1
|
Madhu S, Sengupta A, Sarnaik AP, Wangikar PP. Expanding the synthetic biology repertoire of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801. Biotechnol Bioeng 2024; 121:2974-2980. [PMID: 38773863 DOI: 10.1002/bit.28740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Synechococcus elongatus PCC 11801 is a fast-growing cyanobacterium, exhibiting high tolerance to environmental stresses. We have earlier characterized its genome and analysed its transcriptome and proteome. However, to deploy it as a potential cell factory, it is necessary to expand its synthetic biology toolbox, including promoter elements and ribosome binding sites (RBSs). Here, based on the global transcriptome analysis, 48 native promoters of the genes with high transcript count were characterized using a fluorescent reporter system. The promoters PcpcB, PpsbA1, and P11770 exhibited consistently high fluorescence under all the cultivation conditions. Similarly, from the genome data and proteome analysis, 534 operons were identified. Fifteen intergenic regions exhibiting higher protein expression from the downstream gene were systematically characterized for identifying RBSs, using an operon construct comprising fluorescent protein genes eyfp and mTurq under PcpcB (PcpcB:eyfp:RBS:mTurq:TrrnB). Overall, the work presents promoter and RBS sequence libraries, with varying strengths, to expedite bioengineering of PCC 11801.
Collapse
Affiliation(s)
- Swati Madhu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Aditya P Sarnaik
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Fernández MB, Latorre L, Correa-Aragunde N, Cassia R. A putative bifunctional CPD/ (6-4) photolyase from the cyanobacteria Synechococcus sp. PCC 7335 is encoded by a UV-B inducible operon: New insights into the evolution of photolyases. Front Microbiol 2022; 13:981788. [DOI: 10.3389/fmicb.2022.981788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Photosynthetic organisms are continuously exposed to solar ultraviolet radiation-B (UV-B) because of their autotrophic lifestyle. UV-B provokes DNA damage, such as cyclobutane pyrimidine dimers (CPD) or pyrimidine (6-4) pyrimidone photoproducts (6-4 PPs). The cryptochrome/photolyase family (CPF) comprises flavoproteins that can bind damaged or undamaged DNA. Photolyases (PHRs) are enzymes that repair either CPDs or 6-4 PPs. A natural bifunctional CPD/(6-4)- PHR (PhrSph98) was recently isolated from the UV-resistant bacteria Sphingomonas sp. UV9. In this work, phylogenetic studies of bifunctional CPD/(6-4)- photolyases and their evolutionary relationship with other CPF members were performed. Amino acids involved in electron transfer and binding to FAD cofactor and DNA lesions were conserved in proteins from proteobacteria, planctomycete, bacteroidete, acidobacteria and cyanobacteria clades. Genome analysis revealed that the cyanobacteria Synechococcus sp. PCC 7335 encodes a two-gene assembly operon coding for a PHR and a bifunctional CPD/(6-4) PHR- like. Operon structure was validated by RT-qPCR analysis and the polycistronic transcript accumulated after 15 min of UV-B irradiation. Conservation of structure and evolution is discussed. This study provides evidence for a UV-B inducible PHR operon that encodes a CPD/(6-4)- photolyase homolog with a putative bifunctional role in the repair of CPDs and 6-4 PPs damages in oxygenic photosynthetic organisms.
Collapse
|
3
|
The Conserved Family of the Pyridoxal Phosphate-Binding Protein (PLPBP) and Its Cyanobacterial Paradigm PipY. Life (Basel) 2022; 12:life12101622. [PMID: 36295057 PMCID: PMC9605639 DOI: 10.3390/life12101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The PLPBP family of pyridoxal phosphate-binding proteins has a high degree of sequence conservation and is represented in all three domains of life. PLPBP members, of which a few representatives have been studied in different contexts, are single-domain proteins with no known enzymatic activity that exhibit the fold type III of PLP-holoenzymes, consisting in an α/β barrel (TIM-barrel), where the PLP cofactor is solvent-exposed. Despite the constant presence of cofactor PLP (a key catalytic element in PLP enzymes), PLPBP family members appear to have purely regulatory functions affecting the homeostasis of vitamin B6 vitamers and amino/keto acids. Perturbation of these metabolites and pleiotropic phenotypes have been reported in bacteria and zebrafish after PLPBP gene inactivation as well as in patients with vitamin B6-dependent epilepsy that results from loss-of-function mutations at the PLPBP. Here, we review information gathered from diverse studies and biological systems, emphasizing the structural and functional conservation of the PLPBP members and discussing the informative nature of model systems and experimental approaches. In this context, the relatively high level of structural and functional characterization of PipY from Synechococcus elongatus PCC 7942 provides a unique opportunity to investigate the PLPBP roles in the context of a signaling pathway conserved in cyanobacteria.
