1
|
Tsegaye KN, Alemnew M, Berhane N. Saccharomyces cerevisiae for lignocellulosic ethanol production: a look at key attributes and genome shuffling. Front Bioeng Biotechnol 2024; 12:1466644. [PMID: 39386039 PMCID: PMC11461319 DOI: 10.3389/fbioe.2024.1466644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
These days, bioethanol research is looking at using non-edible plant materials, called lignocellulosic feedstocks, because they are cheap, plentiful, and renewable. However, these materials are complex and require pretreatment to release fermentable sugars. Saccharomyces cerevisiae, the industrial workhorse for bioethanol production, thrives in sugary environments and can handle high levels of ethanol. However, during lignocellulose fermentation, S. cerevisiae faces challenges like high sugar and ethanol concentrations, elevated temperatures, and even some toxic substances present in the pretreated feedstocks. Also, S. cerevisiae struggles to efficiently convert all the sugars (hexose and pentose) present in lignocellulosic hydrolysates. That's why scientists are exploring the natural variations within Saccharomyces strains and even figuring out ways to improve them. This review highlights why Saccharomyces cerevisiae remains a crucial player for large-scale bioethanol production from lignocellulose and discusses the potential of genome shuffling to create even more efficient yeast strains.
Collapse
Affiliation(s)
- Kindu Nibret Tsegaye
- Department of Biology, Gondar College of Teachers Education, Gondar, Ethiopia
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Marew Alemnew
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Nega Berhane
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Guo X, Ren J, Zhou X, Zhang M, Lei C, Chai R, Zhang L, Lu D. Strategies to improve the efficiency and quality of mutant breeding using heavy-ion beam irradiation. Crit Rev Biotechnol 2024; 44:735-752. [PMID: 37455421 DOI: 10.1080/07388551.2023.2226339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/15/2023] [Indexed: 07/18/2023]
Abstract
Heavy-ion beam irradiation (HIBI) is useful for generating new germplasm in plants and microorganisms due to its ability to induce high mutagenesis rate, broad mutagenesis spectrum, and excellent stability of mutants. However, due to the random mutagenesis and associated mutant breeding modalities, it is imperative to improve HIBI-based mutant breeding efficiency and quality. This review discusses and summarizes the findings of existing theoretical and technical studies and presents a set of tandem strategies to enable efficient and high-quality HIBI-based mutant breeding practices. These strategies: adjust the mutation-inducing techniques, regulate cellular response states, formulate high-throughput screening schemes, and apply the generated superior genetic elements to genetic engineering approaches, thereby, improving the implications and expanding the scope of HIBI-based mutant breeding. These strategies aim to improve the mutagenesis rate, screening efficiency, and utilization of positive mutations. Here, we propose a model based on the integration of these strategies that would leverage the advantages of HIBI while compensating for its present shortcomings. Owing to the unique advantages of HIBI in creating high-quality genetic resources, we believe this review will contribute toward improving HIBI-based breeding.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lingxi Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Dai K, Qu C, Feng J, Lan Y, Fu H, Wang J. Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:155. [PMID: 37865803 PMCID: PMC10589968 DOI: 10.1186/s13068-023-02402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/21/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Sucrose-rich sugarcane trash surpasses 28 million tons globally per year. Effective biorefinery systems could convert these biomasses to bioproducts, such as bioethanol from sugarcane sucrose in Brazil. Thermophilic microbes for biofuels have attracted great attention due to their higher fermentation temperature and wide substrate spectrum. However, few thermophiles using sucrose or molasses for biofuels production was reported. Thermoanaerobacterium aotearoense SCUT27 has been considered as an efficient ethanol producer, but it cannot directly utilize sucrose. In this study, various sucrose metabolic pathways were introduced and analyzed in Thermoanaerobaterium. RESULTS The sucrose-6-phosphate hydrolase (scrB), which was from a screened strain Thermoanaerobacterium thermosaccharolyticum G3-1 was overexpressed in T. aotearoense SCUT27 and endowed this strain with the ability to utilize sucrose. In addition, overexpression of the sucrose-specific PTS system (scrA) from Clostridium acetobutylicum accelerated the sucrose transport. To strengthen the alcohols production and substrates metabolism, the redox-sensing transcriptional repressor (rex) in T. aotearoense was further knocked out. Moreover, with the gene arginine repressor (argR) deleted, the ethanologenic mutant P8S10 showed great inhibitors-tolerance and finally accumulated ~ 34 g/L ethanol (a yield of 0.39 g/g sugars) from pretreated cane molasses in 5 L tank by fed-batch fermentation. When introducing butanol synthetic pathway, 3.22 g/L butanol was produced by P8SB4 with a yield of 0.44 g alcohols/g sugars at 50℃. This study demonstrated the potential application of T. aotearoense SCUT27 for ethanol and butanol production from low cost cane molasses. CONCLUSIONS Our work provided strategies for sucrose utilization in thermophiles and improved biofuels production as well as stress tolerances of T. aotearoense SCUT27, demonstrating the potential application of the strain for cost-effective biofuels production from sucrose-based feedstocks.
