu F, Yuwono C, Wehrhahn MC, Slavich E, Young AM, Chong SKT, Tay ACY, Riordan SM, Zhang L. Age-Dependent Variations in the Distribution of Aeromonas Species in Human Enteric Infections. Pathogens 2025; 14:120. [PMID: 40005497 PMCID: PMC11858002 DOI: 10.3390/pathogens14020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Aeromonas species are enteropathogens that cause gastroenteritis with a unique three-peak infection pattern related to patient age. The contributions of individual Aeromonas species to age-related infections remain unknown. Multi-locus sequence typing (MLST) was performed to determine the species of Aeromonas strains from Australian patients with gastroenteritis. Public database searches were conducted to collect strains of enteric Aeromonas species, identified by either MLST or whole genome sequencing with known patient age. Violin plot analysis was performed to assess Aeromonas infection distribution across patients of different ages. Generalized additive model (GAM) analysis was employed to investigate the relationship between Aeromonas species and patient age. A total of 266 strains of seven Aeromonas species met the selection criteria, which were used for analyses. The violin plots revealed distinct patterns among individual Aeromonas species in relation to patient age. The GAM analyses identified a significant association between Aeromonas species and patient age (p = 0.009). Aeromonas veronii (153 strains) showed the highest probability of infection in most ages, particularly among young adults. Aeromonas caviae (59 strains) is more common in young children and adults over 60 years of age. The probability of infection for Aeromonas hydrophila (34 strains) and Aeromonas dhakensis (9 strains) was generally low, there was a slight increase in individuals aged 50-60 for A. hydrophila and over 60 years for A. dhakensis. These findings provide novel evidence of the varied contributions of different Aeromonas species to human enteric infections related to patient age, offering valuable insights for epidemiology and clinical management.
Collapse
Affiliation(s)
- Adhiraj Singh
- School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.); (C.Y.); (A.M.Y.); (S.K.T.C.)
| | - Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.); (C.Y.); (A.M.Y.); (S.K.T.C.)
| | - Michael C. Wehrhahn
- Douglass Hanly Moir Pathology, a Sonic Healthcare Practice, 14 Giffnock Ave, Macquarie Park, NSW 2113, Australia;
| | - Eve Slavich
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Alexandra M. Young
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.); (C.Y.); (A.M.Y.); (S.K.T.C.)
| | - Sarah K. T. Chong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.); (C.Y.); (A.M.Y.); (S.K.T.C.)
| | - Alfred Chin Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW 2033, Australia;
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.); (C.Y.); (A.M.Y.); (S.K.T.C.)
| |
Collapse
|
2
|
Guo Y, Zeng C, Ma C, Cai H, Jiang X, Zhai S, Xu X, Lin M. Comparative genomics analysis of the multidrug-resistant Aeromonas hydrophila MX16A providing insights into antibiotic resistance genes. Front Cell Infect Microbiol 2022; 12:1042350. [PMID: 36405966 PMCID: PMC9669441 DOI: 10.3389/fcimb.2022.1042350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2023] Open
Abstract
In this paper, the whole genome of the multidrug-resistant Aeromonas hydrophila MX16A was comprehensively analyzed and compared after sequencing by PacBio RS II. To shed light on the drug resistance mechanism of A. hydrophila MX16A, a Kirby-Bauer disk diffusion method was used to assess the phenotypic drug susceptibility. Importantly, resistance against β-lactam, sulfonamides, rifamycins, macrolides, tetracyclines and chloramphenicols was largely consistent with the prediction analysis results of drug resistance genes in the CARD database. The varied types of resistance genes identified from A. hydrophila MX16A revealed multiple resistance mechanisms, including enzyme inactivation, gene mutation and active effusion. The publicly available complete genomes of 35 Aeromonas hydrophila strains on NCBI, including MX16A, were downloaded for genomic comparison and analysis. The analysis of 33 genomes with ANI greater than 95% showed that the pan-genome consisted of 9556 genes, and the core genes converged to 3485 genes. In summary, the obtained results showed that A. hydrophila exhibited a great genomic diversity as well as diverse metabolic function and it is believed that frequent exchanges between strains lead to the horizontal transfer of drug resistance genes.
