1
|
Felix FA, Zhou J, Li D, Onodera S, Yu Q. Endogenous IL-22 contributes to the pathogenesis of salivary gland dysfunction in the non-obese diabetic model of Sjögren's syndrome. Mol Immunol 2024; 173:20-29. [PMID: 39018744 PMCID: PMC11343657 DOI: 10.1016/j.molimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024]
Abstract
Sjӧgren's syndrome is a systemic autoimmune disease primarily targeting the salivary and lacrimal glands. Our previous investigations have shown that administration of interleukin-22 (IL-22), an IL-10 family cytokine known for its complex and context-dependent effects on tissues, either protective- or detrimental, to salivary glands leads to hypofunction and pathological changes of salivary glands in C57BL/6 mice and in non-obese diabetic (NOD) mice, the latter being a commonly used model of Sjӧgren's syndrome. This study aims to delineate the pathophysiological roles of endogenously produced IL-22 in the development of salivary gland pathologies and dysfunction associated with Sjӧgren's disease in the NOD mouse model. Our results reveal that neutralizing IL-22 offered a protective effect on salivary gland function without significantly affecting the immune cell infiltration of salivary glands or the autoantibody production. Blockade of IL-22 reduced the levels of phosphorylated STAT3 in salivary gland tissues of NOD mice, while its administration to salivary glands had the opposite effect. Correspondingly, the detrimental impact of exogenously applied IL-22 on salivary glands was almost completely abrogated by a specific STAT3 inhibitor. Moreover, IL-22 blockade led to a downregulation of protein amounts of Ten-Eleven-Translocation 2, a methylcytosine dioxygenase critical for mediating interferon-induced responses, in salivary gland epithelial cells. IL-22 neutralization also exerted a protective effect on the salivary gland epithelial cells that express high levels of surface EpCAM and bear the stem cell potential, and IL-22 treatment in vitro hampered the survival/expansion of these salivary gland stem cells, indicating a direct negative impact of IL-22 on these cells. In summary, this study has uncovered a critical pathogenic role of the endogenous IL-22 in the pathogenesis of Sjögren's disease-characteristic salivary gland dysfunction and provided initial evidence that this effect is dependent on STAT3 activation and potentially achieved through fostering Tet2-mediated interferon responses in salivary gland epithelial cells and negatively affecting the EpCAMhigh salivary gland stem cells.
Collapse
Affiliation(s)
- Fernanda Aragão Felix
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States; Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jing Zhou
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States
| | - Dongfang Li
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Qing Yu
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States.
| |
Collapse
|
2
|
Zhang Q, Yang XR, Deng Y. Iguratimod Alleviates Experimental Sjögren's Syndrome by Inhibiting NLRP3 Inflammasome Activation. Cell Biochem Biophys 2024; 82:2275-2283. [PMID: 38839699 DOI: 10.1007/s12013-024-01337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Iguratimod (T-614) is a compound widely used as anti-rheumatic drug. This study investigated the effect and underlying mechanism of T-614 on experimental Sjögren's syndrome (ESS). ESS mice model was established by injection of submandibular gland protein. Mice were randomly divided into control, experimental Sjögren's syndrome (ESS), ESS + T-614 (10 mg/kg), ESS + T-614 (20 mg/kg), and ESS + T-614 (30 mg/kg) groups. Human submandibular gland (HSG) were cultured with 0, 0.5, 5, or 50 μg/ml T-614 in the absence or presence of interferon-α (IFN-α). Haematoxylin and eosin (H&E) and cytokine levels were used to detect immune cells activation in submandibular glands. Apoptosis in submandibular glands tissues and cells was determined by TUNEL and flow cytometry. Apoptosis and NLRP3 inflammasome-related proteins were detected by western blotting. T-614 treatment attenuated submandibular gland damage in ESS mice. T-614 administration inhibited submandibular gland cell apoptosis in ESS mice. Furthermore, T-614 blocked inflammatory factor levels and NLRP3 inflammasome activation in the submandibular glands. In vitro, results corroborated that T-614 could protect HSG cells from IFN-α-induced cell apoptosis and inflammation by inhibiting NLRP3 inflammasome activation. Our results expounded that T-614 alleviated ESS by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, 257034, China
| | - Xi-Rui Yang
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, 257034, China
| | - Yao Deng
- Department of Rheumatology and Immunology, Shengli Oilfield Central Hospital, Dongying, Shandong, 257034, China.
