1
|
Bai S, Li S, Tang Y, Jia Z, Shang S, Irwin DM, Zhang S, Wang Z. Transcriptome data from the interdigital webs of the Chinese Soft-shell Turtle (Pelodiscus sinensis). Sci Data 2025; 12:806. [PMID: 40382336 PMCID: PMC12085608 DOI: 10.1038/s41597-025-05188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
The interdigital webs of aquatic tetrapods are a key structure evolved for adaptation, which are formed by inhibiting interdigital cell death (ICD). Diverse interdigital morphologies have independently evolved among species, and the regulatory mechanisms responsible for their development are still not fully understood. The Chinese soft-shell turtle (Pelodiscus sinensis) serves as a good research model that exhibits transitional traits from webless to fully webbed. In this study, we collected eight samples of interdigital webs from the fore- and hindlimbs of turtles at embryonic stage 19 (TK19) for RNA sequencing (RNA-seq) analysis. We identified 608 differentially expressed genes (DEGs). Whole-mount in situ hybridization (WISH) and real-time quantitative PCR (RT-qPCR) of representative genes confirmed the accuracy of the transcriptomic results. These findings not only provide new perspectives and data to support comparative studies of adaptive convergent evolution in aquatic animals but also enhance our understanding of the mechanisms underlying tetrapod limb morphogenesis. Furthermore, these results provide potential molecular targets for research on the plasticity of programmed cell death or senescence.
Collapse
Affiliation(s)
- Shibin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shanshan Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yining Tang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqiu Jia
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Songyang Shang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Duarte-Olivenza C, Hurle JM, Montero JA, Lorda-Diez CI. Modeling the Differentiation of Embryonic Limb Chondroprogenitors by Cell Death and Cell Senescence in High Density Micromass Cultures and Their Regulation by FGF Signaling. Cells 2022; 12:cells12010175. [PMID: 36611968 PMCID: PMC9818968 DOI: 10.3390/cells12010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Considering the importance of programmed cell death in the formation of the skeleton during embryonic development, the aim of the present study was to analyze whether regulated cell degeneration also accompanies the differentiation of embryonic limb skeletal progenitors in high-density tridimensional cultures (micromass cultures). Our results show that the formation of primary cartilage nodules in the micromass culture assay involves a patterned process of cell death and cell senescence, complementary to the pattern of chondrogenesis. As occurs in vivo, the degenerative events were preceded by DNA damage detectable by γH2AX immunolabeling and proceeded via apoptosis and cell senescence. Combined treatments of the cultures with growth factors active during limb skeletogenesis, including FGF, BMP, and WNT revealed that FGF signaling modulates the response of progenitors to signaling pathways implicated in cell death. Transcriptional changes induced by FGF treatments suggested that this function is mediated by the positive regulation of the genetic machinery responsible for apoptosis and cell senescence together with hypomethylation of the Sox9 gene promoter. We propose that FGF signaling exerts a primordial function in the embryonic limb conferring chondroprogenitors with their biological properties.
Collapse
Affiliation(s)
| | | | - Juan A. Montero
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| | - Carlos I. Lorda-Diez
- Correspondence: (J.A.M.); (C.I.L.-D.); Fax: +34-942201923 (J.A.M. and C.I.L.-D.)