Collapse
|
4
|
Kanai Y, Tsuru S, Furusawa C. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1673-1686. [PMID: 35066585 PMCID: PMC8860574 DOI: 10.1093/nar/gkac004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022] Open
Abstract
Operons are a hallmark of the genomic and regulatory architecture of prokaryotes. However, the mechanism by which two genes placed far apart gradually come close and form operons remains to be elucidated. Here, we propose a new model of the origin of operons: Mobile genetic elements called insertion sequences can facilitate the formation of operons by consecutive insertion–deletion–excision reactions. This mechanism barely leaves traces of insertion sequences and thus difficult to detect in nature. In this study, as a proof-of-concept, we reproducibly demonstrated operon formation in the laboratory. The insertion sequence IS3 and the insertion sequence excision enhancer are genes found in a broad range of bacterial species. We introduced these genes into insertion sequence-less Escherichia coli and found that, supporting our hypothesis, the activity of the two genes altered the expression of genes surrounding IS3, closed a 2.7 kb gap between a pair of genes, and formed new operons. This study shows how insertion sequences can facilitate the rapid formation of operons through locally increasing the structural mutation rates and highlights how coevolution with mobile elements may shape the organization of prokaryotic genomes and gene regulation.
Collapse
Affiliation(s)
- Yuki Kanai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Saburo Tsuru
- To whom correspondence should be addressed. Tel: +81 3 5841 4229; Fax: +81 3 5841 4229;
| | | |
Collapse
|
5
|
Seitzer P, Yao AI, Cisneros A, Facciotti MT. The Exploration of Novel Regulatory Relationships Drives Haloarchaeal Operon-Like Structural Dynamics over Short Evolutionary Distances. Microorganisms 2020; 8:E1900. [PMID: 33266086 PMCID: PMC7760734 DOI: 10.3390/microorganisms8121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Operons are a dominant feature of bacterial and archaeal genome organization. Numerous investigations have related aspects of operon structure to operon function, making operons exemplars for studies aimed at deciphering Nature's design principles for genomic organization at a local scale. We consider this understanding to be both fundamentally important and ultimately useful in the de novo design of increasingly complex synthetic circuits. Here we analyze the evolution of the genomic context of operon-like structures in a set of 76 sequenced and annotated species of halophilic archaea. The phylogenetic depth and breadth of this dataset allows insight into changes in operon-like structures over shorter evolutionary time scales than have been studied in previous cross-species analysis of operon evolution. Our analysis, implemented in the updated software package JContextExplorer finds that operon-like context as measured by changes in structure frequently differs from a sequence divergence model of whole-species phylogeny and that changes seem to be dominated by the exploration of novel regulatory relationships.
Collapse
Affiliation(s)
- Phillip Seitzer
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Andrew I. Yao
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Ariana Cisneros
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
| | - Marc T. Facciotti
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Rosana ARR, Whitford DS, Migur A, Steglich C, Kujat-Choy SL, Hess WR, Owttrim GW. RNA helicase-regulated processing of the Synechocystis rimO-crhR operon results in differential cistron expression and accumulation of two sRNAs. J Biol Chem 2020; 295:6372-6386. [PMID: 32209657 DOI: 10.1074/jbc.ra120.013148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp-Glu-Ala-Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO-crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.
Collapse
Affiliation(s)
- Albert Remus R Rosana
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Anzhela Migur
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Sonya L Kujat-Choy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
7
|
Sengupta A, Pakrasi HB, Wangikar PP. Recent advances in synthetic biology of cyanobacteria. Appl Microbiol Biotechnol 2018; 102:5457-5471. [PMID: 29744631 DOI: 10.1007/s00253-018-9046-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO2. Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO2, diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this "green" chassis.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, USA.,Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. .,DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. .,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
8
|
Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community. Appl Environ Microbiol 2017; 83:AEM.01068-17. [PMID: 28754701 DOI: 10.1128/aem.01068-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
The cyanobacterial culture HT-58-2 was originally described as a strain of Tolypothrix nodosa with the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align with Brasilonema strains and not with Tolypothrix isolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated by Erythrobacteraceae, 97% of which are Porphyrobacter species. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophyll a, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis.IMPORTANCE A worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway.