| |
Collapse
|
3
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
4
|
Zhou J, Onodera S, Hu Y, Yu Q. Interleukin-22 Exerts Detrimental Effects on Salivary Gland Integrity and Function. Int J Mol Sci 2022; 23:ijms232112997. [PMID: 36361787 PMCID: PMC9655190 DOI: 10.3390/ijms232112997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
Interleukin-22 (IL-22) affects epithelial tissue function and integrity in a context-dependent manner. IL-22 levels are elevated in salivary glands of Sjögren’s syndrome (SS) patients, but its role in the pathogenesis of this disease remains unclear. The objective of this study is to elucidate the impact of IL-22 on salivary gland tissue integrity and function in murine models. We showed that IL-22 levels in sera and salivary glands increased progressively in female non-obese diabetic (NOD) mice, accompanying the development of SS. Administration of IL-22 to the submandibular glands of NOD mice prior to the disease onset reduced salivary secretion and induced caspase-3 activation in salivary gland tissues, which were accompanied by alterations in multiple genes controlling tissue integrity and inflammation. Similarly, IL-22 administration to submandibular glands of C57BL/6 mice also induced hyposalivation and caspase-3 activation, whereas blockade of endogenous IL-22 in C57BL/6 mice treated with anti-CD3 antibody mitigated hyposalivation and caspase-3 activation. Finally, IL-22 treatment reduced the number of viable C57BL/6 mouse submandibular gland epithelial cells cultured in vitro, indicating a direct impact of this cytokine on these cells. We conclude that IL-22 exerts a detrimental impact on salivary gland tissues.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Shoko Onodera
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yang Hu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-892-8310
| |
Collapse
|
5
|
Hwang SH, Woo JS, Moon J, Yang S, Park JS, Lee J, Choi J, Lee KH, Kwok SK, Park SH, Cho ML. IL-17 and CCR9 +α4β7 - Th17 Cells Promote Salivary Gland Inflammation, Dysfunction, and Cell Death in Sjögren's Syndrome. Front Immunol 2021; 12:721453. [PMID: 34539657 PMCID: PMC8440850 DOI: 10.3389/fimmu.2021.721453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022] Open
Abstract
Previous studies have evaluated the roles of T and B cells in the pathogenesis of Sjögren's syndrome (SS); however, their relationships with age-dependent and metabolic abnormalities remain unclear. We examined the impacts of changes associated with aging or metabolic abnormalities on populations of T and B cells and SS disease severity. We detected increased populations of IL-17-producing T and B cells, which regulate inflammation, in the salivary glands of NOD/ShiLtJ mice. Inflammation-induced human submandibular gland cell death, determined based on p-MLKL and RIPK3 expression levels, was significantly increased by IL-17 treatment. Among IL-17-expressing cells in the salivary gland, peripheral blood, and spleen, the α4β7 (gut-homing integrin)-negative population was significantly increased in aged NOD/ShiLtJ mice. The α4β7-positive population markedly increased in the intestines of aged NOD/ShiLtJ mice following retinoic acid (RA) treatment. A significant increase in α4β7-negative IL-17-expressing cells in salivary glands may be involved in the onset and progression of SS. These results suggest the potential therapeutic utility of RA in SS treatment.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin Seok Woo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeonghyeon Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JaeSeon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kun Hee Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
6
|
Witas R, Rasmussen A, Scofield RH, Radfar L, Stone DU, Grundahl K, Lewis D, Sivils KL, Lessard CJ, Farris AD, Nguyen CQ. Defective Efferocytosis in a Murine Model of Sjögren's Syndrome Is Mediated by Dysfunctional Mer Tyrosine Kinase Receptor. Int J Mol Sci 2021; 22:9711. [PMID: 34575873 PMCID: PMC8466327 DOI: 10.3390/ijms22189711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Sjögren's syndrome (SjS) is a chronic autoimmune disease primarily involving the exocrine glands in which the involvement of the innate immune system is largely uncharacterized. Mer signaling has been found to be protective in several autoimmune diseases but remains unstudied in SjS. Here, we investigated the role of Mer signaling in SjS. Mer knockout (MerKO) mice were examined for SjS disease criteria. SjS-susceptible (SjSS) C57BL/6.NOD-Aec1Aec2 mice were assessed for defective Mer signaling outcomes, soluble Mer (sMer) levels, A disintegrin and metalloprotease 17 (ADAM17) activity, and Rac1 activation. In addition, SjS patient plasma samples were evaluated for sMer levels via ELISA, and sMer levels were correlated to disease manifestations. MerKO mice developed submandibular gland (SMG) lymphocytic infiltrates, SMG apoptotic cells, anti-nuclear autoantibodies (ANA), and reduced saliva flow. Mer signaling outcomes were observed to be diminished in SjSS mice, as evidenced by reduced Rac1 activation in SjSS mice macrophages in response to apoptotic cells and impaired efferocytosis. Increased sMer was also detected in SjSS mouse sera, coinciding with higher ADAM17 activity, the enzyme responsible for cleavage and inactivation of Mer. sMer levels were elevated in patient plasma and positively correlated with focus scores, ocular staining scores, rheumatoid factors, and anti-Ro60 levels. Our data indicate that Mer plays a protective role in SjS, similar to other autoimmune diseases. Furthermore, we suggest a series of events where enhanced ADAM17 activity increases Mer inactivation and depresses Mer signaling, thus removing protection against the loss of self-tolerance and the onset of autoimmune disease in SjSS mice.
Collapse
Affiliation(s)
- Richard Witas
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32608, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (A.R.); (K.G.); (C.J.L.)
| | - Robert H. Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.H.S.); (K.L.S.); (A.D.F.)
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Lida Radfar
- Department of Oral Diagnosis and Radiology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Donald U. Stone
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kiely Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (A.R.); (K.G.); (C.J.L.)
| | - David Lewis
- Department of Oral Pathology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.H.S.); (K.L.S.); (A.D.F.)
| | - Christopher J. Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (A.R.); (K.G.); (C.J.L.)
| | - A. Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (R.H.S.); (K.L.S.); (A.D.F.)
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32608, USA
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL 32611-0880, USA
| |
Collapse
|
7
|
Li SS, Wu CZ, Qiao XH, Li CJ, Li LJ. Advances on mechanism and treatment of salivary gland in radiation injury. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:99-104. [PMID: 33723944 PMCID: PMC7905410 DOI: 10.7518/hxkq.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2020] [Indexed: 02/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most frequent tumour in head and neck malignant. The current treatment is mainly based on surgery therapy, radiation therapy and chemical therapy. Meanwhile, there are many a defect in the treatment. For example, there are many defects in radiotherapy. Radioactive salivatitis is the most common. In addition, there are a series of changes such as dry mouth, oral mucositis, rampant dental caries, and radioactive osteomyelitis of jaw, which cause swallowing, chewing problems, and taste dysfunction. Currently, the research on radioactive salivatitis is progressing rapidly, but its mechanism is more complication. This paper review aims to summarize the research progress in this field.
