1
|
Ding Y, Ke J, Hong T, Zhang A, Wu X, Jiang X, Shao S, Gong M, Zhao S, Shen L, Chen S. Microbial diversity and ecological roles of halophilic microorganisms in Dingbian (Shaanxi, China) saline-alkali soils and salt lakes. BMC Microbiol 2025; 25:287. [PMID: 40350492 PMCID: PMC12066067 DOI: 10.1186/s12866-025-03997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Halophilic microorganisms abound in numerous hypersaline environments, such as salt lakes, salt mines, solar salterns, and salted seafood. In the northwest of Dingbian county (Shaanxi province, China), there exists a belt of hypersaline habitats extending from the west to the north consisting of saline-alkali soil and salt lakes. Theoretically, such a hypersaline environment has a high probability of containing abundant halophilic archaea communities. Nevertheless, there is nearly no systematic research on halophilic archaea in this area. Here, we employed a combination of culture-dependent and culture-independent methods to analyze the collected samples. The high-throughput sequencing results of the archaeal 16S rRNA gene indicated that the richness of halophilic archaea in saline-alkali soils was significantly higher than that in salt lakes. In saline-alkali soils, the Natronomonas genus of archaea was more predominant compared to other genera, while in salt lakes, the Halonotius, Halorubrum, and Haloarcula genera of archaea had relatively higher abundances. However, the dominant families of halophilic archaea in both environments were mainly Haloferacaceae (30.96-72%), Halomicrobiaceae (17-53.19%) and Nanosalinaceae (1-19.08%). Based on the outcomes of pure culture experiments, a total of 26 genera and 98 strains were identified. Among the identified halophilic microorganisms, the predominant species were Halorubrum and Fodinibius, accounting for 33.67% and 13.27%, respectively. The remainder were mostly low-abundance groups within the community, and 22 potential novel taxa were discovered. Additionally, metagenomic technology was employed in our research. The analysis results demonstrated that the microorganisms in this area possess metabolic pathways capable of degrading various pollutants such as atrazine, methane, and dioxins, suggesting that some microorganisms in this area play a positive role in environmental remediation. This study roughly reveals the diversity composition and dominant species of halophilic archaea in these hypersaline environments and provides a scientific basis for the possible ecological functions of microorganisms in this area during long-term survival. It also offers scientific evidence for the development and utilization of halophilic microbial resources and ecological protection.
Collapse
Affiliation(s)
- Yue Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Aodi Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xue Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xinran Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shilong Shao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Ming Gong
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shengda Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
2
|
De Luca D, Piredda R, Scamardella S, Martelli Castaldi M, Troisi J, Lombardi M, De Castro O, Cennamo P. Taxonomic and metabolic characterisation of biofilms colonising Roman stuccoes at Baia's thermal baths and restoration strategies. Sci Rep 2024; 14:26290. [PMID: 39487240 PMCID: PMC11530618 DOI: 10.1038/s41598-024-76637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
Stuccoes are very delicate decorative elements of Roman age. Very few of them survived almost intact to present days and, for this reason, they are of great interest to restorers and conservators. In this study, we combined metabarcoding and untargeted metabolomics to characterise the taxonomic and metabolic profiles of the microorganisms forming biofilms on the stuccoes located on the ceiling of the laconicum, a small thermal environment in the archaeological park of Baia (southern Italy). We found that some samples were dominated by bacteria while others by eukaryotes. Additionally, we observed high heterogeneity in the type and abundance of bacterial taxa, while the eukaryotic communities, except in one sample (at prevalence of fungi), were dominated by green algae. The metabolic profiles were comparable across samples, with lipids, lipid-like molecules and carbohydrates accounting for roughly the 50% of metabolites. In vitro and in vivo tests to remove biofilms on stuccoes using essential oils blends were successful at a 50% dilution for one hour and half. This integrative study advanced our knowledge on taxonomic and metabolic profiles of biofilms on ancient stuccoes and highlighted the potential impacts of these techniques in the field of cultural heritage conservation.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy.
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Roberta Piredda
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano (Bari), Italy
| | - Sara Scamardella
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy
| | | | - Jacopo Troisi
- Theoreo srl, Montecorvino Pugliano, SA, Italy
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Martina Lombardi
- Theoreo srl, Montecorvino Pugliano, SA, Italy
- European Institute of Metabolomics Foundation, Baronissi, SA, Italy
| | - Olga De Castro
- Department of Biology, University of Naples Federico II, Naples, Italy
- Botanical Garden, University of Naples Federico II, Naples, Italy
| | - Paola Cennamo
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy.