| |
Collapse
|
3
|
Rift Valley Fever Virus Non-Structural Protein S Is Associated with Nuclear Translocation of Active Caspase-3 and Inclusion Body Formation. Viruses 2022; 14:v14112487. [PMID: 36366585 PMCID: PMC9698985 DOI: 10.3390/v14112487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) causes Rift Valley fever (RVF), an emerging zoonotic disease that causes abortion storms and high mortality rates in young ruminants as well as severe or even lethal complications in a subset of human patients. This study investigates the pathomechanism of intranuclear inclusion body formation in severe RVF in a mouse model. Liver samples from immunocompetent mice infected with virulent RVFV 35/74, and immunodeficient knockout mice that lack interferon type I receptor expression and were infected with attenuated RVFV MP12 were compared to livers from uninfected controls using histopathology and immunohistochemistry for RVFV nucleoprotein, non-structural protein S (NSs) and pro-apoptotic active caspase-3. Histopathology of the livers showed virus-induced, severe hepatic necrosis in both mouse strains. However, immunohistochemistry and immunofluorescence revealed eosinophilic, comma-shaped, intranuclear inclusions and an intranuclear (co-)localization of RVFV NSs and active caspase-3 only in 35/74-infected immunocompetent mice, but not in MP12-infected immunodeficient mice. These results suggest that intranuclear accumulation of RVFV 35/74 NSs is involved in nuclear translocation of active caspase-3, and that nuclear NSs and active caspase-3 are involved in the formation of the light microscopically visible inclusion bodies.
Collapse
|
4
|
Regulation of Developmental Cell Death in the Animal Kingdom: A Critical Analysis of Epigenetic versus Genetic Factors. Int J Mol Sci 2022; 23:ijms23031154. [PMID: 35163078 PMCID: PMC8835556 DOI: 10.3390/ijms23031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The present paper proposes a new level of regulation of programmed cell death (PCD) in developing systems based on epigenetics. We argue against the traditional view of PCD as an altruistic “cell suicide” activated by specific gene-encoded signals with the function of favoring the development of their neighboring progenitors to properly form embryonic organs. In contrast, we propose that signals and local tissue interactions responsible for growth and differentiation of the embryonic tissues generate domains where cells retain an epigenetic profile sensitive to DNA damage that results in its subsequent elimination in a fashion reminiscent of what happens with scaffolding at the end of the construction of a building. Canonical death genes, including Bcl-2 family members, caspases, and lysosomal proteases, would reflect the downstream molecular machinery that executes the dying process rather than being master cell death regulatory signals.
Collapse
|
5
|
Montero JA, Lorda-Diez CI, Hurle JM. Confluence of Cellular Degradation Pathways During Interdigital Tissue Remodeling in Embryonic Tetrapods. Front Cell Dev Biol 2020; 8:593761. [PMID: 33195267 PMCID: PMC7644521 DOI: 10.3389/fcell.2020.593761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Digits develop in the distal part of the embryonic limb primordium as radial prechondrogenic condensations separated by undifferentiated mesoderm. In a short time interval the interdigital mesoderm undergoes massive degeneration to determine the formation of free digits. This fascinating process has often been considered as an altruistic cell suicide that is evolutionarily-regulated in species with different degrees of digit webbing. Initial descriptions of interdigit remodeling considered lysosomes as the primary cause of the degenerative process. However, the functional significance of lysosomes lost interest among researcher and was displaced to a secondary role because the introduction of the term apoptosis. Accumulating evidence in recent decades has revealed that, far from being a unique method of embryonic cell death, apoptosis is only one among several redundant dying mechanisms accounting for the elimination of tissues during embryonic development. Developmental cell senescence has emerged in the last decade as a primary factor implicated in interdigit remodeling. Our review proposes that cell senescence is the biological process identified by vital staining in embryonic models and implicates lysosomes in programmed cell death. We review major structural changes associated with interdigit remodeling that may be driven by cell senescence. Furthermore, the identification of cell senescence lacking tissue degeneration, associated with the maturation of the digit tendons at the same stages of interdigital remodeling, allowed us to distinguish between two functionally distinct types of embryonic cell senescence, “constructive” and “destructive.”