Collapse
Affiliation(s)
- Shen-Sui Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Zhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiang-He Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Long-Jiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Injection of CD40 DNA vaccine ameliorates the autoimmune pathology of non-obese diabetic mice with Sjögren's syndrome. Immunol Lett 2020; 226:62-70. [PMID: 32707129 DOI: 10.1016/j.imlet.2020.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Overexpression of CD40 has been reported in patients with primary Sjögren's syndrome (pSS). The increased CD40 expression promote autoimmune response and enhance inflammation in pSS. The aim of this study is to block CD40-CD154 interaction with CD40 DNA vaccine to slow the disease progression of SS in non-obese diabetic (NOD) mice. METHODS Female NOD mice were treated with CD40 DNA vaccine, empty vector and normal saline. The salivary flow rate was measured, whereas lymphocytes infiltration in the salivary glands was assessed by histopathology. Expression of CD40 and B220 in salivary were examined by immunohistochemistry. Splenic lymphocyte phenotypes were analyzed by flow cytometry. CD40, IL-1β, TNF-α and IL-6 levels in the salivary glands were detected by PCR. Serum anti-CD40 antibody was measured by ELISA. Serum anti-nuclear antibody (ANA) was monitored by immunofluorescence. RESULTS NOD mice treated with CD40 DNA vaccine showed higher levels of anti-CD40 antibody compared with the controls. The expression of CD40 in the salivary glands of NOD mice in CD40 DNA vaccine group was decreased. The infiltration of lymphocytes was reduced in the salivary glands and saliva secretion was increased in the treatment group. The expression level of TNF-α and IL-6 in salivary glands were declined. The splenic dendritic cell and plasma cell populations were reduced and the level of ANA was decreased in NOD mice with CD40 DNA vaccine treatment. CONCLUSIONS CD40 DNA vaccine inhibits the immune response and reduce inflammation in epithelial tissues SS in non-obese diabetic (NOD) mice, suggesting that CD40 DNA vaccine could be a new therapeutic approach in treatment of pSS.
Collapse
|
9
|
Shikayama T, Fujita-Yoshigaki J, Sago-Ito M, Nakamura-Kiyama M, Naniwa M, Hitomi S, Ujihara I, Kataoka S, Yada N, Ariyoshi W, Usui M, Nakashima K, Ono K. Hematogenous apoptotic mechanism in salivary glands in chronic periodontitis. Arch Oral Biol 2020; 117:104775. [PMID: 32512258 DOI: 10.1016/j.archoralbio.2020.104775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of the study is to investigate the apoptotic mechanism in salivary glands in the rat experimental periodontitis model. DESIGN A rat periodontitis model was prepared by using a ligature around the second upper molar. In the salivary (parotid and submandibular) glands and blood samples, putative apoptotic factors and pathway molecules were investigated in vivo and in vitro. RESULTS Four weeks of ligation (chronic periodontitis) demonstrated significant apoptotic atrophy of the salivary gland, but one week of ligation (initial periodontitis) did not. In the blood plasma, tumor necrosis factor-α (TNF-α) was increased in the periodontitis model, but interleukin-1β and -6 were not. TNF-α receptor type 1, which has an intracellular apoptotic pathway, was expressed in the salivary glands of rats. Western blot analysis of cultured rat primary salivary gland cells demonstrated that TNF-α induced cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3 in a dose-dependent manner, indicating apoptosis induction. Additionally, we found increment of circulating lymphocytes in the model. Expression of mRNA and immunoreactive cells for the B lymphocyte marker CD19 were increased in the salivary gland in the model. Western blotting showed that coculture with extracted B cells from the periodontitis model increased cleaved PARP in salivary gland cells. CONCLUSIONS Chronic periodontitis status leads to an increase in circulating TNF-α and B lymphocyte infiltration, resulting in apoptotic atrophy of the salivary gland as a periodontitis-induced systemic response.
Collapse
Affiliation(s)
- T Shikayama
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - J Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan.
| | - M Sago-Ito
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Nakamura-Kiyama
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Naniwa
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Oral Health Sciences, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - S Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - I Ujihara
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - S Kataoka
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - N Yada
- Division of Oral Pathology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - W Ariyoshi
- Division of Infections and Molecular Biology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Usui
- Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - K Nakashima
- Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - K Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| |
Collapse
|
10
|
The level of TGF-β in sera of patients with primary Sjögren's syndrome. Reumatologia 2019; 57:309-314. [PMID: 32226163 PMCID: PMC7091483 DOI: 10.5114/reum.2019.91276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023] Open
Abstract
Objectives Tumor growth factor β (TGF-β) is a pleiotropic cytokine which controls autoimmune reactions, cell proliferation, and the organ accumulation of lymphocytes. This cytokine has a protective and anti-inflammatory effect in autoimmune processes, but also has a pro-fibrinous activity. Therefore, its importance in the development of systemic sclerosis has been proven. The role of TGF-β in Sjögren’s syndrome is also a valid direction of research. The aim of the presented study is to evaluate the level of TGF-β in sera of primary Sjögren’s syndrome patients and to investigate possible correlations with autoantibodies, cytokines, and cells in biopsy of minor salivary glands active in the pathogenesis of this syndrome. Material and methods Thirty-three primary Sjögren’s syndrome patients were included. Routine laboratory tests and immunological assessment (ANA, anti SS-A, anti SS-B antibodies, rheumatoid factor), ophthalmological assessment with ocular staining scoring, chest X-ray, and high-resolution computed tomography (if necessary) were performed. Serum concentrations of cytokines such as TGF-β, BAFF, APRIL, FLT-3L, LT-α, IL-21, and TNF-α were evaluated using standard ELISA assays. The histopathological evaluation (focus score) and the determination of CD3+, CD4+, CD19+, CD21+, CD35+ cells was performed. Results There was no significant correlation between TGF-β and other tested cytokines or autoantibodies, other than TNF-α. A negative correlation (ρ = –0.472) between TGF-β and TNF-α was found. There were no correlations between TGF-β and: results of ocular examinations, elements of histopathological variables, or lungs changes. Conclusions The authors state that: 1) the results may indicate that TGF-β influences the serum TNF-α activity in pSS patients, 2) our findings suggest that TGF-β may be the strongest inhibitor of TNF-α among cytokines involved in pSS pathogenesis, and 3) the results may explain the ineffectiveness of anti-TNF drugs in the treatment of pSS.