Collapse
Affiliation(s)
- Yuxin Guo
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Chenxi Zeng
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Chenjie Ma
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Hongjiao Cai
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Xinglong Jiang
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Shaowei Zhai
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Xiaojin Xu
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
| | - Mao Lin
- Fisheries College, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen, Fujian, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, Fujian, China
| |
Collapse
|
3
|
Fernández-Bravo A, Figueras MJ. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020; 8:microorganisms8010129. [PMID: 31963469 PMCID: PMC7022790 DOI: 10.3390/microorganisms8010129] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). Since aeromonads were first associated with human disease, gastroenteritis, bacteremia, and wound infections have dominated. The literature shows that the pathogenic potential of Aeromonas is considered multifactorial and the presence of several virulence factors allows these bacteria to adhere, invade, and destroy the host cells, overcoming the immune host response. Based on current information about the ecology, epidemiology, and pathogenicity of the genus Aeromonas, we should assume that the infections these bacteria produce will remain a great health problem in the future. The ubiquitous distribution of these bacteria and the increasing elderly population, to whom these bacteria are an opportunistic pathogen, will facilitate this problem. In addition, using data from outbreak studies, it has been recognized that in cases of diarrhea, the infective dose of Aeromonas is relatively low. These poorly known bacteria should therefore be considered similarly as enteropathogens like Salmonella and Campylobacter.
Collapse
|
4
|
Gut Bacteria of Water Monitor Lizard ( Varanus salvator) Are a Potential Source of Antibacterial Compound(s). Antibiotics (Basel) 2019; 8:antibiotics8040164. [PMID: 31554316 PMCID: PMC6963368 DOI: 10.3390/antibiotics8040164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
For the past few decades, there has been limited progress in the development of novel antibacterials. Previously, we postulated that the gut microbiota of animals residing in polluted environments are a forthcoming supply of antibacterials. Among various species, the water monitor lizard is an interesting species that feeds on organic waste and the carcass of wild animals. Gut microbiota of the water monitor lizard were sequestered, identified and cultivated in RPMI-1640 to produce conditioned medium (CM). Next, the antimicrobial properties of CM were evaluated versus a selection of Gram-negative (Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) and Gram-positive bacteria (Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus, and Bacillus cereus). CM were partially characterized by heat inactivation at 95°C for 10 min and tested against P. aeruginosa and S. pyogenes. CM were also tested against immortalized human keratinocytes (HaCaT) cells lines. The results demonstrated that gut microbiota isolated from water monitor lizard produced molecules with remarkable bactericidal activities. To determine the identity of the active molecules, CM were subjected to Liquid Chromatography-Mass Spectrometry. Several molecules were identified belonging to the classes of flavonoids, terpenoids, alkaloids, polyhydroxy alkaloids, polyacetylenes, bisphenols, amides, oxylipin and pyrazine derivatives with known broad-spectrum antimicrobial, anti-tumour, anti-oxidant, anti-inflammatory, and analgesic attributes. Furthermore, the detailed analysis of these molecules could lead us to develop effective therapeutic antibacterials.