| |
Collapse
|
3
|
Obayori OS, Adesina OD, Salam LB, Ashade AO, Nwaokorie FO. Depletion of hydrocarbons and concomitant shift in bacterial community structure of a diesel-spiked tropical agricultural soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:5368-5383. [PMID: 38118139 DOI: 10.1080/09593330.2023.2291421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023]
Abstract
Bacterial community of a diesel-spiked agricultural soil was monitored over a 42-day period using the metagenomic approach in order to gain insight into key phylotypes impacted by diesel contamination and be able to predict end point of bioattenuation. Soil physico-chemical parameters showed significant differences (P < 0.05) between the Polluted Soil (PS) and the Unpolluted control (US)across time points. After 21 days, the diesel content decreased by 27.39%, and at the end of 42 days, by 57.11%. Aromatics such as benzene, anthanthrene, propylbenzene, phenanthrenequinone, anthraquinone, and phenanthridine were degraded to non-detected levels within 42 days, while some medium range alkanes and polyaromatics such as acenaphthylene, naphthalene, and anthracene showed significant levels of degradation. After 21 days (LASTD21), there was a massive enrichment of the phylum Proteobacteria (72.94%), a slight decrease in the abundance of phylum Actinobacteriota (12.74%), and > 500% decrease in the abundance of the phylum Acidobacteriodota (5.26%). Day 42 (LASTD42) saw establishment of the dominance of the Proteobacteria (34.95%), Actinobacteriota, (21.71%), and Firmicutes (32.14%), and decimation of phyla such as Gemmatimonadota, Planctomycetota, and Verrucromicrobiota which play important roles in the cycling of elements and soil health. Principal component analysis showed that in PS moisture contents, phosphorus, nitrogen, organic carbon, had greater impacts on the community structure in LASTD21, while acidity, potassium, sodium, calcium and magnesium impacted the control sample. Recovery time of the soil based on the residual hydrocarbons at Day 42 was estimated to be 229.112 d. Thus, additional biostimulation may be required to achieve cleanup within one growing season.
Collapse
Affiliation(s)
| | | | - Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Nigeria
| | | | | |
Collapse
|
4
|
Amara Y, Mahjoubi M, Souissi Y, Cherif H, Naili I, ElHidri D, Kadidi I, Mosbah A, Masmoudi AS, Cherif A. Tapping into haloalkaliphilic bacteria for sustainable agriculture in treated wastewater: insights into genomic fitness and environmental adaptation. Antonie Van Leeuwenhoek 2024; 118:1. [PMID: 39269515 DOI: 10.1007/s10482-024-02012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
The increasing salinity and alkalinity of soils pose a global challenge, particularly in arid regions such as Tunisia, where about 50% of lands are sensitive to soil salinization. Anthropogenic activities, including the use of treated wastewater (TWW) for irrigation, exacerbate these issues. Haloalkaliphilic bacteria, adapted to TWW conditions and exhibiting plant-growth promotion (PGP) and biocontrol traits, could offer solutions. In this study, 24 haloalkaliphilic bacterial strains were isolated from rhizosphere sample of olive tree irrigated with TWW for more than 20 years. The bacterial identification using 16S rRNA gene sequencing showed that the haloalkaliphilic isolates, capable of thriving in high salinity and alkaline pH, were primarily affiliated to Bacillota (Oceanobacillus and Staphylococcus). Notably, these strains exhibited biofertilization and enzyme production under both normal and saline conditions. Traits such as phosphate solubilization, and the production of exopolysaccharide, siderophore, ammonia, and hydrogen cyanide were observed. The strains also demonstrated enzymatic activities, including protease, amylase, and esterase. Four selected haloalkaliphilic PGPR strains displayed antifungal activity against Alternaria terricola, with three showing tolerances to heavy metals and pesticides. The strain Oceanobacillus picturea M4W.A2 was selected for genome sequencing. Phylogenomic analyses indicated that the extreme environmental conditions probably influenced the development of specific adaptations in M4W.A2 strain, differentiating it from other Oceanobacillus picturae strains. The presence of the key genes associated with plant growth promotion, osmotic and oxidative stress tolerance, antibiotic and heavy metals resistance hinted the functional capabilities might help the strain M4W.A2 to thrive in TWW-irrigated soils. By demonstrating this connection, we aim to improve our understanding of genomic fitness to stressed environments. Moreover, the identification of gene duplication and horizontal gene transfer events through mobile genetic elements allow the comprehension of these adaptation dynamics. This study reveals that haloalkaliphilc bacteria from TWW-irrigated rhizosphere exhibit plant-growth promotion and biocontrol traits, with genomic adaptations enabling their survival in high salinity and alkaline conditions, offering potential solutions for soil salinization issues.
Collapse
Affiliation(s)
- Yosra Amara
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
- National Agronomy Institute of Tunisia, Avenue Charles Nicolle, 1082, Tunis, Mahrajène, Tunisia
| | - Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Yasmine Souissi
- Department of Engineering, German University of Technology in Oman, P.O. Box 1816, 130, Muscat, Oman
| | - Hanene Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Islem Naili
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Darine ElHidri
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Imen Kadidi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Amor Mosbah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Ahmed S Masmoudi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
5
|
Binod Kumar S, Kalwasińska A, Swiontek Brzezinska M, Wróbel M. Using halotolerant Azotobacter chroococcum W4ii from technosoils to mitigate wheat salt stress. OPEN RESEARCH EUROPE 2024; 3:76. [PMID: 39148935 PMCID: PMC11325138 DOI: 10.12688/openreseurope.15821.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 08/17/2024]
Abstract
Background Technosoils in Inowrocław, central Poland, are impacted by human activities and exhibit high salinity (ECe up to 70 dS/m) due to a soda lime repository. These saline environments pose challenges to plant growth and soil health. However, they also offer an opportunity for the evolution of microorganisms adapted to such conditions, including plant growth-promoting rhizospheric (PGPR) bacteria. The hypothesis tested here was that introducing PGPR bacteria from these environments could boost degraded soil performance, leading to better plant biomass and improved pathogen defense. Methods Azotobacter chroococcum W4ii was isolated from the rhizosphere of wheat ( Triticum aestivum L.) for its plant growth properties on wheat plants under salt stress. Results Wheat seeds co-inoculated with A. chroococcum W4ii under 200 mM salt stress showed significant improvement in various growth parameters such as seeds germination (by 130%), shoot biomass (15%), chlorophyll b content (40%) compared to un-inoculated ones. Bacterial inoculation decreased the level of malondialdehyde (MDA) by 55.5% (P<0.001), whereas it elevated the antioxidative enzymatic activities of peroxidase (POD) by 33.69% (P<0.001). The test isolate also significantly (P<0.05) enhanced the level of defense enzymes like β-1,3-glucanase, which can protect plants from infection by pathogens. The bacterium could also successfully colonize the wheat plants. Conclusions These results indicate that A. chroococcum isolated from the technosoil has the potential to promote wheat growth under salt stress and can be further used as a bioinoculant in the salt affected agricultural fields.