Collapse
|
9
|
Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers SV, Axmann IM, Wiegard A. Minimal tool set for a prokaryotic circadian clock. BMC Evol Biol 2017; 17:169. [PMID: 28732467 PMCID: PMC5520375 DOI: 10.1186/s12862-017-0999-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian clocks are found in organisms of almost all domains including photosynthetic Cyanobacteria, whereby large diversity exists within the protein components involved. In the model cyanobacterium Synechococcus elongatus PCC 7942 circadian rhythms are driven by a unique KaiABC protein clock, which is embedded in a network of input and output factors. Homologous proteins to the KaiABC clock have been observed in Bacteria and Archaea, where evidence for circadian behavior in these domains is accumulating. However, interaction and function of non-cyanobacterial Kai-proteins as well as homologous input and output components remain mainly unclear. RESULTS Using a universal BLAST analyses, we identified putative KaiC-based timing systems in organisms outside as well as variations within Cyanobacteria. A systematic analyses of publicly available microarray data elucidated interesting variations in circadian gene expression between different cyanobacterial strains, which might be correlated to the diversity of genome encoded clock components. Based on statistical analyses of co-occurrences of the clock components homologous to Synechococcus elongatus PCC 7942, we propose putative networks of reduced and fully functional clock systems. Further, we studied KaiC sequence conservation to determine functionally important regions of diverged KaiC homologs. Biochemical characterization of exemplary cyanobacterial KaiC proteins as well as homologs from two thermophilic Archaea demonstrated that kinase activity is always present. However, a KaiA-mediated phosphorylation is only detectable in KaiC1 orthologs. CONCLUSION Our analysis of 11,264 genomes clearly demonstrates that components of the Synechococcus elongatus PCC 7942 circadian clock are present in Bacteria and Archaea. However, all components are less abundant in other organisms than Cyanobacteria and KaiA, Pex, LdpA, and CdpA are only present in the latter. Thus, only reduced KaiBC-based or even simpler, solely KaiC-based timing systems might exist outside of the cyanobacterial phylum, which might be capable of driving diurnal oscillations.
Collapse
Affiliation(s)
- Nicolas M. Schmelling
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, 40225 Germany
| | - Robert Lehmann
- Institute for Theoretical Biology, Humboldt University Berlin, Invalidenstrasse 43, Berlin, 10115 Germany
| | - Paushali Chaudhury
- Molecular Biology of Archaea, Albert-Ludwigs-University Freiburg, Institute of Biology II, Schaenzlestrasse 1, Freiburg, 79104 Germany
| | - Christian Beck
- Institute for Theoretical Biology, Humboldt University Berlin, Invalidenstrasse 43, Berlin, 10115 Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Albert-Ludwigs-University Freiburg, Institute of Biology II, Schaenzlestrasse 1, Freiburg, 79104 Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, 40225 Germany
| | - Anika Wiegard
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, 40225 Germany
| |
Collapse
|
10
|
Labella JI, Cantos R, Espinosa J, Forcada-Nadal A, Rubio V, Contreras A. PipY, a Member of the Conserved COG0325 Family of PLP-Binding Proteins, Expands the Cyanobacterial Nitrogen Regulatory Network. Front Microbiol 2017; 8:1244. [PMID: 28744260 PMCID: PMC5504682 DOI: 10.3389/fmicb.2017.01244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/20/2017] [Indexed: 11/13/2022] Open
Abstract
Synechococcus elongatus PCC 7942 is a paradigmatic model organism for nitrogen regulation in cyanobacteria. Expression of genes involved in nitrogen assimilation is positively regulated by the 2-oxoglutarate receptor and global transcriptional regulator NtcA. Maximal activation requires the subsequent binding of the co-activator PipX. PII, a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance, binds to PipX to counteract NtcA activity at low 2-oxoglutarate levels. PII-PipX complexes can also bind to the transcriptional regulator PlmA, whose regulon remains unknown. Here we expand the nitrogen regulatory network to PipY, encoded by the bicistronic operon pipXY in S. elongatus. Work with PipY, the cyanobacterial member of the widespread family of COG0325 proteins, confirms the conserved roles in vitamin B6 and amino/keto acid homeostasis and reveals new PLP-related phenotypes, including sensitivity to antibiotics targeting essential PLP-holoenzymes or synthetic lethality with cysK. In addition, the related phenotypes of pipY and pipX mutants are consistent with genetic interactions in the contexts of survival to PLP-targeting antibiotics and transcriptional regulation. We also showed that PipY overexpression increased the length of S. elongatus cells. Taken together, our results support a universal regulatory role for COG0325 proteins, paving the way to a better understanding of these proteins and of their connections with other biological processes.