Collapse
|
5
|
Hoel S, Vadstein O, Jakobsen AN. The Significance of Mesophilic Aeromonas spp. in Minimally Processed Ready-to-Eat Seafood. Microorganisms 2019; 7:E91. [PMID: 30909614 PMCID: PMC6463141 DOI: 10.3390/microorganisms7030091] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Minimally processed and ready-to-eat (RTE) seafood products are gaining popularity because of their availability in retail stores and the consumers' perception of convenience. Products that are subjected to mild processing and products that do not require additional heating prior to consumption are eaten by an increasing proportion of the population, including people that are more susceptible to foodborne disease. Worldwide, seafood is an important source of foodborne outbreaks, but the exact burden is not known. The increased interest in seafood products for raw consumption introduces new food safety issues that must be addressed by all actors in the food chain. Bacteria belonging to genus Aeromonas are ubiquitous in marine environments, and Aeromonas spp. has held the title "emerging foodborne pathogen" for more than a decade. Given its high prevalence in seafood and in vegetables included in many RTE seafood meals, the significance of Aeromonas as a potential foodborne pathogen and a food spoilage organism increases. Some Aeromonas spp. can grow relatively uninhibited in food during refrigeration under a broad range of pH and NaCl concentrations, and in various packaging atmospheres. Strains of several Aeromonas species have shown spoilage potential by the production of spoilage associated metabolites in various seafood products, but the knowledge on spoilage in cold water fish species is scarce. The question about the significance of Aeromonas spp. in RTE seafood products is challenged by the limited knowledge on how to identify the truly virulent strains. The limited information on clinically relevant strains is partly due to few registered outbreaks, and to the disputed role as a true foodborne pathogen. However, it is likely that illness caused by Aeromonas might go on undetected due to unreported cases and a lack of adequate identification schemes. A rather confusing taxonomy and inadequate biochemical tests for species identification has led to a biased focus towards some Aeromonas species. Over the last ten years, several housekeeping genes has replaced the 16S rRNA gene as suitable genetic markers for phylogenetic analysis. The result is a more clear and robust taxonomy and updated knowledge on the currently circulating environmental strains. Nevertheless, more knowledge on which factors that contribute to virulence and how to control the potential pathogenic strains of Aeromonas in perishable RTE seafood products are needed.
Collapse
Affiliation(s)
- Sunniva Hoel
- Department of Biotechnology and Food Science, NTNU⁻Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Olav Vadstein
- Department of Biotechnology and Food Science, NTNU⁻Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Anita N Jakobsen
- Department of Biotechnology and Food Science, NTNU⁻Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|
6
|
Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB. The genus Aeromonas: A general approach. Microb Pathog 2019; 130:81-94. [PMID: 30849490 DOI: 10.1016/j.micpath.2019.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The genus Aeromonas comprises more than thirty Gram-negative bacterial species which mostly act as opportunistic microorganisms. These bacteria are distributed naturally in diverse aquatic ecosystems, where they are easily isolated from animals such as fish and crustaceans. A capacity for adaptation also makes Aeromonas able to colonize terrestrial environments and their inhabitants, so these microorganisms can be identified from different sources, such as soils, plants, fruits, vegetables, birds, reptiles, amphibians, among others. Infectious processes usually develop in immunocompromised humans; in fish and other marine animals this process occurs under conditions of stress. Such events are most often associated with incorrect practices in aquaculture. Aeromonas has element diverse ranges, denominated virulence factors, which promote adhesion, colonization and invasion into host cells. These virulence factors, such as membrane components, enzymes and toxins, for example, are differentially expressed among species, making some strains more virulent than others. Due to their diversity, no single virulence factor was considered determinant in the infectious process generated by these microorganisms. Unlike other genera, Aeromonas species are erroneously differentiated by conventional biochemical tests. Therefore, molecular assays are necessary for this purpose. Nevertheless, new means of identification have been considered in order to generate methods that, like molecular tests, can correctly identify these microorganisms. The main objectives of this review are to explain environmental and structural characteristics of the Aeromonas genus and to discuss virulence mechanisms that these bacteria use to infect aquatic organisms and humans, which are important aspects for aquaculture and public health, respectively. In addition, this review aims to clarify new tests for the precise identification of the species of Aeromonas, contributing to the exact and specific diagnosis of infections by these microorganisms and consequently the treatment.
Collapse
Affiliation(s)
- Rafael Bastos Gonçalves Pessoa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Elba Verônica Matoso Maciel de Carvalho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
7
|
Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int J Food Microbiol 2018; 280:87-99. [PMID: 29478710 DOI: 10.1016/j.ijfoodmicro.2017.12.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 01/12/2023]
Abstract
Seafood comprising of both vertebrate and invertebrate aquatic organisms are nutritious, rich in omega-3 fatty acids, essential vitamins, proteins, minerals and form part of healthy diet. However, despite the health and nutritional benefits, seafood is highly perishable. Spoilage of seafood could be as a result of microbial activity, autolysis or chemical oxidation. Microbial activity constitutes more spoilage than others. Spoilage bacteria are commonly Gram negative and produce off odours and flavours in seafood as a result of their metabolic activities. Storage temperature, handling and packaging conditions affect microbial growth and thus the shelf-life of seafood. Due to the complexity of the microbial communities in seafood, culture dependent methods of detection may not be useful, hence the need for culture independent methods are necessary to understand the diversity of microbiota and spoilage process. Similarly, the volatile organic compounds released by spoilage bacteria are not fully understood in some seafood. This review therefore highlights current knowledge and understanding of seafood spoilage microbiota, volatile organic compounds, effects of storage temperature and packaging conditions on quality of seafood.
