1
|
Bhatia D, Hinsu A, Panchal K, Sabara P, Jakhesara S, Koringa P. Molecular portrait of squamous cell carcinoma of the bovine horn evaluated by high-throughput targeted exome sequencing: a preliminary report. BMC Vet Res 2020; 16:461. [PMID: 33243240 PMCID: PMC7690171 DOI: 10.1186/s12917-020-02683-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023] Open
Abstract
Background Squamous Cell Carcinoma of horn, also known as horn cancer, is a prevailing type of cancer in cattles especially Bos indicus. It is one of the most prevalent disease in Indian bullocks often resulting in death and huge economic losses to farmers. Here, we have reported the use of targeted exome sequencing to identify variants present in horn cancer affected horn mucosa tissue and blood of the same animal to identify some of the prevalent markers of horn cancer. Results We have observed higher number of variants present in tissue as compared to blood as well as among cancer samples compared to samples from normal animals. Eighty six and 1437 cancer-specific variants were identified among the predicted variants in blood and tissue samples, respectively. Total 25 missense variants were observed distributed over 18 genes. KRT8 gene coding for Keratin8, one of the key constituents of horn, displayed 5 missense variants. Additionally, three other genes involved in apoptosis pathway and two genes involved in antigen presentation and processing also contained variants. Conclusions Several genes involved in various apoptotic pathways were found to contain non-synonymous mutations. Keratin8 coding for Keratin, a chief constituent of horn was observed to have the highest number of mutations. In all, we present a preliminary report of mutations observed in horn cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02683-y.
Collapse
Affiliation(s)
- Dhruv Bhatia
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ankit Hinsu
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ketankumar Panchal
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Pritesh Sabara
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Subhash Jakhesara
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Prakash Koringa
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India.
| |
Collapse
|
2
|
Schreurs O, Karatsaidis A, Balta MG, Grung B, Hals EKB, Schenck K. Expression of keratins 8, 18, and 19 in epithelia of atrophic oral lichen planus. Eur J Oral Sci 2020; 128:7-17. [PMID: 31994252 DOI: 10.1111/eos.12666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Keratins form intermediate filaments of the cytoskeleton in keratinocytes and have roles in cell structure, signaling, intracellular transport, and cell death. Oral lichen planus (OLP) is an oral inflammatory disease with derangements in basal keratinocytes and disruption of the basal membrane. Here, we focused on epithelial expression of keratins 8, 18, and 19 because these proteins are known to modulate cell death. Biopsies were taken from buccal oral mucosa of persons with normal oral mucosa (n = 10) or atrophic OLP (n = 10). Cultured normal oral keratinocytes (n = 4) showed expression of mRNA and protein for keratins 8, 18, and 19. Immunohistochemistry showed consistent staining for keratins 8 and 18 in basal keratinocytes of normal oral mucosa. In OLP, staining for keratin (K)8 was mostly negative and staining for K18 was weak. Keratin 19 was expressed irregularly in most biopsies of normal oral mucosa and not at all in OLP. Several mononuclear leukocytes in the cellular infiltrate showed membrane staining for K8 and K18. Positive staining for K16 confirmed partial collapse of the basal cell layer in OLP. The basal cell niche in OLP therefore appeared to be partly populated with keratinocytes demonstrating a higher degree of differentiation (K8- K18- K19- K16+ ); consequently, such areas may be more susceptible to the action of cell death factors released from the cell infiltrate as a result of lacking the protective, normal keratin present in the basal epithelial cell layer of normal oral mucosa.