Collapse
Affiliation(s)
- Kaiqun Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Science and Technology of Lingnan Special Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yang Lan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Li Y, Luo L, Ding X, Zhang X, Gan S, Shang C. Production of Tetramethylpyrazine from Cane Molasses by Bacillus sp. TTMP20. Molecules 2023; 28:molecules28062640. [PMID: 36985611 PMCID: PMC10054849 DOI: 10.3390/molecules28062640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
2,3,5,6-Tetramethylpyrazine (TTMP) is an active ingredient of Ligusticum wallichii Franch. It can be used in medicine and food fields. In this study, Bacillus sp. TTMP20 was applied to produce TTMP using cane molasses as a carbon source. After pretreatment with phosphoric acid, 170 mL/L treated molasses, combined with 10 g/L yeast powder, 30 g/L tryptone and 30 g/L (NH4)2HPO4 were used for fermentation. After 36 h, TTMP output reached the highest value of 208.8 mg/L. The yield of TTMP using phosphoric acid-treated molasses as carbon source was 145.59% higher than control. Under the sulfuric acid treatment process of molasses (150 g), the maximum yield of TTMP was 895.13 mg/L, which was 183.18% higher than that of untreated molasses (316.1 mg/L). This study demonstrated that molasses is a high-quality and inexpensive carbon source for the manufacture of TTMP, laying the groundwork for the future industrial production of TTMP.
Collapse
|
5
|
Kruasuwan W, Puseenam A, Am-in S, Trakarnpaiboon S, Sornlek W, Kocharin K, Jindamorakot S, Tanapongpipat S, Bai FY, Roongsawang N. Evaluation of thermotolerant and ethanol-tolerant Saccharomyces cerevisiae as an alternative strain for bioethanol production from industrial feedstocks. 3 Biotech 2023; 13:23. [PMID: 36573155 PMCID: PMC9789288 DOI: 10.1007/s13205-022-03436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Despite the fact that yeast Saccharomyces cerevisiae is by far the most commonly used in ethanol fermentation, few have been reported to be resistant to high ethanol concentrations at high temperatures. Hence, in this study, 150 S. cerevisiae strains from the Thailand Bioresource Research Center (TBRC) were screened for ethanol production based on their glucose utilization capability at high temperatures. Four strains, TBRC 12149, 12150, 12151, and 12153, exhibited the most outstanding ethanol production at high temperatures in shaking-flask culture. Among these, strain TBRC 12151 demonstrated a high ethanol tolerance of up to 12% at 40 °C. Compared to industrial and laboratory strains, TBRC 12149 displayed strong sucrose fermentation capacity whereas TBRC 12153 and 12151, respectively, showed the greatest ethanol production from molasses and cassava starch hydrolysate at high temperatures in shaking-flask conditions. In 5-L batch fermentation, similarly to both industrial strains, strain TBRC 12153 yielded an ethanol concentration of 66.5 g L-1 (58.4% theoretical yield) from molasses after 72 h at 40 °C. In contrast, strain TBRC12151 outperformed other industrial strains in cell growth and ethanol production from cassava starch hydrolysis at 40 °C with an ethanol production of 65 g L-1 (77.7% theoretical yield) after 72 h. Thus, the thermotolerant and ethanol-tolerant S. cerevisiae TBRC 12151 displayed great potential and possible uses as an alternative strain for industrial ethanol fermentation using cassava starch hydrolysate. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03436-4.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
- Present Address: Siriraj Long-Read Laboratory (Si-LoL), Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Aekkachai Puseenam
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Somjit Am-in
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Warasirin Sornlek
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Kanokarn Kocharin
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Sasitorn Jindamorakot