Collapse
Affiliation(s)
- José I Labella
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain
| | - Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain
| | - Alicia Forcada-Nadal
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain.,Instituto de Biomedicina de Valencia - Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia - Consejo Superior de Investigaciones CientíficasValencia, Spain.,Group 739, Centro de Investigación Biomédica en Red de Enfermedades Raras - Instituto de Salud Carlos IIIValencia, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicante, Spain
| |
Collapse
|
11
|
Tiruveedula GSS, Wangikar PP. Gene essentiality, conservation index and co-evolution of genes in cyanobacteria. PLoS One 2017; 12:e0178565. [PMID: 28594867 PMCID: PMC5464585 DOI: 10.1371/journal.pone.0178565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria, a group of photosynthetic prokaryotes, dominate the earth with ~ 1015 g wet biomass. Despite diversity in habitats and an ancient origin, cyanobacterial phylum has retained a significant core genome. Cyanobacteria are being explored for direct conversion of solar energy and carbon dioxide into biofuels. For this, efficient cyanobacterial strains will need to be designed via metabolic engineering. This will require identification of target knockouts to channelize the flow of carbon toward the product of interest while minimizing deletions of essential genes. We propose "Gene Conservation Index" (GCI) as a quick measure to predict gene essentiality in cyanobacteria. GCI is based on phylogenetic profile of a gene constructed with a reduced dataset of cyanobacterial genomes. GCI is the percentage of organism clusters in which the query gene is present in the reduced dataset. Of the 750 genes deemed to be essential in the experimental study on S. elongatus PCC 7942, we found 494 to be conserved across the phylum which largely comprise of the essential metabolic pathways. On the contrary, the conserved but non-essential genes broadly comprise of genes required under stress conditions. Exceptions to this rule include genes such as the glycogen synthesis and degradation enzymes, deoxyribose-phosphate aldolase (DERA), glucose-6-phosphate 1-dehydrogenase (zwf) and fructose-1,6-bisphosphatase class1, which are conserved but non-essential. While the essential genes are to be avoided during gene knockout studies as potentially lethal deletions, the non-essential but conserved set of genes could be interesting targets for metabolic engineering. Further, we identify clusters of co-evolving genes (CCG), which provide insights that may be useful in annotation. Principal component analysis (PCA) plots of the CCGs are demonstrated as data visualization tools that are complementary to the conventional heatmaps. Our dataset consists of phylogenetic profiles for 23,643 non-redundant cyanobacterial genes. We believe that the data and the analysis presented here will be a great resource to the scientific community interested in cyanobacteria.
Collapse
Affiliation(s)
- Gopi Siva Sai Tiruveedula
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Pramod P. Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- * E-mail:
| |
Collapse
|
12
|
Uyeda JC, Harmon LJ, Blank CE. A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time. PLoS One 2016; 11:e0162539. [PMID: 27649395 PMCID: PMC5029880 DOI: 10.1371/journal.pone.0162539] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023] Open
Abstract
Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record—phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth’s history have shaped—and been shaped by—evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and “Snowball Earth” glaciations and is associated with decrease in the evolutionary rates around 1.8–1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes–particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic Oxidation Event in the Neoproterozoic, and is associated with the acquisition of traits involved in planktonic growth in marine habitats. Our results demonstrate how uniting genomic and phenotypic datasets in extant bacterial species can shed light on billion-year old events in Earth’s history.
Collapse
Affiliation(s)
- Josef C. Uyeda
- University of Idaho, Dept. Biological Sciences, Moscow, ID, United States of America
- * E-mail:
| | - Luke J. Harmon
- University of Idaho, Dept. Biological Sciences, Moscow, ID, United States of America
| | - Carrine E. Blank
- University of Montana, Dept. Geosciences, Missoula, MT, United States of America
| |
Collapse
|
13
|
Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers SV, Axmann IM, Wiegard A. Minimal Tool Set for a Prokaryotic Circadian Clock.. [DOI: 10.1101/075291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractBackgroundCircadian clocks are found in organisms of almost all domains including photosynthetic Cyanobacteria, whereby large diversity exists within the protein components involved. In the model cyanobacteriumSynechococcus elongatusPCC 7942 circadian rhythms are driven by a unique KaiABC protein clock, which is embedded in a network of input and output factors. Homologous proteins to the KaiABC clock have been observed in Bacteria and Archaea, where evidence for circadian behavior in these domains is accumulating. However, interaction and function of non-cyanobacterial Kai-proteins as well as homologous input and output components remain mainly unclear.ResultsUsing a universal BLAST analyses, we identified putative KaiC-based timing systems in organisms outside as well as variations within Cyanobacteria. A systematic analyses of publicly available microarray data elucidated interesting variations in circadian gene expression between different cyanobacterial strains, which might be correlated to the diversity of genome encoded clock components. Based on statistical analyses of co-occurrences of the clock components homologous toSynechococcus elongatusPCC 7942, we propose putative networks of reduced and fully functional clock systems. Further, we studied KaiC sequence conservation to determine functionally important regions of diverged KaiC homologs. Biochemical characterization of exemplary cyanobacterial KaiC proteins as well as homologs from two thermophilic Archaea demonstrated that kinase activity is always present. However, a KaiA-mediated phosphorylation is only detectable in KaiC1 orthologs.ConclusionOur analysis of 11,264 genomes clearly demonstrates that components of theSynechococcus elongatusPCC 7942 circadian clock are present in Bacteria and Archaea. However, all components are less abundant in other organisms than Cyanobacteria and KaiA, Pex, LdpA, and CdpA are only present in the latter. Thus, only reduced KaiBC-based or even simpler, solely KaiC-based timing systems might exist outside of the cyanobacterial phylum, which might be capable of driving diurnal oscillations.