Collapse
Affiliation(s)
- Olav Schreurs
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Andreas Karatsaidis
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Maria G Balta
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | | | - Else K B Hals
- TannSpes and Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Karl Schenck
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Cytokeratin 8/18 protects breast cancer cell lines from TRAIL-induced apoptosis. Oncotarget 2018; 9:23264-23273. [PMID: 29796187 PMCID: PMC5955420 DOI: 10.18632/oncotarget.25297] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/06/2018] [Indexed: 12/26/2022] Open
Abstract
TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis by engaging its death receptors (DRs) 4 and/or 5 on targeted cells. Clinical attempts to stimulate this apoptotic pathway for cancer therapy, including the use of recombinant human TRAIL (rhTRAIL) or receptor agonistic antibodies, have been underway for over a decade. Unfortunately, these agents have only shown limited therapeutic effects due largely to tumor resistance arising from mechanisms yet to be defined. Here we show that intermediate filament proteins, keratin 8 and keratin 18 (K8/K18), negatively regulate TRAIL induced apoptosis. K8/K18 protein levels are consistently higher in TRAIL-resistant cells compared to TRAIL-sensitive cells in a panel of breast cancer cell lines. Blockade of K8 increased expression of DR5 on the surface of targeted cells and sensitized the cells to TRAIL-induced apoptosis. Conversely, ectopic expression of K8/K18 downregulated DR5 protein expression. K8/K18 appears to negatively regulate apoptosis signaling via DR5 in breast cancer cells. Our findings warrant additional studies to determine if K8/K18 could be a predictor of tumor resistance to DR5-targeted therapies.
Collapse
|
4
|
Roux A, Loranger A, Lavoie JN, Marceau N. Keratin 8/18 regulation of insulin receptor signaling and trafficking in hepatocytes through a concerted phosphoinositide-dependent Akt and Rab5 modulation. FASEB J 2017; 31:3555-3573. [PMID: 28442548 DOI: 10.1096/fj.201700036r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/11/2017] [Indexed: 01/30/2023]
Abstract
Keratins (Ks) are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a differentiation-regulated manner. Hepatocyte IFs are made only of K8/K18 pairs, which means that a K8 loss in K8-null mice leads to degradation of K18. Functionally, there is accumulating evidence that IFs contribute to signaling platforms. Here, we investigate the role of K8/K18 IFs in the regulation of insulin receptor (IR) signaling and trafficking in hepatocytes. We find that the IR substrate 1 (IRS1)/PI3K/Akt signaling cascade-downstream of IR-displays prolonged activation in K8-null compared with wild-type hepatocytes. Assessment of the Akt/mammalian target of rapamycin complex 1-mediated feedback loop to IRS1/PI3K, in the absence or presence of drug inhibitors, further supports a preferential K8/K18 IF intervention at the surface membrane. In K8-null hepatocytes, IR trafficking vesicles that are labeled by Rab5/EEA1/phosphatidylinositol 3-phosphate accumulate at a juxtanuclear region via a microtubule-dependent process. Moreover, interference with phosphatidylinositol 4,5-biphosphate signaling aggravates IR/Rab5 accumulation. Overall, results uncover K8/K18 IF regulation of IR signaling via a concerted modulation of phosphatidylinositol 4,5-biphosphate-dependent IRS1/PI3K/Akt signaling and Rab5/phosphatidylinositol 3-phosphate/microtubule trafficking in hepatocytes.-Roux, A., Loranger, A., Lavoie, J. N., Marceau, N. Keratin 8/18 regulation of insulin receptor signaling and trafficking in hepatocytes through a concerted phosphoinositide-dependent Akt and Rab5 modulation.
Collapse
Affiliation(s)
- Alexandra Roux
- Centre de Recherche Sur le Cancer de l'Université Laval, Québec City, Quebec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec City, Quebec, Canada
| | - Anne Loranger
- Centre de Recherche Sur le Cancer de l'Université Laval, Québec City, Quebec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec City, Quebec, Canada
| | - Josée N Lavoie
- Centre de Recherche Sur le Cancer de l'Université Laval, Québec City, Quebec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec City, Quebec, Canada
| | - Normand Marceau
- Centre de Recherche Sur le Cancer de l'Université Laval, Québec City, Quebec, Canada; .,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec City, Quebec, Canada
| |
Collapse
|
5
|
Gilbert S, Loranger A, Omary MB, Marceau N. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis. J Cell Sci 2016; 129:3262-73. [PMID: 27422101 DOI: 10.1242/jcs.171124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/13/2016] [Indexed: 11/20/2022] Open
Abstract
Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases.