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Sutipa Tanapongpipat
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| |
Collapse
|
6
|
Liu C, Cheng K. Molasses fermentation to produce low-cost carbon source for denitrification. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Chang Liu
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| | - Kai Cheng
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, PR China
| |
Collapse
|
7
|
Combined effect of phosphorus, magnesium, yeast extract on lipid productivity of Yarrowia lipolytica grown with molasses. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Exploring Natural Fermented Foods as a Source for New Efficient Thermotolerant Yeasts for the Production of Second-Generation Bioethanol. ENERGIES 2022. [DOI: 10.3390/en15144954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considering the cost-effectiveness of bioethanol production at high temperatures, there is an enduring need to find new thermotolerant ethanologenic yeasts. In this study, a total of eighteen thermotolerant yeasts were isolated from various natural fermented products in Morocco. Ethanol production using 50 g/L glucose or 50 g/L xylose as the sole carbon source revealed potential yeasts with high productivities and volumetric ethanol productivities at high temperatures. Based on molecular identification, the selected thermotolerant fermentative isolates were affiliated with Pichia kudriavzevii, Kluyveromyces marxianus, and Kluyveromyces sp. During the simultaneous saccharification and fermentation of lignocellulosic biomass at a high temperature (42 °C), the designated yeast P. kudriavzevii YSR7 produced an ethanol concentration of 22.36 g/L, 18.2 g/L and 6.34 g/L from 100 g/L barley straw (BS), chickpea straw (CS), and olive tree pruning (OTP), respectively. It also exhibited multi-stress tolerance, such as ethanol, acetic acid, and osmotic tolerance. Therefore, the yeast P. kudriavzevii YSR7 showed promising attributes for biorefinery-scale ethanol production in the future.
Collapse
|
9
|
Evolutionary Adaptation by Repetitive Long-Term Cultivation with Gradual Increase in Temperature for Acquiring Multi-Stress Tolerance and High Ethanol Productivity in Kluyveromyces marxianus DMKU 3-1042. Microorganisms 2022; 10:microorganisms10040798. [PMID: 35456848 PMCID: PMC9032449 DOI: 10.3390/microorganisms10040798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
During ethanol fermentation, yeast cells are exposed to various stresses that have negative effects on cell growth, cell survival, and fermentation ability. This study, therefore, aims to develop Kluyveromyces marxianus-adapted strains that are multi-stress tolerant and to increase ethanol production at high temperatures through a novel evolutionary adaptation procedure. K. marxianus DMKU 3-1042 was subjected to repetitive long-term cultivation with gradual increases in temperature (RLCGT), which exposed cells to various stresses, including high temperatures. In each cultivation step, 1% of the previous culture was inoculated into a medium containing 1% yeast extract, 2% peptone, and 2% glucose, and cultivation was performed under a shaking condition. Four adapted strains showed increased tolerance to ethanol, furfural, hydroxymethylfurfural, and vanillin, and they also showed higher production of ethanol in a medium containing 16% glucose at high temperatures. One showed stronger ethanol tolerance. Others had similar phenotypes, including acetic acid tolerance, though genome analysis revealed that they had different mutations. Based on genome and transcriptome analyses, we discuss possible mechanisms of stress tolerance in adapted strains. All adapted strains gained a useful capacity for ethanol fermentation at high temperatures and improved tolerance to multi-stress. This suggests that RLCGT is a simple and efficient procedure for the development of robust strains.