Collapse
Affiliation(s)
- Sweta Binod Kumar
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Monika Wróbel
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| |
Collapse
|
6
|
Belkin P, Nechaeva Y, Blinov S, Vaganov S, Perevoshchikov R, Plotnikova E. Sediment microbial communities of a technogenic saline-alkaline reservoir. Heliyon 2024; 10:e33640. [PMID: 39071596 PMCID: PMC11283119 DOI: 10.1016/j.heliyon.2024.e33640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Various natural saline and alkaline habitats have recently been widely investigated, but knowledge of anthropogenic habitats with more complex environmental conditions is still lacking. This research looks at the structure of microbial communities in 18 bottom sediment samples from a technogenic water body with saline and alkaline composition. The core samples were collected from 2 columns in the western and eastern parts of an artificial water body at the Verkhnekamskoe Salt Deposit (Russia). The microbial community structure was studied using high-throughput 16S rRNA gene sequencing. The bottom sediment composition (salinity, pH, and toxic element content) varies greatly with depth and laterally throughout the study area. The study found a considerable difference in bacterial community diversity between the 2 columns, but no considerable difference was found between the communities at various depths of the studied layers. Proteobacteria, Firmicutes, and Actinobacteria, which are common in both natural and artificial saline and alkaline environments, make up the majority of the bacteria found in the samples. Studies have shown that salinity and total alkalinity are the key factors influencing the formation of microbial communities. Ralstonia and Pseudomonas were the two most common genera in the sediment samples. These two genera are known for having high metabolic flexibility, which means they can survive in extreme environments and use a variety of carbon compounds as energy sources. The study also found that Ralstonia is indicator bacteria in samples with the highest concentrations of toxic elements compared to the other samples. A relatively high microbial diversity was discovered in the studied anthropogenic water reservoir despite the extreme alkaline and saline conditions, but it is considerably lower than that found in natural, less alkaline habitats. This research offers insight into the mechanisms behind microbial community formation in complex anthropogenic environments and covers key factors in microbial community distribution.
Collapse
Affiliation(s)
- Pavel Belkin
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Yulia Nechaeva
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Аcademy of Sciences, 614081, Goleva st. 13, Perm, Russia
| | - Sergey Blinov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Sergey Vaganov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Roman Perevoshchikov
- Natural Science Institute, Perm State University, 614068, Bukireva st. 15, Perm, Russia
| | - Elena Plotnikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Аcademy of Sciences, 614081, Goleva st. 13, Perm, Russia
| |
Collapse
|
7
|
Mahmoud AMA, Ali MHH, Abdelkarim MS, Al-Afify ADG. Chemical, biochemical, and bioactivity studies on some soda lakes, Wadi El-Natrun, Egypt. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:436. [PMID: 38589724 PMCID: PMC11001755 DOI: 10.1007/s10661-024-12573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Wadi El-Natrun is one of the most observable geomorphological features in the North-Western Desert of Egypt; it contains several old saline and saline soda lakes. This study investigates physicochemical and biochemical characteristics and estimates the total phenolic content (TPC), total flavonoid content (TVC), and bioactivities of sediment, cyanobacteria, and brine shrimp (Artemia salina) in soda lakes, i.e., El-Hamra Lake 1 (H1) and El-Hamra Lake 2 (H2). These soda lakes are unique extreme ecosystems characterized by high pH (> 9.3), high alkalinity, and salinity. Some extremophilic microorganisms are hosted in this ecosystem. The results revealed that the chemical water type of studied lakes is soda-saline lakes according to the calculated percentage sequence of major cations and anions. Sodium ranked first among major cations with an abundance ratio of e% 58, while chloride came first among anions with an abundance ratio of e% 71, and bicarbonate and carbonate occupied the last rank with an abundance of 6%. The biochemical investigations showed that TPC and TVC are present in concern contents of sediment, cyanobacteria, and brine shrimp (A. salina) which contribute 89% of antioxidant capacity and antimicrobial activities. Thus, this study helps better understand the chemical and biochemical adaptations in soda lake ecosystems and explores natural sources with potential applications in antioxidant-rich products and environmental conservation efforts.