Collapse
Affiliation(s)
- Stéphane Gilbert
- Centre de recherche sur le cancer de l'Université Laval and Centre de recherche du CHU de Québec (HDQ), Québec, Canada G1R 2J6
| | - Anne Loranger
- Centre de recherche sur le cancer de l'Université Laval and Centre de recherche du CHU de Québec (HDQ), Québec, Canada G1R 2J6
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Normand Marceau
- Centre de recherche sur le cancer de l'Université Laval and Centre de recherche du CHU de Québec (HDQ), Québec, Canada G1R 2J6
| |
Collapse
|
6
|
Salas PJ, Forteza R, Mashukova A. Multiple roles for keratin intermediate filaments in the regulation of epithelial barrier function and apico-basal polarity. Tissue Barriers 2016; 4:e1178368. [PMID: 27583190 PMCID: PMC4993576 DOI: 10.1080/21688370.2016.1178368] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
As multicellular organisms evolved a family of cytoskeletal proteins, the keratins (types I and II) expressed in epithelial cells diversified in more than 20 genes in vertebrates. There is no question that keratin filaments confer mechanical stiffness to cells. However, such a number of genes can hardly be explained by evolutionary advantages in mechanical features. The use of transgenic mouse models has revealed unexpected functional relationships between keratin intermediate filaments and intracellular signaling. Accordingly, loss of keratins or mutations in keratins that cause or predispose to human diseases, result in increased sensitivity to apoptosis, regulation of innate immunity, permeabilization of tight junctions, and mistargeting of apical proteins in different epithelia. Precise mechanistic explanations for these phenomena are still lacking. However, immobilization of membrane or cytoplasmic proteins, including chaperones, on intermediate filaments (“scaffolding”) appear as common molecular mechanisms and may explain the need for so many different keratin genes in vertebrates.
Collapse
Affiliation(s)
- Pedro J Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Radia Forteza
- Department of Cell Biology, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Anastasia Mashukova
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Physiology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
7
|
Roux A, Gilbert S, Loranger A, Marceau N. Impact of keratin intermediate filaments on insulin-mediated glucose metabolism regulation in the liver and disease association. FASEB J 2015; 30:491-502. [PMID: 26467793 DOI: 10.1096/fj.15-277905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
In all cells, a tight regulation exists between glucose uptake and utilization to prevent diseases related to its perturbed metabolism. In insulin-targeted cells, such as hepatocytes, proper glucose utilization requires an elaborate interplay between the insulin receptor, the glucose transporter, and mitochondria that involves the participation of actin microfilaments and microtubules. In addition, there is increasing evidence of an involvement of the third cytoskeletal network provided by intermediate filaments (IFs). Keratins belong to the multigene family of IF proteins, coordinately expressed as distinct pairs within the context of epithelial cell differentiation. Hepatocyte IFs are made up of the [keratin (K)8/K18] pair only, whereas pancreatic β-cell IFs additionally include small amounts of K7. There are accumulating examples of K8/K18 involvement in the glucose-insulin cross-talk, including the modulation of plasma glucose levels, insulin release from pancreatic β-cells, and insulin-mediated glucose uptake and glycogen production in hepatocytes after a K8/K18 loss. This review integrates the mechanistic features that support such an impact of K8/K18 IFs on insulin-dependent glucose metabolism regulation in liver and its implication in glucose- or insulin-associated diseases.
Collapse
Affiliation(s)
- Alexandra Roux
- Centre de Recherche sur le Cancer, Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
| | - Stéphane Gilbert
- Centre de Recherche sur le Cancer, Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
| | - Anne Loranger
- Centre de Recherche sur le Cancer, Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
| | - Normand Marceau
- Centre de Recherche sur le Cancer, Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
| |
Collapse
|
8
|