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomiìa y Biologiìa Celular and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| |
Collapse
|
6
|
Montero JA, Lorda-Diez CI, Sanchez-Fernandez C, Hurle JM. Cell death in the developing vertebrate limb: A locally regulated mechanism contributing to musculoskeletal tissue morphogenesis and differentiation. Dev Dyn 2020; 250:1236-1247. [PMID: 32798262 PMCID: PMC8451844 DOI: 10.1002/dvdy.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Our aim is to critically review current knowledge of the function and regulation of cell death in the developing limb. We provide a detailed, but short, overview of the areas of cell death observed in the developing limb, establishing their function in morphogenesis and structural development of limb tissues. We will examine the functions of this process in the formation and growth of the limb primordia, formation of cartilaginous skeleton, formation of synovial joints, and establishment of muscle bellies, tendons, and entheses. We will analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process, we will discuss a new biological perspective that explains cell death: this process, rather than secondary to a specific genetic program, is a consequence of the tissue building strategy employed by the embryo based on the formation of scaffolds that disintegrate once their associated neighboring structures differentiate. We examine the functions of cell death in the formation and growth of the limb primordia. We analyze the plasticity of the cell death program by focusing on the developmental potential of progenitors prior to death. Considering the prolonged plasticity of progenitors to escape from the death process and the absence of defined genetic program in their regulation we propose that cell death is a consequence of the tissue building strategy employed by the embryo regulated by epigenetic factors .
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | | | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
7
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
8
|
Kashgari G, Meinecke L, Gordon W, Ruiz B, Yang J, Ma AL, Xie Y, Ho H, Plikus MV, Nie Q, Jester JV, Andersen B. Epithelial Migration and Non-adhesive Periderm Are Required for Digit Separation during Mammalian Development. Dev Cell 2020; 52:764-778.e4. [PMID: 32109382 DOI: 10.1016/j.devcel.2020.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 01/04/2023]
Abstract
The fusion of digits or toes, syndactyly, can be part of complex syndromes, including van der Woude syndrome. A subset of van der Woude cases is caused by dominant-negative mutations in the epithelial transcription factor Grainyhead like-3 (GRHL3), and Grhl3-/-mice have soft-tissue syndactyly. Although impaired interdigital cell death of mesenchymal cells causes syndactyly in multiple genetic mutants, Grhl3-/- embryos had normal interdigital cell death, suggesting alternative mechanisms for syndactyly. We found that in digit separation, the overlying epidermis forms a migrating interdigital epithelial tongue (IET) when the epithelium invaginates to separate the digits. Normally, the non-adhesive surface periderm allows the IET to bifurcate as the digits separate. In contrast, in Grhl3-/- embryos, the IET moves normally between the digits but fails to bifurcate because of abnormal adhesion of the periderm. Our study identifies epidermal developmental processes required for digit separation.
Collapse
Affiliation(s)
- Ghaidaa Kashgari
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lina Meinecke
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - William Gordon
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bryan Ruiz
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jady Yang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Amy Lan Ma
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yilu Xie
- The Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Hsiang Ho
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Maksim V Plikus
- Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of the Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - James V Jester
- The Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Janečková E, Bíliková P, Matalová E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J Histochem Cytochem 2018; 66:47-58. [PMID: 29091523 PMCID: PMC5761947 DOI: 10.1369/0022155417739283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/06/2017] [Indexed: 01/04/2023] Open
Abstract
Caspases have functions particularly in apoptosis and inflammation. Increasing evidence indicates novel roles of these proteases in cell differentiation, including those involved in osteogenesis. This investigation provides a complex screening of osteogenic markers affected by pan caspase inhibition in micromass cultures derived from mouse forelimbs. PCR Array analysis showed significant alterations in expression of 49 osteogenic genes after 7 days of inhibition. The largest change was a decrease in CD36 expression, which was confirmed at organ level by caspase inhibition in cultured mouse ulnae followed by CD36 immunohistochemical analysis. So far, available data point to osteogenic potential of pro-apoptotic caspases. Therefore, the expression of pro-apoptotic caspases (-3, -6, -7, -8, -9) within the growth plate of mouse forelimbs at the stage where the individual zones are clearly apparent was studied. Caspase-9 was reported in the growth plate for the first time as well as caspase-6 and -7 in the resting zone, caspase-7 in the proliferation, and caspase-6 and -8 in the ossification zone. For all caspases, there was a gradient increase in activation toward the ossification zone. The distribution of staining varied significantly from that of apoptotic cells, and thus, the results further support non-apoptotic participation of caspases in osteogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Bíliková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Eva Matalová
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic
| |
Collapse
|
10
|
Montero JA, Sanchez-Fernandez C, Lorda-Diez CI, Garcia-Porrero JA, Hurle JM. DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos. Sci Rep 2016; 6:35478. [PMID: 27752097 PMCID: PMC5067507 DOI: 10.1038/srep35478] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023] Open
Abstract
DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γH2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells γH2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of γH2AX-only cells increases after caspase inhibition while the relative number of TUNEL-only cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration.