Collapse
|
10
|
Enhancing Ethanol Tolerance via the Mutational Breeding of Pichia terricola H5 to Improve the Flavor Profiles of Wine. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although using non-Saccharomyces yeasts during alcoholic fermentation can improve the wine aroma, most of them are not ethanol tolerant; therefore, in 2017, this study screened 85 non-Saccharomyces yeasts isolated and identified from 24 vineyards in seven Chinese wine-producing regions, obtaining Pichia terricola strain H5, which displayed 8% ethanol tolerance. Strain H5 was subjected to ultraviolet (UV) irradiation and diethyl sulfate (DES) mutagenesis treatment to obtain mutant strains with different fermentation characteristics from the parental H5. Compared with strain H5, the UV-irradiated strains, UV5 and UV8, showed significantly higher ethanol tolerance and fermentation capacity. Modified aroma profiles were also evident in the fermentation samples exposed to the mutants. Increased ethyl caprate, ethyl caprylate, and ethyl dodecanoate content were apparent in the UV5 samples, providing the wine with a distinctly floral, fruity, and spicy profile. Fermentation with strain UV8 produced a high ethyl acetate concentration, causing the wine to present a highly unpleasant odor. To a certain extent, UV irradiation improved the ethanol tolerance and fermentation ability of strain H5, changing the wine aroma profile. This study provides a theoretical basis for the industrial application of non-Saccharomyces yeasts that can improve wine flavor.
Collapse
|
11
|
Pongcharoen P. The ability of Pichia kudriavzevii to tolerate multiple stresses makes it promising for developing improved bioethanol production processes. Lett Appl Microbiol 2022; 75:36-44. [PMID: 35315114 DOI: 10.1111/lam.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
Thermotolerant ethanol fermenting yeasts have been extensively used in industrial bioethanol production. However, little is known about yeast physiology under stress during bioethanol processing. This study investigated the physiological characteristics of the thermotolerant yeast Pichia kudriavzevii, strains NUNS-4, NUNS-5 and NUNS-6, under the multiple stresses of heat, ethanol and sodium chloride. Results showed that NUNS-4, NUNS-5 and NUNS-6 displayed higher growth rates under each stress condition than the reference strain, Saccharomyces cerevisiae TISTR5606. Maximum specific growth rates under stresses of heat (45°C), 15% v/v ethanol and 1·0 M sodium chloride were 0·23 ± 0·04 (NUNS-4), 0·11 ± 0·01 (NUNS-5) and 0·15 ± 0·01 h-1 (NUNS-5), respectively. Morphological features of all yeast studied changed distinctly with the production of granules and vacuoles when exposed to ethanol, and cells were elongated under increased sodium chloride concentration. This study suggests that the three P. kudriavzevii strains are potential candidates to use in industrial-scale fermentation due to a high specific growth rate under multiple stress conditions. Multiple stress-tolerant P. kudriavzevii NUNS strains have received much attention not only for improving large-scale fuel ethanol production, but also for utilizing these strains in other biotechnological industries.
Collapse
Affiliation(s)
- Pongsanat Pongcharoen
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand.,Center of Excellence in Research in Agricultural Biotechnology, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
12
|
Miah R, Siddiqa A, Chakraborty U, Tuli JF, Barman NK, Uddin A, Aziz T, Sharif N, Dey SK, Yamada M, Talukder AA. Development of high temperature simultaneous saccharification and fermentation by thermosensitive Saccharomyces cerevisiae and Bacillus amyloliquefaciens. Sci Rep 2022; 12:3630. [PMID: 35256663 PMCID: PMC8901927 DOI: 10.1038/s41598-022-07589-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Scarcity of energy and pollution are two major challenges that have become a threat to all living things worldwide. Bioethanol is a renewable, ecological-friendly clean energy that may be utilized to address these issues. This study aimed to develop simultaneous saccharification and fermentation (SSF) process through high temperature-substrate adaptation and co-cultivation of S. cerevisiae with other potential amylolytic strains. In this study, we adapted our previously screened thermosensitive Saccharomyces cerevisiae Dj-3 strain up-to 42 °C and also screened three potential thermotolerant amylolytic strains based on their starch utilization capability. We performed SSF fermentation at high temperature by adapted Dj-3 and amylolytic strains using 10.0% starch feedstock. Interestingly, we observed significant ethanol concentration [3.86% (v/v)] from high temperature simultaneous saccharification and fermentation (HSSF) of adapted Bacillus amyloliquefaciens (C-7) and Dj-3. We attribute the significant ethanol concentration from starch of this HSSF process to C-7’s high levels of glucoamylase activity (4.01 U/ml/min) after adaptation in starch (up-to 42 °C) as well as Dj-3's strong glucose fermentation capacity and also their ethanol stress tolerance capability. This study suggests the significant feasibility of our HSSF process.
