1
|
Wang Y, Xie T, Ma C, Zhao Y, Li J, Li Z, Ye X. Biochemical characterization and antifungal activity of a recombinant β-1,3-glucanase FlGluA from Flavobacterium sp. NAU1659. Protein Expr Purif 2024; 224:106563. [PMID: 39122061 DOI: 10.1016/j.pep.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
β-1,3-glucanases can degrade β-1,3-glucoside bonds in β-glucan which is the main cell-wall component of most of fungi, and have the crucial application potential in plant protection and food processing. Herein, a β-1,3-glucanase FlGluA from Flavobacterium sp. NAU1659 composed of 333 amino acids with a predicted molecular mass of 36.6 kDa was expressed in Escherichia coli BL21, purified and characterized. The deduced amino acid sequence of FlGluA showed the high identity with the β-1,3-glucanase belonging to glycoside hydrolase (GH) family 16. Enzymological characterization indicated FlGluA had the highest activity on zymosan A, with a specific activity of 3.87 U/mg, followed by curdlan (1.16 U/mg) and pachymaran (0.88 U/mg). It exhibited optimal catalytic activity at the pH 5.0 and 40 °C, and was stable when placed at 4 °C for 12 h in the range of pH 3.0-8.0 or at a temperature below 50 °C for 3 h. Its catalytic activity was enhanced by approximately 36 % in the presence of 1 mM Cr3+. The detection of thin-layer chromatography and mass spectrometry showed FlGluA hydrolyzed zymosan A mainly to glucose and disaccharide, and trace amounts of tetrasaccharide and pentasaccharide, however, it had no action on laminaribiose, indicating its endo-β-1,3-glucanase activity. The mycelium growth of F. oxysporum treated by FlGluA was inhibited, with approximately 37 % of inhibition rate, revealing the potential antifungal activity of the enzyme. These results revealed the hydrolytic properties and biocontrol activity of FlGluA, laying a crucial foundation for its potential application in agriculture and industry.
Collapse
Affiliation(s)
- Yanxin Wang
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China; Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| | - Tingting Xie
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Chenlong Ma
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yujie Zhao
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Jingchen Li
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Zhendong Li
- College of Life Sciences of Liaocheng University, 252000, Liaocheng, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| |
Collapse
|
2
|
Wang Y, Xie T, Yan G, Xue H, Zhao Z, Ye X. Heterologous Expression and Characterization of a Novel Mesophilic Maltogenic α-Amylase AmyFlA from Flavobacterium sp. NAU1659. Appl Biochem Biotechnol 2024; 196:6492-6507. [PMID: 38386142 DOI: 10.1007/s12010-024-04874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
A novel amylase AmyFlA from Flavobacterium sp. NAU1659, AmyFlA, was cloned and expressed in Esherichia coli. Based on phylogenetic and functional analysis, it was identified as a novel member of the subfamily GH13_46, sharing high sequence identity. The protein was predicted to consist of 620 amino acids, with a putative signal peptide of 25 amino acids. The enzyme was able to hydrolyze soluble starch with a specific activity of 352.97 U/mg at 50 °C in 50 mM phosphate buffer (pH 6.0). The Km and Vmax values of AmyFlA were respectively 3.15 mg/ml and 566.36 µmol·ml-1·min-1 under optimal conditions. Its activity towards starch was enhanced by 63% in the presence of 1 mM Ca2+, indicating that AmyFlA was a Ca2+-dependent amylase. Compared to the reported maltogenic amylases, AmyFlA produced a lower variety of intermediate oligosaccharides at the start of the reaction so that the product mixture contained a higher proportion of maltose. These results indicate that AmyFlA may be potential application value in the production of high-maltose syrup.