Collapse
Affiliation(s)
| | - Mohamed H H Ali
- National Institute of Oceanography and Fisheries, Cairo, Egypt.
| | | | | |
Collapse
|
8
|
Bawane P, Deshpande S, Yele S. Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater. Curr Pharm Biotechnol 2024; 25:1564-1584. [PMID: 38258768 DOI: 10.2174/0113892010265978231109085224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.
Collapse
Affiliation(s)
- Pradip Bawane
- Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, 400056, India
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| |
Collapse
|
9
|
Ma Y, You F, Parry D, Urban A, Huang L. Adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacterial communities enriched from biofilms colonising strongly alkaline and saline bauxite residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159131. [PMID: 36183768 DOI: 10.1016/j.scitotenv.2022.159131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to characterise the adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacteria sourced from field biofilms colonising seawater-treated bauxite residue, under moderate and extremely alkaline pH conditions (8.5 to 10.8) and coupled saline (EC ≈ 50 mS/cm) conditions. The haloalkaliphilic bacterial communities demonstrated strong adaptiveness to the increasing pH from 8.5 to 10.8. The dominant groups were Exiguobacterales and Bacillales at pH 8.5 and 10, but Lactobacillales and Bacillales at pH 10.8. The exposure to pH 10.8 initially delayed bacterial growth in the first 24 h, but which rapidly recovered to a peak rate at 48 h similar to that in the pH 10 treatment. Correspondingly, lactic acid concentration at pH 10.8 rapidly rose to as high as >2000 mg/L at 48 h. Bacterial growth and organic acid production were positively related to carbohydrate supply. Overall, these bacterial groups fermented glucose to produce mainly lactic acid (>80 %) and other acids (such as acetic acid, formic acid, and succinic acid), leading to 0.5-2.0 units of pH reduction, despite the strong buffering capacity in the culture solution. The bacteria could up-regulate their phosphatase activity to mineralise the organic P in the basal nutrient broth, but increasing soluble phosphate-P at a 1:10 of glucose-C was beneficial. The biofilm-sourced bacteria communities contained redundant fermentative haloalkaliphilic groups which were adaptive to strongly alkaline pH and saline conditions.
Collapse
Affiliation(s)
- Yuanying Ma
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David Parry
- Rio Tinto, Brisbane, Queensland 4000, Australia
| | - Anja Urban
- Queensland Alumina Limited, Gladstone, Queensland 4680, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Yu F, Zhang W, Hou X, Li Y, Tong J. How nutrient loads influence microbial-derived carbon accumulation in wetlands: A new insight from microbial metabolic investment strategies. ENVIRONMENTAL RESEARCH 2023; 217:114981. [PMID: 36460070 DOI: 10.1016/j.envres.2022.114981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Excessive anthropogenic nutrient inputs often lead to the degradation of wetland ecosystems and a decrease in carbon sink capacity. Microbial-derived carbon is increasingly recognized as an important precursor for organic carbon formation, which is controlled by the balance between microbial anabolic and catabolic processes. Shifts in microbial metabolic investment under nutrient load disturbance are key, but understudied, components of microbial-derived carbon turnover. Here, the roles of the distinct life-history traits and cooperation degree of key microbial assemblies in regulating microbial-derived carbon accumulation in a wetland receiving treated wastewater were firstly assessed by combining microbial biomarkers and genomic approaches. It was found that microbial-derived carbon was an important source of organic carbon in wetlands, and strongly associated with several microbial assemblies with specific trait strategies. Further analysis demonstrated that high growth yield strategists were mainly associated with microbial necromass accrual, while microbial biomass was more dominated by resource acquisition strategies in nutrient-imbalanced wetlands. A significant positive relationship between positive cohesion and microbial-derived carbon indicated that cooperative behavior among taxa promoted the production and accumulation of microbial-derived carbon. Moreover, resource stoichiometric balance, including C:N and C:P, was identified as an important driver of shifts in microbial metabolic investment strategies. The decreased C:N ratio led to a shift from resource acquisition strategies to high growth yield strategies for the microbial community, which facilitated microbial necromass accrual along the N-limited wetland, while the increased C:P ratio caused by excessive P deposition in sediments limits microbial cooperative growth to some extent. This study highlighted the importance of stoichiometric balance in mediating microbial growth metabolism and, in turn, enhancing the carbon sink capacity of wetlands.