Xu D, Song L, Wang H, Xu X, Wang T, Lu L. Proteomic analysis of cellular protein expression profiles in response to grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 44:515-524. [PMID: 25783000 DOI: 10.1016/j.fsi.2015.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. To better understand the molecular responses to GCRV infection, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem mass spectroscopy were performed to investigate altered proteins in C. idella kidney (CIK) cells. Differentially expressed proteins in mock infected CIK cells and GCRV-infected CIK cells were compared. Twenty-three differentially expressed spots were identified (22 upregulated spots and 1 downregulated spot), which included cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism-associated proteins and ubiquitin proteasome pathway-associated proteins. Moreover, 10 of the corresponding genes of the differentially expressed proteins were quantified by real-time reverse transcription polymerase chain reaction to examine their transcriptional profiles. The T cell internal antigen 1 (TIA1) and Ras-GTPase-activating SH3-domain-binding protein1 (G3BP1) of the cellular stress granule pathway from grass carp C. idella (designated as CiTIA1 and CiG3BP1) were upregulated and downregulated during GCRV infection, respectively. The full-length cDNA of CiTIA1 was 2753 bp, with an open reading frame (ORF) of 1155bp, which encodes a putative 385-amino acid protein. The 2271 bp full-length cDNA of CiG3BP1 comprised an ORF of 1455 bp that encodes a putative 485-amino acid protein. Phylogenetic analysis revealed that the complete ORFs of CiTIA1 and CiG3BP1 were very similar to zebrafish and well-characterized mammalian homologs. The expressions of the cellular proteins CiTIA1 and CiG3BP1 in response to GCRV were validated by western blotting, which indicated that the GCRV should unlink TIA1 aggregation and stress granule formation. This study provides useful information on the proteomic and cellular stress granule pathway's responses to GCRV infection, which adds to our understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Lang Song
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hao Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiaoyan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
9
|
Hnia K, Ramspacher C, Vermot J, Laporte J. Desmin in muscle and associated diseases: beyond the structural function. Cell Tissue Res 2014; 360:591-608. [PMID: 25358400 DOI: 10.1007/s00441-014-2016-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Desmin is a muscle-specific type III intermediate filament essential for proper muscular structure and function. In human, mutations affecting desmin expression or promoting its aggregation lead to skeletal (desmin-related myopathies), or cardiac (desmin-related cardiomyopathy) phenotypes, or both. Patient muscles display intracellular accumulations of misfolded proteins and desmin-positive insoluble granulofilamentous aggregates, leading to a large spectrum of molecular alterations. Increasing evidence shows that desmin function is not limited to the structural and mechanical integrity of cells. This novel perception is strongly supported by the finding that diseases featuring desmin aggregates cannot be easily associated with mechanical defects, but rather involve desmin filaments in a broader spectrum of functions, such as in organelle positioning and integrity and in signaling. Here, we review desmin functions and related diseases affecting striated muscles. We detail emergent cellular functions of desmin based on reported phenotypes in patients and animal models. We discuss known desmin protein partners and propose an overview of the way that this molecular network could serve as a signal transduction platform necessary for proper muscle function.
Collapse
Affiliation(s)
- Karim Hnia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,
| | | | | | | |
Collapse
|
10
|
|
11
|
Bordeleau F, Alcoser TA, Reinhart-King CA. Physical biology in cancer. 5. The rocky road of metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. Am J Physiol Cell Physiol 2014; 306:C110-20. [PMID: 24196535 PMCID: PMC3919983 DOI: 10.1152/ajpcell.00283.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023]
Abstract
The tumor microenvironment is a milieu of heterogeneous architectural features that affect tumor growth and metastatic invasion. Pore size, density, stiffness, and fiber architecture change dramatically from location to location throughout the tumor matrix. While many studies have addressed the effects of two-dimensional extracellular matrix structure and composition on cell migration, less is known about how cancer cells navigate complex, heterogeneous three-dimensional (3D) microenvironments. Mechanical structures such as actin and keratin, part of the cytoskeletal framework, and lamins, part of the nucleoskeletal framework, play a key role in migration and are altered during cancer progression. Recent evidence suggests that these changes in cytoskeletal and nucleoskeletal structures may enable cancer cells to efficiently respond to features such as pore size and stiffness to invade and migrate. Here we discuss the role of cell mechanics and the cytoskeleton in the ability of cells to navigate and respond to 3D matrix features and heterogeneities.
Collapse
Affiliation(s)
- Francois Bordeleau
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | |
Collapse
|
12
|
Mathew J, Loranger A, Gilbert S, Faure R, Marceau N. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling. Exp Cell Res 2012; 319:474-86. [PMID: 23164509 DOI: 10.1016/j.yexcr.2012.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 12/25/2022]
Abstract
As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.