Collapse
Affiliation(s)
- Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander 39011, Spain
| | - Cristina Sanchez-Fernandez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander 39011, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander 39011, Spain
| | - Juan A Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander 39011, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander 39011, Spain
| |
Collapse
|
11
|
Svandova EB, Vesela B, Lesot H, Poliard A, Matalova E. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination. Histochem Cell Biol 2016; 147:497-510. [DOI: 10.1007/s00418-016-1508-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/24/2023]
|
12
|
Abstract
This study re-examined the dying process in the interdigital tissue during the formation of free digits in the developing limbs. We demonstrated that the interdigital dying process was associated with cell senescence, as deduced by induction of β-gal activity, mitotic arrest, and transcriptional up-regulation of p21 together with many components of the senescence-associated secretory phenotype. We also found overlapping domains of expression of members of the Btg/Tob gene family of antiproliferative factors in the regressing interdigits. Notably, Btg2 was up-regulated during interdigit remodeling in species with free digits but not in the webbed foot of the duck. We also demonstrate that oxidative stress promoted the expression of Btg2, and that FGF2 and IGF1 which are survival signals for embryonic limb mesenchyme inhibited Btg2 expression. Btg2 overexpression in vivo and in vitro induced all the observed changes during interdigit regression, including oxidative stress, arrest of cell cycle progression, transcriptional regulation of senescence markers, and caspase-mediated apoptosis. Consistent with the central role of p21 on cell senescence, the transcriptional effects induced by overexpression of Btg2 are attenuated by silencing p21. Our findings indicate that cell senescence and apoptosis are complementary processes in the regression of embryonic tissues and share common regulatory signals.
Collapse
|
13
|
Spatiotemporal distribution of proliferation, proapoptotic and antiapoptotic factors in the early human limb development. Acta Histochem 2016; 118:527-36. [PMID: 27282649 DOI: 10.1016/j.acthis.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 12/28/2022]
Abstract
Involvement of proliferation and apoptosis in the human limb development was analyzed electronmicroscopically and immunohistochemically in histological sections of 8 human embryos, 4(th) -10(th) week old, using apoptotic (caspase-3, AIF, BAX), anti-apoptotic (Bcl-2) and proliferation (Ki-67) markers, and TUNEL method. The data were analyzed by Mann-Whitney test, Kruskal-Wallis and Dunn's post hoc test. Initially, developing human limbs consisted of mesenchymal core and surface ectoderm with apical ectodermal ridge (AER). During progression of development, strong proliferation activity gradually decreased in the mesenchyme (from 78% to 68%) and in the epithelium (from 62% to 42%), while in the differentiating finger cartilages proliferation was constantly low (26-7%). Apoptotic caspase-3 and AIF-positive cells characterized mesenchyme and AER at earliest stages, while during digit separation they appeared in interdigital mesenchyme as well. Strong Bcl-2 expression was observed in AER, subridge mesenchyme and phalanges, while BAX expression charaterized limb areas undergoing apoptosis. Ultrastructurally, proliferating cells showed mitotic figures, while apoptotic cells were characterized by nuclear fragmentation. Macrophages were observed around the apoptotic cells. We suggest that intense proliferation enables growth and elongation of human limb primordia, and differential growth of digits. Both caspase-3 and AIF-dependant pathways of cell death control the extent of AER and numer of cells in the subridge mesenchyme at earliest developmental stages, as well as process of digit separation at later stages of limb development. Spatio-temporal co-expresson of Bcl-2 and BAX indicates their role in suppression of apoptosis and selective stimulation of growth during human limb morphogenesis.