Collapse
Affiliation(s)
- Feng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Xing Hou
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Jiaxin Tong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
11
|
Tu D, Ke J, Luo Y, Hong T, Sun S, Han J, Chen S. Microbial community structure and shift pattern of industry brine after a long-term static storage in closed tank. Front Microbiol 2022; 13:975271. [PMID: 36118215 PMCID: PMC9478951 DOI: 10.3389/fmicb.2022.975271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Brine from Dingyuan Salt Mine (Anhui, China), an athalassohaline hypersaline environment formed in the early tertiary Oligocene, is used to produce table salt for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. Here, we employed cultivation and high-throughput sequencing strategies to uncover the microbial community and its shift after a long-term storage in the brine collected from Dingyuan Salt Mine. High-throughput sequencing showed (1) in the fresh brine (2021), Cyanobium_stocktickerPCC-6307 spp. (8.46%), Aeromonas spp. (6.91%) and Pseudomonas spp. (4.71%) are the dominant species in bacteria while Natronomonas spp. (18.89%), Halapricum spp. (13.73%), and Halomicrobium spp. (12.35%) in archaea; (2) after a 3-year-storage, Salinibacter spp. (30.01%) and Alcanivorax spp. (14.96%) surpassed Cyanobium_stocktickerPCC-6307 spp. (8.46%) becoming the dominant species in bacteria; Natronomonas spp. are still the dominant species, while Halorientalis spp. (14.80%) outnumbered Halapricum spp. becoming the dominant species in archaea; (3) Alcanivorax spp. and Halorientalis spp. two hydrocarbons degrading microorganisms were enriched in the brine containing hydrocarbons. Cultivation using hypersaline nutrient medium (20% NaCl) combined with high-throughput 16S rRNA gene sequencing showed that (1) the biomass significantly increased while the species diversity sharply declined after a 3-year-storage; (2) Halorubrum spp. scarcely detected from the environment total stocktickerDNA were flourishing after cultivation using AS-168 or NOM medium; (3) twelve possible new species were revealed based on almost full-length 16S rRNA gene sequence similarity search. This study generally uncovered the microbial community and the dominant halophiles in this inland athalassohaline salt mine, and provided a new insight on the shift pattern of dominant halophiles during a long-term storage, which illustrated the shaping of microorganisms in the unique environment, and the adaptation of microbe to the specific environment.
Collapse
Affiliation(s)
- Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Siqi Sun
- Anhui Jiaotianxiang Biological Technology Co., Ltd., Xuancheng, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Where the Little Ones Play the Main Role-Picophytoplankton Predominance in the Soda and Hypersaline Lakes of the Carpathian Basin. Microorganisms 2022; 10:microorganisms10040818. [PMID: 35456867 PMCID: PMC9030754 DOI: 10.3390/microorganisms10040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
The extreme environmental conditions of the diverse saline inland waters (soda lakes and pans, hypersaline lakes and ponds) of the Carpathian Basin are an advantage for picophytoplankton. The abundance of picophytoplankton in these waters can be up to several orders of magnitude higher than that in freshwater shallow lakes, but differences are also found within different saline water types: higher picophytoplankton abundances were observed in hypersaline lakes compared to humic soda lakes, and their highest numbers were detected in turbid soda lakes. Moreover, their contribution to phytoplankton biomass is higher than that in shallow freshwater lakes with similar trophic states. Based on long-term data, their ratio within the phytoplankton increased with turbidity in the case of turbid soda lakes, while, in hypersaline lakes, their proportion increased with salinity. Picocyanobacteria were only detected with high abundance (>106−107 cells/mL) in turbid soda lakes, while picoeukaryotes occurred in high numbers in both turbid and hypersaline lakes. Despite the extreme conditions of the lakes, the diversity of picophytoplankton is remarkable, with the dominance of non-marine Synechococcus/Cyanobium, Choricystis, Chloroparva and uncultured trebouxiophycean green algae in the soda lakes, and marine Synechococcus and Picochlorum in the hypersaline lakes.
Collapse
|
13
|
Macías-Pérez LA, Levard C, Barakat M, Angeletti B, Borschneck D, Poizat L, Achouak W, Auffan M. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127470. [PMID: 34687997 DOI: 10.1016/j.jhazmat.2021.127470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Bauxite residue is the alkaline byproduct generated during alumina extraction and is commonly landfilled in open-air deposits. The growth in global alumina production have raised environmental concerns about these deposits since no large-scale reuses exist to date. Microbial-driven techniques including bioremediation and critical metal bio-recovery are now considered sustainable and cost-effective methods to revalorize bauxite residues. However, the establishment of microbial communities and their active role in these strategies are still poorly understood. We thus determined the geochemical composition of different bauxite residues produced in southern France and explored the development of bacterial and fungal communities using Illumina high-throughput sequencing. Physicochemical parameters were influenced differently by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-stage microbial community dominated by haloalkaliphilic microorganisms and strongly influenced by chemical gradients. Microbial richness, diversity and network complexity increased significantly with the deposit age, reaching an equilibrium community composition similar to typical soils after decades of natural weathering. Our results suggested that salinity, pH, and toxic metals affected the bacterial community structure, while fungal community composition showed no clear correlations with chemical variations.