Collapse
Affiliation(s)
- Jasmin Mathew
- Centre de recherche en cancérologie de l'Université Laval and Centre de recherche du CHUQ (L'Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6
| | | | | | | | | |
Collapse
|
13
|
Gilbert S, Loranger A, Lavoie JN, Marceau N. Cytoskeleton keratin regulation of FasR signaling through modulation of actin/ezrin interplay at lipid rafts in hepatocytes. Apoptosis 2012; 17:880-94. [PMID: 22585043 DOI: 10.1007/s10495-012-0733-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FasR stimulation by Fas ligand leads to rapid formation of FasR microaggregates, which become signaling protein oligomerization transduction structures (SPOTS), through interactions with actin and ezrin, a structural step that triggers death-inducing signaling complex formation, in association with procaspase-8 activation. In some cells, designated as type I, caspase 8 directly activates effector caspases, whereas in others, known as type II, the caspase-mediated death signaling is amplified through mitochondria. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatocyte IFs are made solely of keratins 8/18 (K8/K18), the hallmark of all simple epithelia. We have shown recently that in comparison to type II wild-type (WT) mouse hepatocytes, the absence of K8/K18 IFs in K8-null hepatocytes leads to more efficient FasR-mediated apoptosis, in link with a type II/type I-like switch in FasR-death signaling. Here, we demonstrate that the apoptotic process occurring in type I-like K8-null hepatocytes is associated with accelerated SPOTS elaboration at surface membrane, along with manifestation of FasR cap formation and internalization. In addition, the lipid raft organization is altered in K8-null hepatocytes. While lipid raft inhibition impairs SPOTS formation in both WT and K8-null hepatocytes, the absence of K8/K18 IFs in the latter sensitizes SPOTS to actin de-polymerization, and perturbs ezrin compartmentalization. Overall, the results indicate that the K8/K18 IF loss in hepatocytes alters the initial FasR activation steps through perturbation of ezrin/actin interplay and lipid raft organization, which leads to a type II/type I switch in FasR-death signaling.
Collapse
Affiliation(s)
- Stéphane Gilbert
- Centre de Recherche en Cancérologie de l'Université Laval, and Centre de Recherche du Centre Hospitalier de Québec (CRCHUQ)/HDQ, 9 rue McMahon, Quebec, G1R 2J6, Canada
| | | | | | | |
Collapse
|
14
|
|
15
|
Pan TL, Wang PW, Huang CC, Yeh CT, Hu TH, Yu JS. Network analysis and proteomic identification of vimentin as a key regulator associated with invasion and metastasis in human hepatocellular carcinoma cells. J Proteomics 2012; 75:4676-92. [PMID: 22387118 DOI: 10.1016/j.jprot.2012.02.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/06/2023]
Abstract
Poor prognoses have long been associated with the high relapse and metastasis of human hepatocellular carcinoma (HCC). To achieve long-term survival, it is necessary to identify new HCC biomarkers and investigate their roles in cell mobility and invasiveness. Of note, overexpression of vimentin (Vim) was significantly correlated with tumor nuclear grade (p=0.01) and the invasive potential, indicating that Vim may be a promising candidate in regulating HCC metastasis. RNA interference-mediated silencing of Vim (siVim) suppressed the invasive and migratory propensity, and matrix metalloproteinase (MMP)-9 activity, and elicited morphological changes in poorly differentiated SK-Hep-1 cells. Moreover, we performed a comprehensive proteomic analysis to survey global protein changes mediated by siVim in SK-Hep-1 cells. Significant changes in cytoskeleton protein but not messenger RNA levels encoding these targeted proteins were observed. All of the data in the current study and a network analysis implied that abolition of Vim may disturb the expression and stability of various cytoskeletal proteins through promoting the ubiquitin system, resulting in impaired cell adhesion and motility. Collectively, an integrated approach represents a modality to explore novel relationships in a proteome complex and highlights the functional roles of Vim in HCC metastasis. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
16
|
Pan TL, Wang PW, Chen CC, Fang JY, Sintupisut N. Functional proteomics reveals hepatotoxicity and the molecular mechanisms of different forms of chromium delivered by skin administration. Proteomics 2012; 12:477-89. [DOI: 10.1002/pmic.201100055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 11/09/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022]
|
17
|
Wagner M, Hintner H, Bauer JW, Onder K. Gene expression analysis of an epidermolysis bullosa simplex Dowling-Meara cell line by subtractive hybridization: recapitulation of cellular differentiation, migration and wound healing. Exp Dermatol 2011; 21:111-7. [DOI: 10.1111/j.1600-0625.2011.01420.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Machado MV, Cortez-Pinto H. Cell death and nonalcoholic steatohepatitis: where is ballooning relevant? Expert Rev Gastroenterol Hepatol 2011; 5:213-22. [PMID: 21476916 DOI: 10.1586/egh.11.16] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease in the Western world. Progression to more aggressive forms of liver injury, such as nonalcoholic steatohepatitis (NASH) and cirrhosis, occurs in less than a third of affected subjects. Human data and both in vivo and in vitro models demonstrate that cell death, particularly apoptosis, is increased in NAFLD and NASH patients, suggesting that it is crucial in disease progression. Indeed, fatty acids - more specifically, saturated fatty acids - strongly induce hepatocyte apoptosis. In addition, hepatic steatosis renders hepatocytes more susceptible to apoptotic injury. Ballooned hepatocytes and Mallory-Denk bodies are important hallmarks of NASH and correlate with disease progression. There are complex correlations between ballooning, Mallory-Denk bodies and apoptosis through keratin metabolism and depletion, as well as through the endoplasmic reticulum stress response. Whether apoptosis may promote hepatocellular ballooning, or vice versa, will be discussed in this article.