Collapse
Affiliation(s)
- Yanxin Wang
- College of Life Sciences of Liaocheng University, Liaocheng, 252000, People's Republic of China
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tingting Xie
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guanhua Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huairen Xue
- College of Life Sciences of Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Zhensong Zhao
- College of Life Sciences of Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
3
|
Sajed M, Falak S, Muhammad MA, Ahmad N, Rashid N. A plant-type L-asparaginase from Pyrobaculum calidifontis undergoes temperature dependent autocleavage. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Loch JI, Klonecka A, Kądziołka K, Bonarek P, Barciszewski J, Imiolczyk B, Brzezinski K, Gilski M, Jaskolski M. Structural and biophysical studies of new L-asparaginase variants: lessons from random mutagenesis of the prototypic Escherichia coli Ntn-amidohydrolase. Acta Crystallogr D Struct Biol 2022; 78:911-926. [PMID: 35775990 PMCID: PMC9248843 DOI: 10.1107/s2059798322005691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
This work reports the results of random mutagenesis of the Escherichia coli class 2 L-asparaginase EcAIII belonging to the Ntn-hydrolase family. New variants of EcAIII were studied using structural, biophysical and bioinformatic methods. Activity tests revealed that the L-asparaginase activity is abolished in all analyzed mutants with the absence of Arg207, but some of them retained the ability to undergo the autoproteolytic maturation process. The results of spectroscopic studies and the determined crystal structures showed that the EcAIII fold is flexible enough to accept different types of mutations; however, these mutations may have a diverse impact on the thermal stability of the protein. The conclusions from the experiments are grouped into six lessons focused on (i) the adaptation of the EcAIII fold to new substitutions, (ii) the role of Arg207 in EcAIII activity, (iii) a network of residues necessary for autoprocessing, (iv) the complexity of the autoprocessing reaction, (v) the conformational changes observed in enzymatically inactive variants and (vi) the cooperativity of the EcAIII dimer subunits. Additionally, the structural requirements (pre-maturation checkpoints) that are necessary for the initiation of the autocleavage of Ntn-hydrolases have been classified. The findings reported in this work provide useful hints that should be considered before planning enzyme-engineering experiments aimed at the design of proteins for therapeutic applications. This is especially important for L-asparaginases that can be utilized in leukemia therapy, as alternative therapeutics are urgently needed to circumvent the severe side effects associated with the currently used enzymes.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Agnieszka Klonecka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Kinga Kądziołka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jakub Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Barbara Imiolczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Mirosław Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Jia R, Wan X, Geng X, Xue D, Xie Z, Chen C. Microbial L-asparaginase for Application in Acrylamide Mitigation from Food: Current Research Status and Future Perspectives. Microorganisms 2021; 9:microorganisms9081659. [PMID: 34442737 PMCID: PMC8400838 DOI: 10.3390/microorganisms9081659] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
L-asparaginase (E.C.3.5.1.1) hydrolyzes L-asparagine to L-aspartic acid and ammonia, which has been widely applied in the pharmaceutical and food industries. Microbes have advantages for L-asparaginase production, and there are several commercially available forms of L-asparaginase, all of which are derived from microbes. Generally, L-asparaginase has an optimum pH range of 5.0-9.0 and an optimum temperature of between 30 and 60 °C. However, the optimum temperature of L-asparaginase from hyperthermophilic archaea is considerable higher (between 85 and 100 °C). The native properties of the enzymes can be enhanced by using immobilization techniques. The stability and recyclability of immobilized enzymes makes them more suitable for food applications. This current work describes the classification, catalytic mechanism, production, purification, and immobilization of microbial L-asparaginase, focusing on its application as an effective reducer of acrylamide in fried potato products, bakery products, and coffee. This highlights the prospects of cost-effective L-asparaginase, thermostable L-asparaginase, and immobilized L-asparaginase as good candidates for food application in the future.
Collapse
Affiliation(s)
- Ruiying Jia
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
| | - Xiao Wan
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
| | - Xu Geng
- School of Basic Medicine, Henan University, Jinming Avenue, Kaifeng 475004, China;
- Correspondence: (X.G.); (C.C.)
| | - Deming Xue
- School of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Jinming Avenue, Kaifeng 475004, China;
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng 475004, China; (R.J.); (X.W.)