Collapse
|
11
|
Bodewes ILA, Versnel MA. Interferon activation in primary Sjögren's syndrome: recent insights and future perspective as novel treatment target. Expert Rev Clin Immunol 2018; 14:817-829. [PMID: 30173581 DOI: 10.1080/1744666x.2018.1519396] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is one of the most common systemic autoimmune diseases. At the moment, there is no cure for this disease and its etiopathology is complex. Interferons (IFNs) play an important role in the pathogenesis of this disease and are a potential treatment target. Areas covered: Here we discuss the role of IFNs in pSS pathogenesis, complications encountered upon studying IFN-induced gene expression, and comment on the current knowledge on easy clinical applicable 'IFN signatures'. The current treatment options targeting IFNs in pSS are summarized and the perspective of potential new strategies discussed. Expert commentary: The authors provide their perspective on the role of IFNs in pSS and how this knowledge could be used to improve pSS diagnosis, provide new treatment targets, to monitor clinical trials and to stratify pSS patients in order to move toward precision medicine.
Collapse
Affiliation(s)
- Iris L A Bodewes
- a Department of Immunology , Erasmus University Medical Centre , Rotterdam , the Netherlands
| | - Marjan A Versnel
- a Department of Immunology , Erasmus University Medical Centre , Rotterdam , the Netherlands
| |
Collapse
|
12
|
Shen J, Xiao Z, Zhao Q, Li M, Wu X, Zhang L, Hu W, Cho CH. Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif 2018; 51:e12441. [PMID: 29484738 DOI: 10.1111/cpr.12441] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) were originally found to be produced by inflammatory cells and play important roles in the immune system and surveillance of tumour growth. By activating distinct signalling pathways of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and JAK/STAT, TNFα and IFNγ were reported to effectively trigger cell death and perform powerful anti-cancer effects. In this review, we will discuss the new advancements of TNFα and IFNγ in anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Insight into pathogenesis of Sjögren's syndrome: Dissection on autoimmune infiltrates and epithelial cells. Clin Immunol 2017; 182:30-40. [PMID: 28330683 DOI: 10.1016/j.clim.2017.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease with broad clinical spectrum, extending from benign exocrinopathy to severe systemic disease and lymphoma development. The glandular and extraglandular dysfunction of SS is associated with lymphocytic infiltrates that invade the epithelial structures of affected organs. The in-depth study of autoimmune lesions in the minor salivary glands (MSG), which are the major target-organ of SS responses, revealed that the lymphocytic infiltrates vary in severity and composition among SS-patients, are full-blown at diagnosis and remain unchanged thereafter. Although the pathogenetic pathways underlying SS have not yet elucidated, it is well-established that glandular epithelial cells are central regulators of local autoimmune responses. Moreover, chronic inflammation affects epithelial function and phenotype, which strengthens or weakens their immunoregulatory/secretory function, leading to deterioration of autoimmune phenomena. Herein, the current findings regarding the autoimmune lesions, the role of epithelial cells and their interaction with infiltrating lymphocytic cells are discussed.
Collapse
|
14
|
Zhou J, Jin JO, Kawai T, Yu Q. Endogenous programmed death ligand-1 restrains the development and onset of Sjӧgren's syndrome in non-obese diabetic mice. Sci Rep 2016; 6:39105. [PMID: 27966604 PMCID: PMC5155421 DOI: 10.1038/srep39105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) down-modulates various immune responses by engaging the co-inhibitory receptor programmed death-1. Expression of PD-L1 and programmed death-1 is elevated in the salivary glands of patients with Sjögren’s syndrome (SS). The objective of this study is to define the role of endogenous PD-L1 in SS pathogenesis in non-obese diabetic (NOD) mouse model of this disease. We inhibited endogenous PD-L1 function by intraperitoneal administration of a blocking antibody to 6 week-old female NOD/ShiLtJ mice repeatedly during a 9-day period. PD-L1 blockade accelerated leukocyte infiltration and caspase-3 activation in the submandibular gland (SMG), production of antinuclear and anti-M3 muscarinic acetylcholine receptor (M3R) autoantibodies and impairment of saliva secretion, indicative of accelerated development and onset of SS. The effect of PD-L1 blockade was associated with increased T- and B cells and T helper 1 cytokine IFN-γ in the SMG. Local administration of exogenous IFN-γ to the SMG led to impaired salivary secretion accompanied by down-regulation of aquaporin 5 and an increase in anti-M3R autoantibodies. Conversely, neutralization of IFN-γ markedly improved salivary secretion and aquaporin 5 expression in anti-PD-L1-treated NOD/ShiLtJ mice. Hence, endogenous PD-L1 hinders the development and onset of SS in NOD mice, in part by suppressing IFN-γ production.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Qing Yu
- Department of Immunology and Infectious Diseases, the Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
15
|
Morrow MP, Kraynyak KA, Sylvester AJ, Shen X, Amante D, Sakata L, Parker L, Yan J, Boyer J, Roh C, Humeau L, Khan AS, Broderick K, Marcozzi-Pierce K, Giffear M, Lee J, Trimble CL, Kim JJ, Sardesai NY, Weiner DB, Bagarazzi ML. Augmentation of cellular and humoral immune responses to HPV16 and HPV18 E6 and E7 antigens by VGX-3100. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16025. [PMID: 28054033 PMCID: PMC5147865 DOI: 10.1038/mto.2016.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/24/2022]
Abstract
We have previously demonstrated the immunogenicity of VGX-3100, a multicomponent DNA immunotherapy for the treatment of Human Papillomavirus (HPV)16/18-positive CIN2/3 in a phase 1 clinical trial. Here, we report on the ability to boost immune responses with an additional dose of VGX-3100. Patients completing our initial phase 1 trial were offered enrollment into a follow on trial consisting of a single boost dose of VGX-3100. Data show both cellular and humoral immune responses could be augmented above pre-boost levels, including the induction of interferon (IFN)γ production, tumor necrosis factor (TNF)α production, CD8+ T cell activation and the synthesis of lytic proteins. Moreover, observation of antigen-specific regulation of immune-related gene transcripts suggests the induction of a proinflammatory response following the boost. Analysis of T cell receptor (TCR) sequencing suggests the localization of putative HPV-specific T cell clones to the cervical mucosa, which underscores the putative mechanism of action of lesion regression and HPV16/18 elimination noted in our double-blind placebo-controlled phase 2B trial. Taken together, these data indicate that VGX-3100 drives the induction of robust cellular and humoral immune responses that can be augmented by a fourth "booster" dose. These data could be important in the scope of increasing the clinical efficacy rate of VGX-3100.