Collapse
|
14
|
Chen Y, Geng D, Ehrhardt K, Zhang S. Investigating Evolutionary Dynamics of RHA1 Operons. Evol Bioinform Online 2016; 12:157-63. [PMID: 27398020 PMCID: PMC4927040 DOI: 10.4137/ebo.s39753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/02/2022] Open
Abstract
Grouping genes as operons is an important genomic feature of prokaryotic organisms. The comprehensive understanding of the operon organizations would be helpful to decipher transcriptional mechanisms, cellular pathways, and the evolutionary landscape of prokaryotic genomes. Although thousands of prokaryotes have been sequenced, genome-wide investigation of the evolutionary dynamics (division and recombination) of operons among these genomes remains unexplored. Here, we systematically analyzed the operon dynamics of Rhodococcus jostii RHA1 (RHA1), an oleaginous bacterium with high potential applications in biofuel, by comparing 340 prokaryotic genomes that were carefully selected from different genera. Interestingly, 99% of RHA1 operons were observed to exhibit evolutionary events of division and recombination among the 340 compared genomes. An operon that encodes all enzymes related to histidine biosynthesis in RHA1 (His-operon) was found to be segmented into smaller gene groups (sub-operons) in diverse genomes. These sub-operons were further reorganized with different functional genes as novel operons that are related to different biochemical processes. Comparatively, the operons involved in the functional categories of lipid transport and metabolism are relatively conserved among the 340 compared genomes. At the pathway level, RHA1 operons found to be significantly conserved were involved in ribosome synthesis, oxidative phosphorylation, and fatty acid synthesis. These analyses provide evolutionary insights of operon organization and the dynamic associations of various biochemical pathways in different prokaryotes.
Collapse
Affiliation(s)
- Yong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
| | - Dandan Geng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin, China
| | - Kristina Ehrhardt
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, USA
- Bioengineering Department, The University of Texas at Dallas, Richardson, TX, USA
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin, China
| |
Collapse
|
15
|
The Chthonomonas calidirosea Genome Is Highly Conserved across Geographic Locations and Distinct Chemical and Microbial Environments in New Zealand's Taupō Volcanic Zone. Appl Environ Microbiol 2016; 82:3572-81. [PMID: 27060125 PMCID: PMC4959169 DOI: 10.1128/aem.00139-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 02/01/2023] Open
Abstract
Chthonomonas calidirosea T49T is a low-abundance, carbohydrate-scavenging, and thermophilic soil bacterium with a seemingly disorganized genome. We hypothesized that the C. calidirosea genome would be highly responsive to local selection pressure, resulting in the divergence of its genomic content, genome organization, and carbohydrate utilization phenotype across environments. We tested this hypothesis by sequencing the genomes of four C. calidirosea isolates obtained from four separate geothermal fields in the Taupō Volcanic Zone, New Zealand. For each isolation site, we measured physicochemical attributes and defined the associated microbial community by 16S rRNA gene sequencing. Despite their ecological and geographical isolation, the genome sequences showed low divergence (maximum, 1.17%). Isolate-specific variations included single-nucleotide polymorphisms (SNPs), restriction-modification systems, and mobile elements but few major deletions and no major rearrangements. The 50-fold variation in C. calidirosea relative abundance among the four sites correlated with site environmental characteristics but not with differences in genomic content. Conversely, the carbohydrate utilization profiles of the C. calidirosea isolates corresponded to the inferred isolate phylogenies, which only partially paralleled the geographical relationships among the sample sites. Genomic sequence conservation does not entirely parallel geographic distance, suggesting that stochastic dispersal and localized extinction, which allow for rapid population homogenization with little restriction by geographical barriers, are possible mechanisms of C. calidirosea distribution. This dispersal and extinction mechanism is likely not limited to C. calidirosea but may shape the populations and genomes of many other low-abundance free-living taxa. IMPORTANCE This study compares the genomic sequence variations and metabolisms of four strains of Chthonomonas calidirosea, a rare thermophilic bacterium from the phylum Armatimonadetes. It additionally compares the microbial communities and chemistry of each of the geographically distinct sites from which the four C. calidirosea strains were isolated. C. calidirosea was previously reported to possess a highly disorganized genome, but it was unclear whether this reflected rapid evolution. Here, we show that each isolation site has a distinct chemistry and microbial community, but despite this, the C. calidirosea genome is highly conserved across all isolation sites. Furthermore, genomic sequence differences only partially paralleled geographic distance, suggesting that C. calidirosea genotypes are not primarily determined by adaptive evolution. Instead, the presence of C. calidirosea may be driven by stochastic dispersal and localized extinction. This ecological mechanism may apply to many other low-abundance taxa.