Collapse
|
8
|
Ghatak S, Blom J, Das S, Sanjukta R, Puro K, Mawlong M, Shakuntala I, Sen A, Goesmann A, Kumar A, Ngachan SV. Pan-genome analysis of Aeromonas hydrophila, Aeromonas veronii and Aeromonas caviae indicates phylogenomic diversity and greater pathogenic potential for Aeromonas hydrophila. Antonie van Leeuwenhoek 2016; 109:945-56. [PMID: 27075453 DOI: 10.1007/s10482-016-0693-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/30/2016] [Indexed: 11/26/2022]
Abstract
Aeromonas species are important pathogens of fishes and aquatic animals capable of infecting humans and other animals via food. Due to the paucity of pan-genomic studies on aeromonads, the present study was undertaken to analyse the pan-genome of three clinically important Aeromonas species (A. hydrophila, A. veronii, A. caviae). Results of pan-genome analysis revealed an open pan-genome for all three species with pan-genome sizes of 9181, 7214 and 6884 genes for A. hydrophila, A. veronii and A. caviae, respectively. Core-genome: pan-genome ratio (RCP) indicated greater genomic diversity for A. hydrophila and interestingly RCP emerged as an effective indicator to gauge genomic diversity which could possibly be extended to other organisms too. Phylogenomic network analysis highlighted the influence of homologous recombination and lateral gene transfer in the evolution of Aeromonas spp. Prediction of virulence factors indicated no significant difference among the three species though analysis of pathogenic potential and acquired antimicrobial resistance genes revealed greater hazards from A. hydrophila. In conclusion, the present study highlighted the usefulness of whole genome analyses to infer evolutionary cues for Aeromonas species which indicated considerable phylogenomic diversity for A. hydrophila and hitherto unknown genomic evidence for pathogenic potential of A. hydrophila compared to A. veronii and A. caviae.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India.
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Samir Das
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Rajkumari Sanjukta
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Kekungu Puro
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | | | - Ingudam Shakuntala
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Arnab Sen
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Ashok Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - S V Ngachan
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| |
Collapse
|
9
|
Albarral V, Sanglas A, Palau M, Miñana-Galbis D, Fusté MC. Potential pathogenicity ofAeromonas hydrophilacomplex strains isolated from clinical, food, and environmental sources. Can J Microbiol 2016; 62:296-306. [DOI: 10.1139/cjm-2015-0466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aeromonas are autochthonous inhabitants of aquatic environments, including chlorinated and polluted waters, although they can also be isolated from a wide variety of environmental and clinical sources. They cause infections in vertebrates and invertebrates and are considered to be an emerging pathogen in humans, producing intestinal and extra-intestinal diseases. Most of the clinical isolates correspond to A. hydrophila, A. caviae, and A. veronii bv. Sobria, which are described as the causative agents of wound infections, septicaemia, and meningitis in immunocompromised people, and diarrhoea and dysenteric infections in the elderly and children. The pathogenic factors associated with Aeromonas are multifactorial and involve structural components, siderophores, quorum-sensing mechanisms, secretion systems, extracellular enzymes, and exotoxins. In this study, we analysed a representative number of clinical and environmental strains belonging to the A. hydrophila species complex to evaluate their potential pathogenicity. We thereby detected their enzymatic activities and antibiotic susceptibility pattern and the presence of virulence genes (aer, alt, ast, and ascV). The notably high prevalence of these virulence factors, even in environmental strains, indicated a potential pathogenic capacity. Additionally, we determined the adhesion capacity and cytopathic effects of this group of strains in Caco-2 cells. Most of the strains exhibited adherence and caused complete lysis.