Collapse
Affiliation(s)
| | | | | | - Xuefei Shen
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Dinah Amante
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Lindsay Sakata
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Lamar Parker
- Unified Women's Clinical Research , Winston-Salem, North Carolina, USA
| | - Jian Yan
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Jean Boyer
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Christian Roh
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Amir S Khan
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Kate Broderick
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | | | - Mary Giffear
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | - Jessica Lee
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | | | - J Joseph Kim
- Inovio Pharmaceuticals , Plymouth Meeting, Pennsylvania, USA
| | | | | | | |
Collapse
|
16
|
Uomori K, Nozawa K, Ikeda K, Doe K, Yamada Y, Yamaguchi A, Fujishiro M, Kawasaki M, Morimoto S, Takamori K, Sekigawa I, Chan EKL, Takasaki Y. A re-evaluation of anti-NA-14 antibodies in patients with primary Sjögren's syndrome: Significant role of interferon-γ in the production of autoantibodies against NA-14. Autoimmunity 2016; 49:347-56. [PMID: 27328271 DOI: 10.1080/08916934.2016.1196676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Novel autoantibodies against nuclear antigen of 14 kDa (NA-14)/Sjögren's syndrome nuclear antigen-1 (SSNA-1) are predominantly recognized in sera of patients with primary Sjögren's syndrome (pSS). However, the detailed characteristics of the anti-NA-14 antibody remain unknown. Here, we sought to clarify the characteristics of anti-SSNA-1/NA-14 antibodies and the mechanisms of autoantibody production using sera from patients with connective tissue diseases (including pSS), autoimmune sera reacting with standard autoantigens (SS-A/Ro and/or SS-B/La, ds DNA, Scl-70 and Jo-1), and normal healthy controls (NHCs). Anti-NA-14 antibodies were predominantly recognized in sera from patients with pSS and in autoimmune sera reacting with thSS-A/Ro and/or -SS-B/Lo. Indirect immunofluorescence analysis showed that NA-14 was strongly expressed in mitotic-phase cells. Patients with pSS having anti-NA-14 antibodies exhibited significant elevation of serum IP-10 and BAFF compared to that in patients with pSS without anti-NA-14 antibodies and NHCs. Thus, our data demonstrated that anti-NA-14 antibodies could be classified as novel autoantibodies reacting with mitosis-related autoantigens predominantly recognized in pSS. Moreover, interferon-γ played an important role in the production of anti-NA-14 autoantibodies as patients with pSS having anti-NA-14 antibodies exhibited increased serum levels of IP-10 and BAFF.
Collapse
Affiliation(s)
- Kaori Uomori
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Kazuhisa Nozawa
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Keigo Ikeda
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Kentaro Doe
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Yusuke Yamada
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Ayako Yamaguchi
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| | - Maki Fujishiro
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Mikiko Kawasaki
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Shinji Morimoto
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Kenji Takamori
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Iwao Sekigawa
- b Juntendo University Urayasu Hospital, Juntendo University Graduate School of Medicine , Urayasu , Japan , and
| | - Edward K L Chan
- c Department of Oral Biology , University of Florida , Gainesville , FL , USA
| | - Yoshinari Takasaki
- a Department of Internal Medicine and Rheumatology , Faculty of Medicine, Juntendo University , Tokyo , Japan
| |
Collapse
|
17
|
Kramer JM. Early events in Sjögren's Syndrome pathogenesis: the importance of innate immunity in disease initiation. Cytokine 2014; 67:92-101. [PMID: 24656928 DOI: 10.1016/j.cyto.2014.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/24/2022]
Abstract
Sjögren's Syndrome (SS) is a debilitating autoimmune disease that primarily affects women. Patients with SS experience dry eyes and dry mouth in addition to systemic disease manifestations, including arthritis, peripheral neuropathy and pulmonary fibrosis. As in many autoimmune diseases, the inciting factors that precipitate SS are poorly understood. Patients with SS have periductal and perivascular lymphocytic infiltration of salivary and lacrimal tissue, and this is a hallmark of disease. While this infiltration is well characterized, the pathologic events that precede and cause this inflammatory cell recruitment are unknown. Although few studies have examined SS salivary tissue prior to disease onset, there is strong evidence for innate immune hyperactivity. Accordingly, processes such as apoptosis of glandular tissue, heightened inflammatory cytokine and chemokine production, and toll-like receptor (TLR) activation are described in early disease and are each linked to innate immune activation in murine models of disease and SS patients. This review will explore the relationship between innate immunity and SS pathogenesis prior to overt disease onset and discuss therapeutic strategies to mitigate disease progression in SS patients.