Collapse
Affiliation(s)
- Roni Miah
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh.,Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 755, Japan
| | - Ayesha Siddiqa
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh.,Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 755, Japan
| | | | | | - Noyon Kumar Barman
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Aukhil Uddin
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Tareque Aziz
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Mamoru Yamada
- Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 755, Japan
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh. .,Department of Biological Chemistry, Yamaguchi University, Yamaguchi, 755, Japan.
| |
Collapse
|
13
|
|
14
|
Boonchuay P, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P, Watanabe M, Srisupa S, Chaiyaso T. Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Saccharomyces cerevisiae TC-5. J Fungi (Basel) 2021; 7:547. [PMID: 34356926 PMCID: PMC8305858 DOI: 10.3390/jof7070547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to select thermotolerant yeast for bioethanol production from cellulose-rich corncob (CRC) residue. An effective yeast strain was identified as Saccharomyces cerevisiae TC-5. Bioethanol production from CRC residue via separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and prehydrolysis-SSF (pre-SSF) using this strain were examined at 35-42 °C compared with the use of commercial S. cerevisiae. Temperatures up to 40 °C did not affect ethanol production by TC-5. The ethanol concentration obtained via the commercial S. cerevisiae decreased with increasing temperatures. The highest bioethanol concentrations obtained via SHF, SSF, and pre-SSF at 35-40 °C of strain TC-5 were not significantly different (20.13-21.64 g/L). The SSF process, with the highest ethanol productivity (0.291 g/L/h), was chosen to study the effect of solid loading at 40 °C. A CRC level of 12.5% (w/v) via fed-batch SSF resulted in the highest ethanol concentrations of 38.23 g/L. Thereafter, bioethanol production via fed-batch SSF with 12.5% (w/v) CRC was performed in 5-L bioreactor. The maximum ethanol concentration and ethanol productivity values were 31.96 g/L and 0.222 g/L/h, respectively. The thermotolerant S. cerevisiae TC-5 is promising yeast for bioethanol production under elevated temperatures via SSF and the use of second-generation substrates.
Collapse
Affiliation(s)
- Pinpanit Boonchuay
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.B.); (C.T.); (P.S.); (P.H.); (S.S.)
| | - Charin Techapun
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.B.); (C.T.); (P.S.); (P.H.); (S.S.)
| | - Noppol Leksawasdi
- Division of Food Engineering, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Phisit Seesuriyachan
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.B.); (C.T.); (P.S.); (P.H.); (S.S.)
| | - Prasert Hanmoungjai
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.B.); (C.T.); (P.S.); (P.H.); (S.S.)
| | - Masanori Watanabe
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 9978555, Japan;
| | - Siraprapa Srisupa
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.B.); (C.T.); (P.S.); (P.H.); (S.S.)
| | - Thanongsak Chaiyaso
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.B.); (C.T.); (P.S.); (P.H.); (S.S.)