Collapse
|
14
|
Molecular Control of Interdigital Cell Death and Cell Differentiation by Retinoic Acid during Digit Development. J Dev Biol 2014. [DOI: 10.3390/jdb2020138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Interdigital cell death in the embryonic limb is associated with depletion of Reelin in the extracellular matrix. Cell Death Dis 2013; 4:e800. [PMID: 24030152 PMCID: PMC3789180 DOI: 10.1038/cddis.2013.322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 01/01/2023]
Abstract
Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process.
Collapse
|
16
|
The effect of caspase-3 inhibition on interdigital tissue regression in explant cultures of developing mouse limbs. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.678386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
17
|
de Azevedo-Pereira RL, Lima APCA, Rodrigues DDC, Rondinelli E, Medei EH, Goldenberg RC, de Carvalho ACCC, Mendez-Otero R. Cysteine proteases in differentiation of embryonic stem cells into neural cells. Stem Cells Dev 2011; 20:1859-1872. [PMID: 21417836 DOI: 10.1089/scd.2010.0186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycosylated mouse cystatin C (mCysC), an endogenous inhibitor of cysteine cathepsin proteases (CP), has been suggested as a cofactor of β-FGF to induce the differentiation of mouse embryonic stem cells into neural progenitor cells (NPCs). To investigate the possible role of CP in neural differentiation, we treated embryoid bodies (EBs) with (i) E64, an inhibitor of papain-like CP and of calpains, (ii) an inhibitor of cathepsin L (iCatL), (iii) an inhibitor of calpains (iCalp), or (iv) cystatins, and their ability to differentiate into neural cells was assessed. We show that the inhibition of CP induces a significant increase in Pax6 expression in EBs, leading to an increase in the number of nestin-positive cells after 3 days. Fourteen days after E64 treatment, we observed increased numbers of β-III-tubulin-positive cells, showing greater percentage of immature neurons, and this feature persisted up to 24 days. At this point, we encountered higher numbers of neurons with inward Na(+) current compared with untreated EBs. Further, we show that mCysC and iCatL, but not unglycosylated egg white cystatin or iCalp, increased the numbers of NPCs. In contrast to E64 and iCatL, mCysC did not inhibit CP in EBs and its neural-inducing activity required β-FGF. We propose that the inhibition of CP induces the differentiation of mouse embryonic stem cells into NPCs and neurons through a mechanism that is distinct from CysC-induced neural differentiation.
Collapse
|
18
|
Chimal-Monroy J, Abarca-Buis RF, Cuervo R, Díaz-Hernández M, Bustamante M, Rios-Flores JA, Romero-Suárez S, Farrera-Hernández A. Molecular control of cell differentiation and programmed cell death during digit development. IUBMB Life 2011; 63:922-9. [PMID: 21901820 DOI: 10.1002/iub.563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/18/2011] [Indexed: 12/14/2022]
Abstract
During the hand plate development, the processes of cell differentiation and control of cell death are relevant to ensure a correct shape of the limb. The progenitor cell pool that later will differentiate into cartilage to form the digits arises from undifferentiated mesenchymal cells beneath the apical ectodermal ridge (AER). Once these cells abandon the area of influence of signals from AER and ectoderm, some cells are committed to chondrocyte lineage forming the digital rays. However, if the cells are not committed to chondrocyte lineage, they will form the prospective interdigits that in species with free digits will subsequently die. In this work, we provide the overview of the molecular interactions between different signaling pathways responsible for the formation of digit and interdigit regions. In addition, we briefly describe some experiments concerning the most important signals responsible for promoting cell death. Finally, on the basis that the interdigital tissue has chondrogenic potential, we discuss the hypothesis that apoptotic-promoting signals might also act as antichondrogenic factors and chondrogenic factors might operate as anti-apoptotic factors.