Collapse
|
16
|
Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium. PLoS One 2015; 10:e0125148. [PMID: 25973856 PMCID: PMC4431719 DOI: 10.1371/journal.pone.0125148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/08/2015] [Indexed: 01/12/2023] Open
Abstract
Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell's metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production.
Collapse
|
17
|
Abstract
A periodic bias in nucleotide frequency with a period of about 11 bp is characteristic for bacterial genomes. This signal is commonly interpreted to relate to the helical pitch of negatively supercoiled DNA. Functions in supercoiling-dependent RNA transcription or as a 'structural code' for DNA packaging have been suggested. Cyanobacterial genomes showed especially strong periodic signals and, on the other hand, DNA supercoiling and supercoiling-dependent transcription are highly dynamic and underlie circadian rhythms of these phototrophic bacteria. Focusing on this phylum and dinucleotides, we find that a minimal motif of AT-tracts (AT2) yields the strongest signal. Strong genome-wide periodicity is ancestral to a clade of unicellular and polyploid species but lost upon morphological transitions into two baeocyte-forming and a symbiotic species. The signal is intermediate in heterocystous species and weak in monoploid picocyanobacteria. A pronounced 'structural code' may support efficient nucleoid condensation and segregation in polyploid cells. The major source of the AT2 signal are protein-coding regions, where it is encoded preferentially in the first and third codon positions. The signal shows only few relations to supercoiling-dependent and diurnal RNA transcription in Synechocystis sp. PCC 6803. Strong and specific signals in two distinct transposons suggest roles in transposase transcription and transpososome formation.
Collapse
Affiliation(s)
- Robert Lehmann
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| | - Rainer Machné
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany Institute for Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090, Vienna, Austria
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| |
Collapse
|
18
|
Wang B, Lu L, Lv H, Jiang H, Qu G, Tian C, Ma Y. The transcriptome landscape of Prochlorococcus MED4 and the factors for stabilizing the core genome. BMC Microbiol 2014; 14:11. [PMID: 24438106 PMCID: PMC3898218 DOI: 10.1186/1471-2180-14-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/14/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gene gain and loss frequently occurs in the cyanobacterium Prochlorococcus, a phototroph that numerically dominates tropical and subtropical open oceans. However, little is known about the stabilization of its core genome, which contains approximately 1250 genes, in the context of genome streamlining. Using Prochlorococcus MED4 as a model organism, we investigated the constraints on core genome stabilization using transcriptome profiling. RESULTS RNA-Seq technique was used to obtain the transcriptome map of Prochlorococcus MED4, including operons, untranslated regions, non-coding RNAs, and novel genes. Genome-wide expression profiles revealed that three factors contribute to core genome stabilization. First, a negative correlation between gene expression levels and protein evolutionary rates was observed. Highly expressed genes were overrepresented in the core genome but not in the flexible genome. Gene necessity was determined as a second powerful constraint on genome evolution through functional enrichment analysis. Third, quick mRNA turnover may increase corresponding proteins' fidelity among genes that were abundantly expressed. Together, these factors influence core genome stabilization during MED4 genome evolution. CONCLUSIONS Gene expression, gene necessity, and mRNA turnover contribute to core genome maintenance during cyanobacterium Prochlorococcus genus evolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | | |
Collapse
|
19
|
Gaudana SB, Krishnakumar S, Alagesan S, Digmurti MG, Viswanathan GA, Chetty M, Wangikar PP. Rhythmic and sustained oscillations in metabolism and gene expression of Cyanothece sp. ATCC 51142 under constant light. Front Microbiol 2013; 4:374. [PMID: 24367360 PMCID: PMC3854555 DOI: 10.3389/fmicb.2013.00374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/21/2013] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria, a group of photosynthetic prokaryotes, oscillate between day and night time metabolisms with concomitant oscillations in gene expression in response to light/dark cycles (LD). The oscillations in gene expression have been shown to sustain in constant light (LL) with a free running period of 24 h in a model cyanobacterium Synechococcus elongatus PCC 7942. However, equivalent oscillations in metabolism are not reported under LL in this non-nitrogen fixing cyanobacterium. Here we focus on Cyanothece sp. ATCC 51142, a unicellular, nitrogen-fixing cyanobacterium known to temporally separate the processes of oxygenic photosynthesis and oxygen-sensitive nitrogen fixation. In a recent report, metabolism of Cyanothece 51142 has been shown to oscillate between photosynthetic and respiratory phases under LL with free running periods that are temperature dependent but significantly shorter than the circadian period. Further, the oscillations shift to circadian pattern at moderate cell densities that are concomitant with slower growth rates. Here we take this understanding forward and demonstrate that the ultradian rhythm under LL sustains at much higher cell densities when grown under turbulent regimes that simulate flashing light effect. Our results suggest that the ultradian rhythm in metabolism may be needed to support higher carbon and nitrogen requirements of rapidly growing cells under LL. With a comprehensive Real time PCR based gene expression analysis we account for key regulatory interactions and demonstrate the interplay between clock genes and the genes of key metabolic pathways. Further, we observe that several genes that peak at dusk in Synechococcus peak at dawn in Cyanothece and vice versa. The circadian rhythm of this organism appears to be more robust with peaking of genes in anticipation of the ensuing photosynthetic and respiratory metabolic phases.