| |
Collapse
|
15
|
Optimization of Yeast, Sugar and Nutrient Concentrations for High Ethanol Production Rate Using Industrial Sugar Beet Molasses and Response Surface Methodology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among the various agro-industrial by-products, sugar beet molasses produced by sugar refineries appear as a potential feedstock for ethanol production through yeast fermentation. A response surface methodology (RSM) was developed to better understand the effect of three process parameters (concentration of nutrient, yeast and initial sugar) on the ethanol productivity using diluted sugar beet molasses and Saccharomyces cerevisiae yeast. The first set of experiments performed at lab-scale indicated that the addition of 4 g/L of nutrient combined with a minimum of 0.2 g/L of yeast as well as a sugar concentration lower than 225 g/L was required to achieve high ethanol productivities (>15 g/L/d). The optimization allowed to considerably reduce the amount of yeast initially introduced in the fermentation substrate while still maximizing both ethanol productivity and yield process responses. Finally, scale-up assays were carried out in 7.5 and 100 L bioreactors using the optimal conditions: 150 g/L of initial sugar concentration, 0.27 g/L of yeast and 4 g/L of nutrient. Within 48 h of incubation, up to 65 g/L of ethanol were produced for both scales, corresponding to an average ethanol yield and sugar utilization rate of 82% and 85%, respectively. The results obtained in this study highlight the use of sugar beet molasses as a low-cost food residue for the sustainable production of bioethanol.
Collapse
|
16
|
Abstract
Over the last decades, the constant growth of the world-wide industry has been leading to more and more concerns with its direct impact on greenhouse gas (GHG) emissions. Resulting from that, rising efforts have been dedicated to a global transition from an oil-based industry to cleaner biotechnological processes. A specific example refers to the production of bioethanol to substitute the traditional transportation fuels. Bioethanol has been produced for decades now, mainly from energy crops, but more recently, also from lignocellulosic materials. Aiming to improve process economics, the fermentation of very high gravity (VHG) mediums has for long received considerable attention. Nowadays, with the growth of multi-waste valorization frameworks, VHG fermentation could be crucial for bioeconomy development. However, numerous obstacles remain. This work initially presents the main aspects of a VHG process, giving then special emphasis to some of the most important factors that traditionally affect the fermentation organism, such as nutrients depletion, osmotic stress, and ethanol toxicity. Afterwards, some factors that could possibly enable critical improvements in the future on VHG technologies are discussed. Special attention was given to the potential of the development of new fermentation organisms, nutritionally complete culture media, but also on alternative process conditions and configurations.
Collapse
|
17
|
Bonatto C, Scapini T, Zanivan J, Dalastra C, Bazoti SF, Alves S, Fongaro G, de Oliveira D, Treichel H. Utilization of seawater and wastewater from shrimp production in the fermentation of papaya residues to ethanol. BIORESOURCE TECHNOLOGY 2021; 321:124501. [PMID: 33310410 DOI: 10.1016/j.biortech.2020.124501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Seawater (SW) and wastewater from shrimp production (WSP) were used as a solvent for the fermentation of papaya residues (Carica papaya) by Wickerhamomyces sp. UFFS-CE-3.1.2 and Saccharomyces cerevisiae CAT-1. For comparative purposes and evaluation of the effect of salinity, ultrapure water (UW) was used as control. Fermentative parameters were evaluated in Plackett-Burman planning to assess ethanol production's significant variables. Urea supplementation was the only variable not significant for the proposed process, suggesting that papaya residues contain all the nutrients needed for fermentation. The experiments conducted with the different water sources resulted in similar concentrations of ethanol. Maximum ethanol concentration was obtained after nine h of fermentation usingWickerhamomycessp. UFFS-CE-3.1.2 (27.31 ± 1.40 g L-1) and 12 h using S. cerevisiaeCAT-1 (24.53 ± 0.68 g L-1). This study demonstrated that SW and WSP could replace freshwater without affecting ethanol production. Papaya residues from the fruit and vegetable sectors can be considered a promising substrate source for ethanol production.