Collapse
Affiliation(s)
- Jesús Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México Ciudad Universitaria. Apartado Postal 70228. México.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hernández-Martínez R, Covarrubias L. Interdigital cell death function and regulation: New insights on an old programmed cell death model. Dev Growth Differ 2011; 53:245-58. [DOI: 10.1111/j.1440-169x.2010.01246.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Coordinated and sequential activation of neutral and acidic DNases during interdigital cell death in the embryonic limb. Apoptosis 2010; 15:1197-210. [DOI: 10.1007/s10495-010-0523-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Abstract
Physiological cell death is a key mechanism that ensures appropriate development and maintenance of tissues and organs in multicellular organisms. Most structures in the vertebrate embryo exhibit defined areas of cell death at precise stages of development. In this regard the areas of interdigital cell death during limb development provide a paradigmatic model of massive cell death with an evident morphogenetic role in digit morphogenesis. Physiological cell death has been proposed to occur by apoptosis, cellular phenomena genetically controlled to orchestrate cell suicide following two main pathways, cytochrome C liberation from the mitochondria or activation of death receptors. Such pathways converge in the activation of cysteine proteases known as caspases, which execute the cell death program, leading to typical morphologic changes within the cell, termed apoptosis. According to these findings it would be expected that caspases loss of function experiments could cause inhibition of interdigital cell death promoting syndactyly phenotypes. A syndactyly phenotype is characterized by absence of digit freeing during development that, when caused by absence of interdigital cell death, is accompanied by the persistence of an interdigital membrane. However this situation has not been reported in any of the KO mice or chicken loss of function experiments ever performed. Moreover histological analysis of dying cells within the interdigit reveals the synchronic occurrence of different types of cell death. All these findings are indicative of caspase alternative and/or complementary mechanisms responsible for physiological interdigital cell death. Characterization of alternative cell death pathways is required to explain vertebrate morphogenesis. Today there is great interest in cell death via autophagy, which could substitute or act synergistically to the apoptotic pathway. Here we discuss what is known about physiological cell death in the developing interdigital tissue of vertebrate embryos, paying special attention to the avian species.
Collapse
|
22
|
Javitt NB, Javitt JC. The retinal oxysterol pathway: a unifying hypothesis for the cause of age-related macular degeneration. Curr Opin Ophthalmol 2009; 20:151-7. [DOI: 10.1097/icu.0b013e32832af468] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Krumschnabel G, Sohm B, Bock F, Manzl C, Villunger A. The enigma of caspase-2: the laymen's view. Cell Death Differ 2009; 16:195-207. [PMID: 19023332 PMCID: PMC3272397 DOI: 10.1038/cdd.2008.170] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/07/2008] [Accepted: 10/27/2008] [Indexed: 01/06/2023] Open
Abstract
Proteolysis of cellular substrates by caspases (cysteine-dependent aspartate-specific proteases) is one of the hallmarks of apoptotic cell death. Although the activation of apoptotic caspases is considered a 'late-stage' event in apoptosis signaling, past the commitment stage, one caspase family member, caspase-2, splits the cell death community into half - those searching for evidence of an apical initiator function of this molecule and those considering it as an amplifier of the apoptotic caspase cascade, at best, if relevant for apoptosis at all. This review screens past and present biochemical as well as genetic evidence for caspase-2 function in cell death signaling and beyond.