Collapse
Affiliation(s)
- Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, School of Dental Medicine, 3435 Main Street, 211 Foster Hall, Buffalo, NY 14214, United States.
| |
Collapse
|
18
|
Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci U S A 2012; 109:17609-14. [PMID: 23045702 DOI: 10.1073/pnas.1209724109] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Elucidating the molecular pathways active in pathologic tissues has important implications for defining disease subsets, selecting therapy, and monitoring disease activity. The development of therapeutics directed at IFN-α or IFN-γ makes the discovery of probes that report precisely on the activity of different IFN pathways a high priority. We show that, although type I and II IFNs induce the expression of a largely overlapping group of molecules, precise probes of IFN-γ activity can be defined. Used in combination, these probes show prominent IFN-γ effects in Sjögren syndrome (SS) tissues. In contrast, dermatomyositis muscle shows a dominant type I IFN pattern. Interestingly, heterogeneity of IFN signatures exists in patients with SS, with some patients demonstrating a predominant type I pattern. The biochemical patterns largely distinguish the target tissues in patients with SS from those with dermatomyositis and provide a relative weighting of the effects of distinct IFN pathways in specific biopsies. In SS, type I and II IFN effects are localized to the same epithelial cells, surrounded by inflammatory cells expressing IFN-γ-induced proteins, suggesting reinforcing interactions. Precise probes of the different IFN pathways active in tissues of complex rheumatic diseases will be critical to classify disease, elucidate pathogenesis, and select therapy.
Collapse
|
19
|
Kajiya M, Ichimonji I, Min C, Zhu T, Jin JO, Yu Q, Almazrooa SA, Cha S, Kawai T. Muscarinic type 3 receptor induces cytoprotective signaling in salivary gland cells through epidermal growth factor receptor transactivation. Mol Pharmacol 2012; 82:115-24. [PMID: 22511543 PMCID: PMC3382834 DOI: 10.1124/mol.111.077354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/17/2012] [Indexed: 01/28/2023] Open
Abstract
Muscarinic type 3 receptor (M3R) plays a pivotal role in the induction of glandular fluid secretions. Although M3R is often the target of autoantibodies in Sjögren's syndrome (SjS), chemical agonists for M3R are clinically used to stimulate saliva secretion in patients with SjS. Aside from its activity in promoting glandular fluid secretion, however, it is unclear whether activation of M3R is related to other biological events in SjS. This study aimed to investigate the cytoprotective effect of chemical agonist-mediated M3R activation on apoptosis induced in human salivary gland (HSG) cells. Carbachol (CCh), a muscarinic receptor-specific agonist, abrogated tumor necrosis factor α/interferon γ-induced apoptosis through pathways involving caspase 3/7, but its cytoprotective effect was decreased by a M3R antagonist, a mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) inhibitor, a phosphatidylinositol 3-kinase/Akt inhibitor, or an epidermal growth factor receptor (EGFR) inhibitor. Ligation of M3R with CCh transactivated EGFR and phosphorylated ERK and Akt, the downstream targets of EGFR. Inhibition of intracellular calcium release or protein kinase C δ, both of which are involved in the cell signaling of M3R-mediated fluid secretion, did not affect CCh-induced ERK or Akt phosphorylation. CCh stimulated Src phosphorylation and binding to EGFR. A Src inhibitor attenuated the CCh/M3R-induced cytoprotective effect and EGFR transactivation cascades. Overall, these results indicated that CCh/M3R induced transactivation of EGFR through Src activation leading to ERK and Akt phosphorylation, which in turn suppressed caspase 3/7-mediated apoptotic signals in HSG cells. This study, for the first time, proposes that CCh-mediated M3R activation can promote not only fluid secretion but also survival of salivary gland cells in the inflammatory context of SjS.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Immunology, Forsyth Institute, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Influence of sex hormones and genetic predisposition in Sjögren's syndrome: a new clue to the immunopathogenesis of dry eye disease. Exp Eye Res 2011; 96:88-97. [PMID: 22227485 DOI: 10.1016/j.exer.2011.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/02/2011] [Accepted: 12/14/2011] [Indexed: 11/24/2022]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by lymphocytic infiltration, destruction of lacrimal and salivary glands and the presence of serum autoantibodies. Most women that suffer from SS are post-menopausal however, not all post-menopausal women develop SS, suggesting that other factors, in addition to the decrease in ovarian hormones, are necessary for the development of SS. The purposes of this study were to investigate a) the time course of lymphocytic infiltration and apoptosis in the lacrimal gland after ovariectomy, b) if a predisposed genetic background for SS aggravates the effects of decreasing levels of sex hormones in the lacrimal glands and c) if physiological doses of estrogen or androgen prevent the effects observed after ovariectomy. Six weeks old mice that are genetically predisposed to SS (NOD.B10.H2(b)) and control (C57BL/10) mice were either sham operated, ovariectomized (OVX), OVX + 17β estradiol (E(2)) or OVX + Dihydrotestosterone (DHT). Lacrimal glands were collected at 3, 7, 21 or 30 days after surgery and processed for immunohistochemistry to measure CD4(+), CD8(+) T cells, B220(+) B cells, nuclear DNA degradation and cleaved caspase-3 activity. Quantification of the staining was done by light microscopy and Image Pro Plus software. The results of our study show that lymphocytic infiltration preceded lacrimal gland apoptosis after ovariectomy. Moreover, removal of ovarian sex hormones accelerated these effects in the genetically predisposed animal and these effects were more severe and persistent compared to control animals. In addition, sex hormone replacement at physiological levels prevented these symptoms. The mechanisms by which decreased levels of sex hormones caused lymphocytic infiltration and apoptosis and the interaction of lack of sex hormones with the genetic elements remain to be elucidated.