Collapse
Affiliation(s)
- Luis Alberto Macías-Pérez
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Clément Levard
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Bernard Angeletti
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Daniel Borschneck
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | | | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Mélanie Auffan
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
14
|
Somogyi B, Felföldi T, Tóth LG, Bernát G, Vörös L. Photoautotrophic picoplankton - a review on their occurrence, role and diversity in Lake Balaton. Biol Futur 2021; 71:371-382. [PMID: 34554456 DOI: 10.1007/s42977-020-00030-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Occurrence of the smallest phototrophic microorganisms (photoautotrophic picoplankton, APP) in Lake Balaton was discovered in the early 1980s. This triggered a series of systematic studies on APP and resulted in the setting of a unique long-term picoplankton dataset. In this review, we intend to summarize the obtained results and to give a new insight on APP ecology and diversity in Lake Balaton. According to the results, APP dynamics depends on trophic state, temperature, nutrient, and light availability, as well as grazing pressure. APP abundance in Lake Balaton decreased to a low level (1-2 × 105 cells mL-1) as a consequence of decreasing nutrient supply (oligotrophication) during the past more than two decades, and followed a characteristic seasonal dynamics with higher abundance values from spring to autumn than in winter. Concomitantly, however, the APP contribution to both phytoplankton biomass and primary production increased (up to 70% and 40-50%, respectively) during oligotrophication. Regarding annual pattern, picocyanobacteria are dominant from spring to autumn, while in winter, picoeukaryotes are the most abundant, most likely due to the different light and temperature optima of these groups. Within picocyanobacteria, single cells and microcolonies were both observed with mid-summer dominance of the latter which correlated well with the density of cladocerans. Community-level chromatic adaptation (i.e., dominance of phycoerythrin- or phycocyanin-rich forms) of planktonic picocyanobacteria was also found as a function of underwater light quality. Sequence analysis studies of APP in Lake Balaton revealed that both picocyanobacteria and picoeukaryotes represent a diverse and dynamic community consisting several freshwater genotypes (picocyanobacteria: Synechococcus, Cyanobium; picoeukaryotes: Choricystis, Stichococcus, Mychonastes, Nannochloris, and Nannochloropsis).
Collapse
Affiliation(s)
- Boglárka Somogyi
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary.
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - László G Tóth
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Gábor Bernát
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| | - Lajos Vörös
- Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kunó u. 3, Tihany, 8237, Hungary
| |
Collapse
|
15
|
Shilova AV, Maksimov AY, Maksimova YG. Isolation and Identification of Alkalitolerant Bacteria with Hydrolytic Activity from a Soda Sludge Storage. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Chakraborty J, Rajput V, Sapkale V, Kamble S, Dharne M. Spatio-temporal resolution of taxonomic and functional microbiome of Lonar soda lake of India reveals metabolic potential for bioremediation. CHEMOSPHERE 2021; 264:128574. [PMID: 33059288 DOI: 10.1016/j.chemosphere.2020.128574] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Lonar Lake, India; a hypersaline and hyperalkaline extremophilic ecosystem having a unique microbial population has been rarely explored for bioremediation aspects. MinION-based shotgun sequencing was used to comprehensively compare the microbial diversity and functional potential of xenobiotic degradation pathways with seasonal changes. Proteobacteria and Firmicutes were prevalent bacterial phyla in the pre-monsoon and post-monsoon samples. Functional analysis from SEED-subsystem and KEGG database revealed 28 subsystems and 18 metabolic pathways for the metabolism of aromatic compounds and xenobiotic biodegradation respectively. Occurrence of N-phenyl alkanoic, benzoate, biphenyl, chloroaromatic, naphthalene, and phenol degradation genes depicted varied abundance in the pre-monsoon and post-monsoon samples. Further, KEGG analysis indicated nitrotoluene degradation pathway (ko00633) abundant in post-monsoon samples, and the benzoate degradation pathway (ko00362) predominant in 19LN4S (pre-monsoon) than 18LN7S (post-monsoon) samples. The abundant genes for benzoate degradation were pcaI: 3-oxoadipate CoA-transferase, alpha subunit, pcaH: protocatechuate 3,4-dioxygenase, beta subunit, and pcaB: 3-carboxy-cis, cis-muconate cycloisomerase, and 4-oxalocrotonate tautomerase. This metagenomic study provides a unique blueprint of hitherto unexplored xenobiotic biodegradation genes/pathways in terms of seasonal variations in the Lonar Lake, and warrants active exploitation of microbes for bioremediation purposes.
Collapse
Affiliation(s)
- Jaya Chakraborty
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India
| | - Vibhavari Sapkale
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kamble
- Chemical Engineering and Process Development (CEPD) Division, CSIR-National Chemical Laboratory (NCL), Pune, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
17
|
Korponai K, Szabó A, Somogyi B, Boros E, Borsodi AK, Jurecska L, Vörös L, Felföldi T. Dual bloom of green algae and purple bacteria in an extremely shallow soda pan. Extremophiles 2019; 23:467-477. [PMID: 31087168 PMCID: PMC6557878 DOI: 10.1007/s00792-019-01098-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
In April 2014, dual bloom of green algae and purple bacteria occurred in a shallow, alkaline soda pan (Kiskunság National Park, Hungary). The water was only 5 cm deep, in which an upper green layer was clearly separated from a near-sediment purple one. Based on microscopy and DNA-based identification, the upper was inhabited by a dense population of the planktonic green alga, Oocystis submarina Lagerheim, while the deeper layer was formed by purple, bacteriochlorophyll-containing bacteria, predominated by Thiorhodospira and Rhodobaca. Additional bacterial taxa with a presumed capability of anoxygenic phototrophic growth belonged to the genera Loktanella and Porphyrobacter. Comparing the bacterial community of the purple layer with a former blooming event in a nearby soda pan, similar functional but different taxonomic composition was revealed. Members from many dominant bacterial groups were successfully cultivated including potentially new species, which could be the result of the application of newly designed media.