Collapse
Affiliation(s)
- G Krumschnabel
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - B Sohm
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - F Bock
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - C Manzl
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - A Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
24
|
Abstract
The elimination of unwanted cells by programmed cell death is a common feature of animal development. Genetic studies in the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have not only revealed the molecular machineries that cause the programmed demise of specific cells, but have also allowed us to get a glimpse of the types of pathways that regulate these machineries during development. Rather than serving as a broad overview of programmed cell death during development, this review focuses on recent advances in our understanding of the regulation of specific programmed cell death events during nematode, fly, and mouse development. Recent studies have revealed that many of the regulatory pathways involved play additional important roles in development, which confirms that the programmed cell death fate is an integral aspect of animal development.
Collapse
Affiliation(s)
- Barbara Conradt
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
25
|
Abstract
Research over the past 50 years has consistently documented that cell death is an integral part of both normal development and the etiology of birth defects; however, the significance of this cell death has been, until recently, unclear. Research published during the past 15 years has now shown that programmed cell death (PCD) and teratogen-induced cell death are genetically controlled processes (apoptosis) that play important roles in both normal and abnormal development. Therefore, the purpose of this review is to highlight what is known about PCD and teratogen-induced cell death and their relationships to the mechanisms of apoptosis and abnormal development.
Collapse
Affiliation(s)
- Philip E Mirkes
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
26
|
Amin S, Matalova E, Simpson C, Yoshida H, Tucker AS. Incudomalleal joint formation: the roles of apoptosis, migration and downregulation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:134. [PMID: 18053235 PMCID: PMC2222641 DOI: 10.1186/1471-213x-7-134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 12/05/2007] [Indexed: 12/25/2022]
Abstract
BACKGROUND The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects. RESULTS We show that the developing incudomalleal joint is characterised by a lack of proliferation and discrete areas of apoptosis. Apoptosis has been suggested to aid in the removal of pre-cartilaginous cells from the joint region, allowing for the physical separation of the cartilaginous elements, however, we show that joint initiation is unaffected by blocking apoptosis. There is also no evidence of cell migration out of the presumptive joint region, as observed by labelling of joint and ossicle cells in culture. Using Type II collagen lacZ reporter mice, however, it is evident that cells in the presumptive joint region remain in place and downregulate cartilage markers. CONCLUSION The malleus and incus first appear as a single united condensation expressing early cartilage markers. The incudomalleal joint region forms by cells in the presumptive joint region switching off cartilage markers and turning on joint markers. Failure in this process may result in fusion of this joint, as observed in human syndromes such as Branchio-Oto-Renal Syndrome or Treacher Collins Syndrome.
Collapse
Affiliation(s)
- Susan Amin
- Department of Craniofacial Development and Orthodontics, King's College London, London, UK
- Department of Reconstructive Sciences, Centre for Regenerative Medicine and Skeletal Development, University of Connecticut Health Centre, Farmington, CT, USA
| | - Eva Matalova
- Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics, v.v.i. Academy of Sciences, Brno, Czech Republic
- Department of Physiology and Pathophysiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Carol Simpson
- Department of Craniofacial Development and Orthodontics, King's College London, London, UK
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Abigail S Tucker
- Department of Craniofacial Development and Orthodontics, King's College London, London, UK
| |
Collapse
|
27
|
Rodriguez-Guzman M, Montero JA, Santesteban E, Gañan Y, Macias D, Hurle JM. Tendon-muscle crosstalk controls muscle bellies morphogenesis, which is mediated by cell death and retinoic acid signaling. Dev Biol 2007; 302:267-80. [PMID: 17070795 DOI: 10.1016/j.ydbio.2006.09.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/16/2006] [Accepted: 09/19/2006] [Indexed: 11/21/2022]
Abstract
Vertebrate muscle morphogenesis is a complex developmental process, which remains quite yet unexplored at cellular and molecular level. In this work, we have found that sculpturing programmed cell death is a key morphogenetic process responsible for the formation of individual foot muscles in the developing avian limb. Muscle fibers are produced in excess in the precursor dorsal and ventral muscle masses of the limb bud and myofibers lacking junctions with digital tendons are eliminated via apoptosis. Microsurgical experiments to isolate the developing muscles from their specific tendons are consistent with a role for tendons in regulating survival of myogenic cells. Analysis of the expression of Raldh2 and local treatments with retinoic acid indicate that this signaling pathway mediates apoptosis in myogenic cells, appearing also involved in tendon maturation. Retinoic acid inhibition experiments led to defects in muscle belly segmentation and myotendinous junction formation. It is proposed that heterogeneous local distribution of retinoids controlled through Raldh2 and Cyp26A1 is responsible for matching the fleshy and the tendinous components of each muscle belly.