Collapse
Affiliation(s)
- Sandeep B Gaudana
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - S Krishnakumar
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - Swathi Alagesan
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - Madhuri G Digmurti
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - Ganesh A Viswanathan
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - Madhu Chetty
- Gippsland School of Information Technology, Monash University VIC, Australia
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| |
Collapse
|
20
|
Krishnakumar S, Durai DA, Wangikar PP, Viswanathan GA. SHARP: genome-scale identification of gene-protein-reaction associations in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2013; 118:181-190. [PMID: 23975204 DOI: 10.1007/s11120-013-9910-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Genome scale metabolic model provides an overview of an organism's metabolic capability. These genome-specific metabolic reconstructions are based on identification of gene to protein to reaction (GPR) associations and, in turn, on homology with annotated genes from other organisms. Cyanobacteria are photosynthetic prokaryotes which have diverged appreciably from their nonphotosynthetic counterparts. They also show significant evolutionary divergence from plants, which are well studied for their photosynthetic apparatus. We argue that context-specific sequence and domain similarity can add to the repertoire of the GPR associations and significantly expand our view of the metabolic capability of cyanobacteria. We took an approach that combines the results of context-specific sequence-to-sequence similarity search with those of sequence-to-profile searches. We employ PSI-BLAST for the former, and CDD, Pfam, and COG for the latter. An optimization algorithm was devised to arrive at a weighting scheme to combine the different evidences with KEGG-annotated GPRs as training data. We present the algorithm in the form of software "Systematic, Homology-based Automated Re-annotation for Prokaryotes (SHARP)." We predicted 3,781 new GPR associations for the 10 prokaryotes considered of which eight are cyanobacteria species. These new GPR associations fall in several metabolic pathways and were used to annotate 7,718 gaps in the metabolic network. These new annotations led to discovery of several pathways that may be active and thereby providing new directions for metabolic engineering of these species for production of useful products. Metabolic model developed on such a reconstructed network is likely to give better phenotypic predictions.
Collapse
Affiliation(s)
- S Krishnakumar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | | | | |
Collapse
|
21
|
Sherman LA, Wangikar PP, Swarup R, Kasture S. Highlights from the Indo-US workshop "Cyanobacteria: molecular networks to biofuels" held at Lonavala, India during December 16-20, 2012. PHOTOSYNTHESIS RESEARCH 2013; 118:1-8. [PMID: 24142037 DOI: 10.1007/s11120-013-9933-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An Indo-US workshop on "Cyanobacteria: molecular networks to biofuels" was held December 16-20, 2012 at Lagoona Resort, Lonavala, India. The workshop was jointly organized by two of the authors, PPW, a chemical engineer and LAS, a biologist, thereby ensuring a broad and cross-disciplinary participation. The main objective of the workshop was to bring researchers from academia and industry of the two countries together with common interests in cyanobacteria or microalgae and derived biofuels. An exchange of ideas resulted from a series of oral and poster presentations and, importantly, through one-on-one discussions during tea breaks and meals. Another key objective was to introduce young researchers of India to the exciting field of cyanobacterial physiology, modeling, and biofuels. PhD students and early stage researchers were especially encouraged to participate and about half of the 75 participants belonged to this category. The rest were comprised of senior researchers, including 13-15 invited speakers from each country. Overall, twenty-four institutes from 12 states of India were represented. The deliberations, which are being compiled in the present special issue, revolved mainly around molecular aspects of cyanobacterial biofuels including metabolic engineering, networks, genetic regulation, circadian rhythms, and stress responses. Representatives of some key funding agencies and industry provided a perspective and opportunities in the field and for bilateral collaboration. This article summarizes deliberations that took place at the meeting and provides a bird's eye view of the ongoing research in the field in the two countries.