Collapse
Affiliation(s)
- Charline Bonatto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil; Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Jessica Zanivan
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Caroline Dalastra
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Suzana F Bazoti
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Sérgio Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, Brazil
| | - Gislaine Fongaro
- Departament of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
18
|
Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chem 2020; 346:128860. [PMID: 33385915 DOI: 10.1016/j.foodchem.2020.128860] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Molasses is a major by-product of sugar industry and contains 40-60% (w/w) of sugars. The world's annual yield of molasses reaches 55 million tons. Traditionally, molasses is simply discharged or applied to feed production. Additionally, some low-cost and environmentally friendly bioprocesses have been established for microbial production of value-added bioproducts from molasses. Over the last decade and more, increasing numbers of biofuels, polysaccharides, oligosaccharides, organic acids, and enzymes have been produced from the molasses through microbial conversion that possess an array of important applications in the industries of food, energy, and pharmaceutical. For better application, it is necessary to comprehensively understand the research status of bioconversion of molasses that has not been elaborated in detail so far. In this review, these value-added bioproducts and enzymes obtained through bioconversion of molasses, their potential applications in food and other industries, as well as the future research focus were generalized and discussed.
Collapse
|
19
|
High Gravity and Very High Gravity Fermentation of Sugarcane Molasses by Flocculating Saccharomyces cerevisiae: Experimental Investigation and Kinetic Modeling. Appl Biochem Biotechnol 2020; 193:807-821. [PMID: 33196971 DOI: 10.1007/s12010-020-03466-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Substantial progress has been made in ethanol fermentation technology under high gravity (HG) and very high gravity (VHG), which offer environmental and economic benefits. HG and VHG processes increase the productivity of ethanol, reduce distillation costs, and enable higher yields. The aim of the present study was to evaluate the use of sugarcane molasses as the medium component along with flocculating yeasts for fermentation in a fed-batch process employing this promising technology. We evaluated fed-batch fermentation, HG, and VHG involving a molasses-based medium with high concentrations of reducing sugars (209, 222, and 250 g/L). Fermentation of 222 g/L of total reducing sugars achieved 89.45% efficiency, with a final ethanol concentration of 104.4 g/L, whereas the highest productivity (2.98 g/(L.h)) was achieved with the fermentation of 209 g/L of total reducing sugars. The ethanol concentration achieved with the fermentation of 222 g/L of total reducing sugars was close to the value obtained for P'max (105.35 g/L). The kinetic model provided a good fit to the experimental data regarding the fermentation of 222 g/L. The results revealed that sugarcane molasses and flocculating yeasts can be efficiently used in HG fermentation to reduce the costs of the process and achieve high ethanol titers.
Collapse
|
20
|
Guzzon R, Roman T, Larcher R. Impact of different temperature profiles on simultaneous yeast and bacteria fermentation. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01565-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Purpose
The role of fermentation temperature was studied for its impact on the evolution of malolactic fermentation performed by simultaneous inoculum of yeast and bacteria in grape must. Results were discussed considering the different fermentative kinetics and the composition of obtained wines.
Methods
Two strains of bacteria belonging to the O. oeni and L. plantarum species were inoculated 24 h after the beginning of the alcoholic fermentation in 2 grape musts having different acidic and sugar profiles. Fermentations were conducted at 3 different temperature profiles (16/22 °C in 3 days, 18/24 °C in 3 days, 22/32 °C in 5 days). Evolution of microbiota was followed by flow cytometry and plate count. Chemical analysis of grape musts and wines were performed by instrumental approaches (FT-IR, enzymatic quantification of malic acid, GC-MS).
Results
L. plantarum resulted more efficient in malic acid consumption in the entire set of tests. These results are unexpected because, generally, Lactobacillus has been reported to be more sensitive to an oenological environment than O. oeni. In our experiments, O. oeni resulted inhibited by the highest fermentation temperature profile, causing incomplete malic acid degradation. Similarly, S. cerevisiae showed a higher sensitivity to environmental limiting factors in respect to what is generally known. Differences in the chemical composition of wines were observed in relation to the bacteria strain and the temperature profile. However, the statistical treatment of data identified temperature as the main variable able to influence the features of wines.
Conclusions
Simultaneous inoculum of yeast and bacteria in grape must is an alternative approach in the management of malolactic fermentation which showed some interesting features. However, it is necessary to consider that the dynamics of the microbial population are different to that observed in traditional winemaking and the environmental variables act against the microorganisms in a peculiar, and in certain cases unexpected, way.
Collapse
|