Collapse
|
21
|
Meuser-Batista M, Corrêa JR, Carvalho VF, de Carvalho Britto CFDP, Moreira ODC, Batista MM, Soares MJ, Filho FAF, E Silva PMR, Lannes-Vieira J, Silva RC, Henriques-Pons A. Mast cell function and death in Trypanosoma cruzi infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1894-904. [PMID: 21819958 DOI: 10.1016/j.ajpath.2011.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 02/02/2023]
Abstract
Although the roles of mast cells (MCs) are essential in many inflammatory and fibrotic diseases, their role in Trypanosoma cruzi-induced cardiomyopathy is unexplored. In this study, we treated infected CBA mice with cromolyn, an MC stabilizer, and observed much greater parasitemia and interferon-γ levels, higher mortality, myocarditis, and cardiac damage. Although these data show that MCs are important in controlling acute infection, we observed MC apoptosis in the cardiac tissue and peritoneal cavity of untreated mice. In the heart, pericardial mucosal MC die, perhaps because of reduced amounts of local stem cell factor. Using RT-PCR in purified cardiac MCs, we observed that infection induced transcription of P2X(7) receptor and Fas, two molecules reportedly involved in cell death and inflammatory regulation. In gld/gld mice (FasL(-/-)), apoptosis of cardiac, but not peritoneal, MCs was decreased. Conversely, infection of P2X(7)(-/-) mice led to reduced peritoneal, but not cardiac, MC death. These data illustrate the immunomodulatory role played by MCs in T. cruzi infection and the complexity of molecular interactions that control inflammatory pathways in different tissues and compartments.
Collapse
Affiliation(s)
- Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino, e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu CL, Huang AC, Yang JS, Liao CL, Lu HF, Chou ST, Ma CY, Hsia TC, Ko YC, Chung JG. Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J Orthop Res 2011; 29:1199-209. [PMID: 21374707 DOI: 10.1002/jor.21350] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/10/2010] [Indexed: 02/04/2023]
Abstract
Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC), a member of the isothiocyanate family, have been shown to exhibit antineoplastic ability against many human cancer cells. In this study, we found that exposure of human osteogenic sarcoma U-2 OS cells to BITC and PEITC led to induce morphological changes and to decrease the percentage of viable cells in a time- and dose-dependent manner. BITC and PEITC induced cell cycle arrest at G2/M phase at 48 h treatment and inhibited the levels of cell cycle regulatory proteins such as cyclin A and B1 in U-2 OS cells but promoted the level of Chk1 and p53 that led to G2/M arrest. BITC and PEITC induced a marked increase in apoptosis (DNA fragmentation) and poly(ADP-ribose)polymerase (PARP) cleavage, which was associated with mitochondrial dysfunction and the activation of caspase-9 and -3. BITC and PEITC also promoted the ROS production in U-2 OS cells and the N-acetylcysteine (NAC, an antoxidant agent) was pretreated and then treated with both compounds which led to decrease the levels of ROS and increase the cell viability. Interestingly, BITC and PEITC promoted the levels of NO production and increased the iNOS enzyme. Confocal laser microscope also demonstrated that BITC and PEITC promoted the release of cytochrome c and AIF, suggesting that both compounds induced apoptosis through ROS, caspase-3 and mitochondrial, and NO signaling pathways. Taken together, these molecular alterations and signaling pathways offer an insight into BITC and PEITC-caused growth inhibition, G2/M arrest, and apoptotic death of U-2 OS cells.
Collapse
Affiliation(s)
- Chang-Lin Wu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The role of K-ras gene mutation in TRAIL-induced apoptosis in pancreatic and lung cancer cell lines. Cancer Chemother Pharmacol 2010; 67:481-7. [PMID: 20848283 DOI: 10.1007/s00280-010-1463-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Pancreatic ductal and lung adenocarcinomas are the most common and prevalent types of human neoplasms with a greater than 80% mortality rate. The poor prognosis of both these cancers are likely due to the absence of valid approaches for early detection, the frequency of its metastases at the time of diagnosis, frequent recurrence after surgery, and poor responsiveness to chemotherapy. Most notably, the early development of pancreatic intraepithelial neoplasia and lung lesions is suggested to be the result of a mutation in the K-ras (G12D) oncogene. Tumor necrosis factor-related-apoptosis-inducing-ligand (TRAIL) has been shown to have great potential for the treatment of most human tumor cells, while leaving normal cells unharmed. However, some cancers show resistance to TRAIL treatment, leaving a gap in the understanding of its exact etiology. METHODS TRAIL-induced resistance to cell death was investigated in pancreatic and lung cancer cell lines. Cell survival was determined by SRB and apoptosis by ELISA-based cell death assay. Activation of bid and caspases were evaluated by Western blotting. RESULTS Our study demonstrated that TRAIL significantly suppressed cell survival, by inducing apoptosis in a dose-dependent manner, in the pancreatic cancer BxPC-3 (wild type G12) and lung cancer A549 (G12S) cell lines. In contrast, Panc-1 pancreatic and SK-LU-1 lung cancer cell lines, which have a mutated (G12D) K-ras genotype, were resistant to the actions of TRAIL. CONCLUSIONS This study demonstrates an association between TRAIL resistance to apoptosis in human pancreatic and lung cancer cell lines and G12D K-ras(12) mutation.
Collapse
|
24
|
Expression of pro-inflammatory TACE-TNF-α-amphiregulin axis in Sjögren's syndrome salivary glands. Histochem Cell Biol 2010; 134:345-53. [PMID: 20811902 DOI: 10.1007/s00418-010-0735-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
The tumor-necrosis-factor-converting-enzyme (TACE)-TNF-α-Amphiregulin (AREG) axis plays an important pathogenic role in inflammatory and autoimmune disorders. However, the pathological roles of these proteins in the chronic autoimmune disease Sjögren's syndrome (SS) remain to be elucidated. It is known that the TACE-AREG axis is clearly part of a larger cascade of signals that starts with the activation of Furin, responsible for maturation of TACE that, in turn, determines the production of active TNF-α, directly involved in the up-regulation of AREG expression. This study showed that Furin, TACE, TNF-α, and AREG proteins, detected in acinar and ductal cells of human salivary glands from SS patients, increased remarkably in comparison with biopsies of labial salivary glands from healthy controls. The changes in Furin, TACE, TNF- α, and AREG proteins' level detected in salivary glands biopsies of SS patients could be responsible for pro-inflammatory cytokines overexpression characterizing Sjögren's syndrome.