Collapse
Affiliation(s)
- Louis A Sherman
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, 915 W. State St, West Lafayette, IN, 47907, USA,
| | | | | | | |
Collapse
|
22
|
Alagesan S, Gaudana SB, Sinha A, Wangikar PP. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions. PHOTOSYNTHESIS RESEARCH 2013; 118:191-198. [PMID: 23954952 DOI: 10.1007/s11120-013-9911-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 06/02/2023]
Abstract
Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several "proof of principle" studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by (13)C metabolic flux analysis ((13)C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report (13)C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of (12)C and (13)C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism's preferred mode under nitrogen-fixing conditions. The (13)C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism's distinct metabolic features under nitrogen-fixing and -non-fixing conditions.
Collapse
Affiliation(s)
- Swathi Alagesan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | | | | |
Collapse
|
23
|
Sengupta T, Bhushan M, Wangikar PP. Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant. PHOTOSYNTHESIS RESEARCH 2013; 118:155-165. [PMID: 24190812 DOI: 10.1007/s11120-013-9935-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/28/2013] [Indexed: 06/02/2023]
Abstract
Cyanobacteria have potential to produce drop-in bio-fuels such as ethanol via photoautotrophic metabolism. Although model cyanobacterial strains have been engineered to produce such products, systematic metabolic engineering studies to identify optimal strains for the same have not been performed. In this work, we identify optimal ethanol producing mutants corresponding to appropriate gene deletions that result in a suitable redirection in the carbon flux. In particular, we systematically simulate exhaustive single and double gene deletions considering a genome scale metabolic model of a mutant strain of the unicellular cyanobacterium Synechocystis species strain PCC 6803. Various optimization based metabolic modeling techniques, such as flux balance analysis (FBA), method of minimization of metabolic adjustment (MOMA) and regulatory on/off minimization (ROOM) were used for this analysis. For single gene deletion MOMA simulations, the Pareto front with biomass and ethanol fluxes as the two objectives to be maximized was obtained and analyzed. Points on the Pareto front represent maximal utilization of resources constrained by substrate uptake thereby representing an optimal trade-off between the two fluxes. Pareto analysis was also performed for double gene deletion MOMA and single and double gene deletion ROOM simulations. Based on these analyses, two mutants, with combined gene deletions in ethanol and purine metabolism pathways, were identified as promising candidates for ethanol production. The relevant genes were adk, pta and ackA. An ethanol productivity of approximately 0.15 mmol/(gDW h) was predicted for these mutants which appears to be reasonable based on experimentally reported values in literature for other strains.
Collapse
Affiliation(s)
- Tirthankar Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | | | |
Collapse
|
24
|
Krishnakumar S, Gaudana SB, Viswanathan GA, Pakrasi HB, Wangikar PP. Rhythm of carbon and nitrogen fixation in unicellular cyanobacteria under turbulent and highly aerobic conditions. Biotechnol Bioeng 2013; 110:2371-9. [PMID: 23456695 DOI: 10.1002/bit.24882] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/24/2013] [Accepted: 02/20/2013] [Indexed: 11/07/2022]
Abstract
Nitrogen fixing cyanobacteria are being increasingly explored for nitrogenase-dependent hydrogen production. Commercial success however will depend on the ability to grow these cultures at high cell densities. Photo-limitation at high cell densities leads to hindered photoautotrophic growth while turbulent conditions, which simulate flashing light effect, can lead to oxygen toxicity to the nitrogenase enzyme. Cyanothece sp. strain ATCC 51142, a known hydrogen producer, is reported to grow and fix nitrogen under moderately oxic conditions in shake flasks. In this study, we explore the growth and nitrogen fixing potential of this organism under turbulent conditions with volumetric oxygen mass transfer coefficient (KL a) values that are up to 20-times greater than in shake flasks. In a stirred vessel, the organism grows well in turbulent regime possibly due to a simulated flashing light effect with optimal growth at Reynolds number of approximately 35,000. A respiratory burst lasting for about 4 h creates anoxic conditions intracellularly with near saturating levels of dissolved oxygen in the extracellular medium. This is concomitant with complete exhaustion of intracellular glycogen storage and upregulation of nifH and nifX, the genes encoding proteins of the nitrogenase complex. Further, the rhythmic oscillations in exhaust gas CO2 and O2 profiles synchronize faithfully with those in biochemical parameters and gene expression thereby serving as an effective online monitoring tool. These results will have important implications in potential commercial success of nitrogenase-dependent hydrogen production by cyanobacteria.
Collapse
Affiliation(s)
- S Krishnakumar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | |
Collapse
|