- Correspondence: (X.G.); (C.C.)
| |
Collapse
|
6
|
Wang Y, Li D, Liu M, Xia C, Fan Q, Li X, Lan Z, Shi G, Dong W, Li Z, Cui Z. Preparation of Active Chitooligosaccharides with a Novel Chitosanase AqCoA and Their Application in Fungal Disease Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3351-3361. [PMID: 33688732 DOI: 10.1021/acs.jafc.0c07802] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymes that degrade fungal cell walls and the resulting oligosaccharides are promising weapons to combat plant fungal disease. In this study, we identified a novel endo-chitosanase, AqCoA, from Aquabacterium sp. A7-Y. The enzyme showed a specific activity of 18 U/mg toward 95% deacetylated chitosan at pH 5.0 and 40 °C. AqCoA also showed activity toward sodium carboxymethylcellulose, indicating substrate promiscuity. AqCoA hydrolyzed chitosan into chitooligosaccharides (CoA-COSs) with degrees of polymerization (DPs) of 3-5 but showed no activity toward CoA-COSs with DPs <6, indicating an endo-type activity. At 2.5 μg/mL, AqCoA inhibited appressorium formation of Magnaporthe oryzae; the produced CoA-COSs also inhibited the growth of M. oryzae and Fusarium oxysporum. Furthermore, CoA-COSs acted as immune elicitors in rice by inducing the reactive oxygen species burst and the expression of defense genes. These results demonstrated that AqCoA and its resulting CoA-COSs might be effective tools for protecting plants against pathogenic fungi.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, P. R. China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095 Nanjing, P. R. China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Zejun Lan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Guolong Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 211800 Nanjing, P. R. China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| |
Collapse
|
7
|
Chengyao X, Yan Q, Chaonan D, Xiaopei C, Yanxin W, Ding L, Xianfeng Y, Jian H, Yan H, Zhongli C, Zhoukun L. Enzymatic properties of an efficient glucan branching enzyme and its potential application in starch modification. Protein Expr Purif 2020; 178:105779. [PMID: 33115653 DOI: 10.1016/j.pep.2020.105779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Glucan branching enzymes (GBEs, EC 2.4.1.18) catalyze the formation of α-1,6-linked branch in starch, which is important for the starch modification with prospective properties. In this study, the aqGBE gene encoding an efficient glucan branching enzyme was cloned from Aquabacterium sp. strain A7-Y and successfully expressed in Escherichia coli BL21 (DE3). The specific activity of the purified recombinant enzyme rAqGBE was 2850 U/mg with potato starch as the optimal substrate, and the Km and Vmax values of rAqGBE were 1.18 mg/mL and 588.2 μmol/min/mg, respectively. Enzymological characterization showed that rAqGBE exhibits its optimal activity under the condition of 40 °C and pH 7.0, respectively, which is independent of calcium ions. Otherwise, rAqGBE-treated potato starch showed different chain length distribution compared with control, the numbers of short chains (degree of polymerization, DP < 7) and long chains (DP > 25) increased from 4.5% to 9.6% and 6.1%-15.7% after enzymatic treatment, respectively. In starch anti-ageing assay, with minimum usage of 0.8 mg rAqGBE per g starch, the rAqGBE-treated potato starch exhibited reduced retrogradation properties. Our results indicate that the branching enzyme AqGBE may therefore be a promising tool for the enzymatic modification of starch.
Collapse
Affiliation(s)
- Xia Chengyao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qiao Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dong Chaonan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chen Xiaopei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wang Yanxin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Li Ding
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Ye Xianfeng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Han Jian
- College of Agriculture, Xinjiang Agricultural University, XinJiang, 830052, China
| | - Huang Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cui Zhongli
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Li Zhoukun
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
8
|
Yim S, Kim M. Purification and characterization of thermostable l-asparaginase from Bacillus amyloliquefaciens MKSE in Korean soybean paste. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Sun Z, Qin R, Li D, Ji K, Wang T, Cui Z, Huang Y. A novel bacterial type II l -asparaginase and evaluation of its enzymatic acrylamide reduction in French fries. Int J Biol Macromol 2016; 92:232-239. [DOI: 10.1016/j.ijbiomac.2016.07.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
|