Collapse
|
25
|
Wicker CA, Sahu RP, Kulkarni-Datar K, Srivastava SK, Brown TL. BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis. CANCER GROWTH AND METASTASIS 2010. [DOI: 10.4137/cgm.s3982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pancreatic adenocarcinoma is an aggressive cancer with a greater than 95% mortality rate and short survival after diagnosis. Chemotherapeutic resistance hinders successful treatment. This resistance is often associated with mutations in codon 12 of the K-Ras gene (K-Ras 12), which is present in over 90% of all pancreatic adenocarcinomas. Codon 12 mutations maintain Ras in a constitutively active state leading to continuous cellular proliferation. Our study determined if TRAIL resistance in pancreatic adenocarcinomas with K-Ras 12 mutations could be overcome by first sensitizing the cells with Benzyl isothiocyanate (BITC). BITC is a component of cruciferous vegetables and a cell cycle inhibitor. BxPC3, MiaPaCa2 and Panc-1 human pancreatic adenocarcinoma cell lines were examined for TRAIL resistance. Our studies show BITC induced TRAIL sensitization by dual activation of both the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Christina A. Wicker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
- These authors contributed equally to the manuscript
| | - Ravi P. Sahu
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, USA
- These authors contributed equally to the manuscript
| | - Kashmira Kulkarni-Datar
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
- These authors contributed equally to the manuscript
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, USA
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
26
|
Abstract
Cytokines play a central role in the regulation of immunity and are often found to be deregulated in autoimmune diseases. Sjögren's syndrome is a chronic autoimmune disease characterized by inflammation and loss of secretory function of the salivary and lachrymal glands. This review highlights the current knowledge of the expression and the function of pro- and anti-inflammatory cytokines both locally and systemically in Sjögren's syndrome patients. In the salivary glands, saliva and serum of these patients, many pro-inflammatory cytokines are upregulated. Concomitantly, most anti-inflammatory cytokines are not detectable or are expressed at low levels. Besides a role in inflammation, cytokines are also thought to be involved in salivary gland dysfunction by directly interfering with the epithelial cells in the glands. Future research on the role of novel cytokines in Sjögren's syndrome in combination with a better understanding of the effect of cytokines on exocrine dysfunction will aide the identification of the best therapeutic targets for Sjögren's syndrome.
Collapse
Affiliation(s)
- N Roescher
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
27
|
Baker OJ, Camden JM, Redman RS, Jones JE, Seye CI, Erb L, Weisman GA. Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line. Am J Physiol Cell Physiol 2008; 295:C1191-201. [PMID: 18768927 PMCID: PMC2584989 DOI: 10.1152/ajpcell.00144.2008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 08/28/2008] [Indexed: 12/22/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder characterized by inflammation and dysfunction of salivary glands, resulting in impaired secretory function. The production of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) is elevated in exocrine glands of patients with SS, although little is known about the effects of these cytokines on salivary epithelial cell functions necessary for saliva secretion, including tight junction (TJ) integrity and the establishment of transepithelial ion gradients. The present study demonstrates that chronic exposure of polarized rat parotid gland (Par-C10) epithelial cell monolayers to TNF-alpha and IFN-gamma decreases transepithelial resistance (TER) and anion secretion, as measured by changes in short-circuit current (I(sc)) induced by carbachol, a muscarinic cholinergic receptor agonist, or UTP, a P2Y(2) nucleotide receptor agonist. In contrast, TNF-alpha and IFN-gamma had no effect on agonist-induced increases in the intracellular calcium concentration [Ca(2+)](i) in Par-C10 cells. Furthermore, treatment of Par-C10 cell monolayers with TNF-alpha and IFN-gamma increased paracellular permeability to normally impermeant proteins, altered cell and TJ morphology, and downregulated the expression of the TJ protein, claudin-1, but not other TJ proteins expressed in Par-C10 cells. The decreases in TER, agonist-induced transepithelial anion secretion, and claudin-1 expression caused by TNF-alpha, but not IFN-gamma, were reversible by incubation of Par-C10 cell monolayers with cytokine-free medium for 24 h, indicating that IFN-gamma causes irreversible inhibition of cellular activities associated with fluid secretion in salivary glands. Our results suggest that cytokine production is an important contributor to secretory dysfunction in SS by disrupting TJ integrity of salivary epithelium.
Collapse
Affiliation(s)
- Olga J Baker
- Dept. of Biochemistry, Univ. of Missouri-Columbia, 540A Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Szlávik V, Vág J, Markó K, Demeter K, Madarász E, Oláh I, Zelles T, O'Connell BC, Varga G. Matrigel-induced acinar differentiation is followed by apoptosis in HSG cells. J Cell Biochem 2007; 103:284-95. [PMID: 17541949 DOI: 10.1002/jcb.21404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been shown that a human salivary gland cell line (HSG) is capable of differentiation into gland-like structures, though little is known of how morphological features are formed or controlled. Here we investigated the changes in cell proliferation and apoptosis upon terminal differentiation of HSG cells in Matrigel, an extracellular matrix derivative. Changes in the expression of survivin, a prominent anti-apoptotic factor, and caspase-3, a key apoptotic factor were also measured. In order to better understand the involvement of key signal transduction pathways in this system we pharmacologically blocked the activity of tyrosine kinase, nuclear factor kappa B(NF kappa B), protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K) and matrix metalloproteases (MMP). Results of these studies demonstrate that cytodifferentiation of HSG cells to an acinar phenotype is accompanied first by a decrease of cell proliferation and then by a massive programmed cell death, affected by multiple signal transduction pathways. Thus, Matrigel alone is insufficient for the full maturation and long term survival of the newly formed acini: the presence of other factors is necessary to complete the acinar differentiation of HSG cells.
Collapse
Affiliation(s)
- Vanda Szlávik
- Molecular Oral Biology Research Group, Department of Oral Biology, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|