Collapse
Affiliation(s)
- Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., Budapest, 1117, Hungary
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., Budapest, 1117, Hungary
| | - Boglárka Somogyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Emil Boros
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., Budapest, 1117, Hungary
| | - Laura Jurecska
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., Budapest, 1117, Hungary
| | - Lajos Vörös
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., Budapest, 1117, Hungary.
| |
Collapse
|
18
|
Microbial Community in Hyperalkaline Steel Slag-Fill Emulates Serpentinizing Springs. DIVERSITY 2019. [DOI: 10.3390/d11070103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To date, a majority of studies of microbial life in hyperalkaline settings focus on environments that are also highly saline (haloalkaline). Haloalkaline conditions offer microbes abundant workarounds to maintain pH homeostasis, as salt ions can be exchanged for protons by dedicated antiporter proteins. Yet hyperalkaline freshwater systems also occur both naturally and anthropogenically, such as the slag fill aquifers around former Lake Calumet (Chicago, IL, USA). In this study, 16S rRNA gene sequences and metagenomic sequence libraries were collected to assess the taxonomic composition and functional potential of microbes present in these slag-polluted waterways. Relative 16S rRNA gene abundances in Calumet sediment and water samples describe community compositions not significantly divergent from those in nearby circumneutral conditions. Major differences in composition are mainly driven by Proteobacteria, primarily one sequence cluster closely related to Hydrogenophaga, which comprises up to 85% of 16S rRNA gene abundance in hyperalkaline surface sediments. Sequence identity indicates this novel species belongs to the recently established genus Serpentinomonas, a bacterial lineage associated with natural freshwater hyperalkaline serpentinizing springs.
Collapse
|
19
|
Martínez-Olivas MA, Jiménez-Bueno NG, Hernández-García JA, Fusaro C, Luna-Guido M, Navarro-Noya YE, Dendooven L. Bacterial and archaeal spatial distribution and its environmental drivers in an extremely haloalkaline soil at the landscape scale. PeerJ 2019; 7:e6127. [PMID: 31249729 PMCID: PMC6587938 DOI: 10.7717/peerj.6127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/17/2018] [Indexed: 11/20/2022] Open
Abstract
Background A great number of studies have shown that the distribution of microorganisms in the soil is not random, but that their abundance changes along environmental gradients (spatial patterns). The present study examined the spatial variability of the physicochemical characteristics of an extreme alkaline saline soil and how they controlled the archaeal and bacterial communities so as to determine the main spatial community drivers. Methods The archaeal and bacterial community structure, and soil characteristics were determined at 13 points along a 211 m transect in the former lake Texcoco. Geostatistical techniques were used to describe spatial patterns of the microbial community and soil characteristics and determine soil properties that defined the prokaryotic community structure. Results A high variability in electrolytic conductivity (EC) and water content (WC) was found. Euryarchaeota dominated Archaea, except when the EC was low. Proteobacteria, Bacteroidetes and Actinobacteria were the dominant bacterial phyla independent of large variations in certain soil characteristics. Multivariate analysis showed that soil WC affected the archaeal community structure and a geostatistical analysis found that variation in the relative abundance of Euryarchaeota was controlled by EC. The bacterial alpha diversity was less controlled by soil characteristics at the scale of this study than the archaeal alpha diversity. Discussion Results indicated that WC and EC played a major role in driving the microbial communities distribution and scale and sampling strategies were important to define spatial patterns.
Collapse
Affiliation(s)
| | | | - Juan Alfredo Hernández-García
- Laboratory of Biological Variation and Evolution, Department of Zoology, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Carmine Fusaro
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Tlaxcala, Mexico
| | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico
| |
Collapse
|
20
|
Kalwasińska A, Deja-Sikora E, Szabó A, Felföldi T, Kosobucki P, Brzezinska MS, Walczak M. Salino-alkaline lime of anthropogenic origin a reservoir of diverse microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:842-854. [PMID: 30481711 DOI: 10.1016/j.scitotenv.2018.11.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
This paper presents study on the microbiome of a unique extreme environment - saline and alkaline lime, a by-product of soda ash and table salt production in Janikowo, central Poland. High-throughput 16S rDNA amplicon sequencing was used to reveal the structure of bacterial and archaeal communities in the lime samples, taken from repository ponds differing in salinity (2.3-25.5% NaCl). Surprisingly abundant and diverse bacterial communities were discovered in this extreme environment. The most important geochemical drivers of the observed microbial diversity were salinity, calcium ions, nutrients, and water content. The bacterial and archaeal communities in saline, alkaline lime were similar to those found in natural haloalkaline environments. Although the archaeal contribution to the whole microbial community was lower than 4%, the four archaeal genera Natronomonas, Halorubrum, Halobellus, and Halapricum constituted the core microbiome of saline, alkaline lime - a set of OTUs (> 0.1% of total archaeal relative abundance) present in all samples under study. The high proportion of novel, unclassified archaeal and bacterial sequences (not identified at 97% similarity level) in the 16S rRNA gene libraries indicated that potentially new genera, especially within the class of Thermoplasmata inhabit this unique environment.