Collapse
Affiliation(s)
- Maria Rodriguez-Guzman
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, C/Cardenal Herrera Oria s/n, Santander, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Valero J, Berciano MT, Weruaga E, Lafarga M, Alonso JR. Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies. Mol Cell Neurosci 2006; 33:283-95. [PMID: 16978877 DOI: 10.1016/j.mcn.2006.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/04/2006] [Accepted: 08/01/2006] [Indexed: 01/01/2023] Open
Abstract
DNA damage and impairment of its repair underlie several neurodegenerative diseases. The Purkinje cell degeneration (pcd) mutation causes the loss of Nna1 expression and is associated with a selective and progressive degeneration of specific neuronal populations, including mitral cells in the olfactory bulb. Using an in situ transcription assay, molecular markers for both nuclear compartments and components of the DNA damage/repair pathway, and ultrastructural analysis, here we demonstrate that the pcd mutation induces the formation of DNA damage/repair foci in mitral cells. Furthermore, this effect is associated with transcriptional inhibition, heterochromatinization, nucleolar segregation and the reorganization of nuclear speckles of splicing factors and Cajal bodies. The most significant cytoplasmic alteration observed was a partial replacement of rough endoplasmic reticulum cisternae by a larger amount of free ribosomes, while other organelles were structurally preserved. The tools employed in this work may be of use for the early detection of predegenerative processes in neurodegenerative disorders and for validating rescue strategies.
Collapse
Affiliation(s)
- Jorge Valero
- Laboratorio de Plasticidad Neuronal y Neurorreparación, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca. Avd. Alfonso X el Sabio s/n, E-37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
29
|
Zuzarte-Luis V, Montero JA, Kawakami Y, Izpisua-Belmonte JC, Hurle JM. Lysosomal cathepsins in embryonic programmed cell death. Dev Biol 2006; 301:205-17. [PMID: 16987511 DOI: 10.1016/j.ydbio.2006.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/21/2006] [Accepted: 08/02/2006] [Indexed: 11/20/2022]
Abstract
During limb development, expression of cathepsin D and B genes prefigure the pattern of interdigital apoptosis including the differences between the chick and the webbed digits of the duck. Expression of cathepsin L is associated with advanced stages of degeneration. Analysis of Gremlin-/- and Dkk-/- mouse mutants and local treatments with BMP proteins reveal that the expression of cathepsin B and D genes is regulated by BMP signaling, a pathway responsible for triggering cell death. Further cathepsin D protein is upregulated in the preapoptotic mesenchyme before being released into the cytosol, and overexpression of cathepsin D induces cell death in embryonic tissues by a mechanism including mitochondrial permeabilization and nuclear translocation of AIF. Combined inhibition of cathepsin and caspases suggests a redundancy in the apoptotic molecular machinery, providing evidence for compensatory activation mechanisms in the cathepsin pathway when caspases are blocked. It is concluded that lysosomal enzymes are functionally implicated in embryonic programmed cell death.
Collapse
Affiliation(s)
- Vanessa Zuzarte-Luis
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Facultad de Medicina, C/ Cardenal Herrera Oria s/n, Santander, Spain
| | | | | | | | | |
Collapse
|