Collapse
Affiliation(s)
- Vicenta Albarral
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - Ariadna Sanglas
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - Montserrat Palau
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - David Miñana-Galbis
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - M. Carmen Fusté
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona 08028, Spain
| |
Collapse
|
10
|
Remuzgo-Martínez S, Aranzamendi-Zaldunbide M, Pilares-Ortega L, Icardo JM, Acosta F, Martínez-Martínez L, Ramos-Vivas J. Interaction of macrophages with a cytotoxic Serratia liquefaciens human isolate. Microbes Infect 2013; 15:480-90. [PMID: 23524146 DOI: 10.1016/j.micinf.2013.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/18/2022]
Abstract
Macrophages play key roles in host defense by recognizing, engulfing, and killing microorganisms. Understanding the response of macrophages to pathogens may provide insights into host defenses and the tactics used by pathogens to circumvent these defenses. In the present study, we investigated the interaction between a clinical isolate of Serratia liquefaciens and macrophages. S. liquefaciens strain HUMV-3250 triggers a fast and potent cytotoxic effect upon infection. This process requires the presence of live bacteria, adherence, and protein synthesis but not phagocytosis/bacterial internalization. Moreover, cytotoxicity assays, analysis of DNA integrity, immunofluorescence, and confocal, scanning, and time-lapse microscopy revealed that macrophage viability decreased rapidly with time upon challenge, and depends on the MOI used. Treatment of macrophages with caspase-1 inhibitors, or with specific inhibitors of phagocytosis, did not alter the infection outcome. Moreover, human macrophages exhibited similar cytotoxic changes after infection with this strain. Macrophages responded to this cytotoxic strain with a robust pattern of pro-inflammatory gene expression. However, phagocytosis attempts to engulf live bacteria were unsuccessful, and the phagocytes were unable to kill the bacteria. We conclude that macrophage cell death occurs rapidly as a result of necrotic events after close contact with S. liquefaciens. These results likely have important implications for understanding Serratia pathogenesis and host response to infection.
Collapse
Affiliation(s)
- Sara Remuzgo-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander, Cantabria, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental fishes of Kerala, India. Antonie van Leeuwenhoek 2012; 103:53-67. [DOI: 10.1007/s10482-012-9786-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
|
12
|
Acinetobacter calcoaceticus-baumannii complex strains induce caspase-dependent and caspase-independent death of human epithelial cells. Curr Microbiol 2012; 65:319-29. [PMID: 22684803 PMCID: PMC3401494 DOI: 10.1007/s00284-012-0159-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/15/2012] [Indexed: 12/25/2022]
Abstract
We investigated interactions of human isolates of Acinetobacter calcoaceticus–baumannii complex strains with epithelial cells. The results showed that bacterial contact with the cells as well as adhesion and invasion were required for induction of cytotoxicity. The infected cells revealed hallmarks of apoptosis characterized by cell shrinking, condensed chromatin, and internucleosomal fragmentation of nuclear DNA. The highest apoptotic index was observed for 4 of 10 A.calcoaceticus and 4 of 7 A. baumannii strains. Moreover, we observed oncotic changes: cellular swelling and blebbing, noncondensed chromatin, and the absence of DNA fragmentation. The highest oncotic index was observed in cells infected with 6 A.calcoaceticus isolates. Cell-contact cytotoxicity and cell death were not inhibited by the pan-caspase inhibitor z-VAD-fmk. Induction of oncosis was correlated with increased invasive ability of the strains. We demonstrated that the mitochondria of infected cells undergo structural and functional alterations which can lead to cell death. Infected apoptotic and oncotic cells exhibited loss of mitochondrial transmembrane potential (ΔΨm). Bacterial infection caused generation of nitric oxide and reactive oxygen species. This study indicated that Acinetobacter spp. induced strain-dependent distinct types of epithelial cell death that may contribute to the pathogenesis of bacterial infection.
Collapse
|