Collapse
Affiliation(s)
- Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Edyta Deja-Sikora
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, PázmányPéterstny. 1/c. H-1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, PázmányPéterstny. 1/c. H-1117 Budapest, Hungary
| | - Przemysław Kosobucki
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
21
|
Salah ZB, Charles CJ, Humphreys PN, Laws AP, Rout SP. Genomic Insights Into A Novel, Alkalitolerant Nitrogen Fixing Bacteria, Azonexus sp. Strain ZS02. J Genomics 2019; 7:1-6. [PMID: 30662569 PMCID: PMC6328298 DOI: 10.7150/jgen.28153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/09/2018] [Indexed: 02/03/2023] Open
Abstract
Alkaline environments represent a significant challenge to the growth of micro-organisms. Despite this, there are a number of alkaline environments which contain active microbial communities. Here we describe the genome of a diazotrophic, alkalitolerant strain of Azonexus, which was isolated from a microcosm seeded with hyperalkaline soils resulting from lime depositions. The isolate has a genome size 3.60 Mb with 3431 protein coding genes. The proteome indicated the presence of genes associated with the cycling of nitrogen, in particular the fixation of atmospheric nitrogen. Although closely related to Azonexus hydrophilus strain d8-1 by both 16S (97.9%) and in silico gDNA (84.1%) relatedness, the isolate demonstrates a pH tolerance above that reported for this strain. The proteome contained genes for the complete Na+/H+ antiporter (subunits A to G) for cytoplasmic pH regulation; this may account for the phenotypic characteristics of this strain which exhibited optimal growth conditions of pH 9 and 30°C.
Collapse
Affiliation(s)
- Zohier B Salah
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Christopher J Charles
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Paul N Humphreys
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Andrew P Laws
- Department of Chemical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| | - Simon P Rout
- Department of Biological and Geographical Sciences, University of Huddersfield, Queensgate Campus, Huddersfield, United Kingdom, HD1 3DH
| |
Collapse
|
22
|
Kevbrin VV. Isolation and Cultivation of Alkaliphiles. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:53-84. [DOI: 10.1007/10_2018_84] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Remonsellez F, Castro-Severyn J, Pardo-Esté C, Aguilar P, Fortt J, Salinas C, Barahona S, León J, Fuentes B, Areche C, Hernández KL, Aguayo D, Saavedra CP. Characterization and Salt Response in Recurrent Halotolerant Exiguobacterium sp. SH31 Isolated From Sediments of Salar de Huasco, Chilean Altiplano. Front Microbiol 2018; 9:2228. [PMID: 30294311 PMCID: PMC6158405 DOI: 10.3389/fmicb.2018.02228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
Poly-extremophiles microorganisms have the capacity to inhabit hostile environments and can survive several adverse conditions that include as variations in temperature, pH, and salinity, high levels UV light and atmospheric pressure, and even the presence of toxic compounds and the formation of reactive oxygen species (ROS). A halotolerant Exiguobacterium strain was isolated from Salar de Huasco (Chilean Altiplano), a well-known shallow lake area with variable salinity levels, little human intervention, and extreme environmental conditions, which makes it ideal for the study of resistant mechanisms and the evolution of adaptations. This bacterial genus has not been extensively studied, although its cosmopolitan location indicates that it has high levels of plasticity and adaptive capacity. However, to date, there are no studies regarding the tolerance and resistance to salinity and osmotic pressure. We set out to characterize the Exiguobacterium sp. SH31 strain and describe its phenotypical and genotypical response to osmotic stress. In this context, as a first step to characterize the response to the SH31 strain to salinity and to establish the bases for a molecular study, we proposed to compare its response under three salt conditions (0, 25, and 50 g/l NaCl). Using different physiology, genomic, and transcriptomic approaches, we determined that the bacterium is able to grow properly in a NaCl concentration of up to 50 g/l; however, the best growth rate was observed at 25 g/l. Although the presence of flagella is not affected by salinity, motility was diminished at 25 g/l NaCl and abolished at 50 g/l. Biofilm formation was induced proportionally with increases in salinity, which was expected. These phenotypic results correlated with the expression of related genes: fliG and fliS Motility); opuBA and putP (transport); glnA, proC, gltA, and gbsA (compatible solutes); ywqC, bdlA, luxS y pgaC (biofilm and stress response); and therefore, we conclude that this strain effectively modifies gene expression and physiology in a differential manner when faced with different concentrations of NaCl and these modifications aid survival.
Collapse
Affiliation(s)
- Francisco Remonsellez
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Aguilar
- Lake and Glacier Ecology Research Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jonathan Fortt
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Cesar Salinas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Sergio Barahona
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Joice León
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Bárbara Fuentes
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Klaudia L. Hernández
- Centro de Investigación Marina Quintay, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Aguayo
- Center for Bioinformatics and Integrative Biology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
24
|
Heo ST, Kwon KT, Yoo JR, Choi JY, Lee KH, Ko KS. First Case of Necrotizing Fasciitis Caused by Skermanella aerolata Infection Mimicking Vibrio Sepsis. Ann Lab Med 2018; 38:604-606. [PMID: 30027706 PMCID: PMC6056393 DOI: 10.3343/alm.2018.38.6.604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/26/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sang Taek Heo
- Department of Infectious Disease, Jeju National University School of Medicine, Jeju, Korea
| | - Ki Tae Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong Rae Yoo
- Department of Infectious Disease, Jeju National University School of Medicine, Jeju, Korea
| | - Ji Young Choi
- Department of Molecular Cell Biology and Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Keun Hwa Lee
- Department of Microbiology and Immunology, Jeju National University School of Medicine, Jeju, Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology and Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea.
| |
Collapse
|