Collapse
|
19
|
Fung KYC, Cursaro C, Lewanowitsch T, Brierley GV, McColl SR, Lockett T, Head R, Hoffmann P, Cosgrove L. A combined free-flow electrophoresis and DIGE approach to identify proteins regulated by butyrate in HT29 cells. Proteomics 2011; 11:964-971. [DOI: 10.1002/pmic.201000429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
Liu T, Wu LY, Berkman CE. Prostate-specific membrane antigen-targeted photodynamic therapy induces rapid cytoskeletal disruption. Cancer Lett 2010; 296:106-12. [PMID: 20452720 PMCID: PMC3201799 DOI: 10.1016/j.canlet.2010.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/26/2010] [Accepted: 04/07/2010] [Indexed: 01/31/2023]
Abstract
Prostate-specific membrane antigen (PSMA), an established enzyme-biomarker for prostate cancer, has attracted considerable attention as a target for imaging and therapeutic applications. We aimed to determine the effects of PSMA-targeted photodynamic therapy (PDT) on cytoskeletal networks in prostate cancer cells. PSMA-targeted PDT resulted in rapid disruption of microtubules (alpha-/beta-tubulin), microfilaments (actin), and intermediate filaments (cytokeratin 8/18) in the cytoplasm of LNCaP cells. The collapse of cytoplasmic microtubules and the later nuclear translocation of alpha-/beta-tubulin were the most dramatic alternation. It is likely that these early changes of cytoskeletal networks are partly involved in the initiation of cell death.
Collapse
Affiliation(s)
- Tiancheng Liu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Lisa Y. Wu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Clifford E. Berkman
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
- Cancer Targeted Technology, Woodinville, Washington 98072, USA
| |
Collapse
|
21
|
Go H, Hwang HJ, Nam TJ. A glycoprotein from Laminaria japonica induces apoptosis in HT-29 colon cancer cells. Toxicol In Vitro 2010; 24:1546-53. [PMID: 20615460 DOI: 10.1016/j.tiv.2010.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/11/2010] [Accepted: 06/30/2010] [Indexed: 11/24/2022]
Abstract
We isolated a novel glycoprotein from the brown alga Laminaria japonica that has antiproliferative effects on HT-29 colon cancer cells. We also identified the mechanism by which this glycoprotein, named LJGP, induces apoptosis. MTS assays showed that LJGP inhibited the proliferation of several cancer cell lines (AGS, HepG2, HT-29) in a dose-dependent manner. Especially in HT-29 cells, proliferation was significantly decreased. LJGP treatment on HT-29 displayed several apoptotic features, such as DNA fragmentation, sub-G1 arrest, caspase-3 activation, and PARP degradation. Consistent with sub-G1 arrest, LJGP decreased the expression of Cdk2, cyclin E, cyclin D1, PCNA, E2F-1, and phosphorylated pRb. Furthermore, the increase of p27 expression was observed. We also determined that LJGP-induced apoptosis leads to the formation of a death-induced signaling complex of Fas, FADD, and procaspase-8. LJGP induced the reduction of mitochondrial membrane potential with activation of the Bcl-2 family of proteins and caspase-9. These findings suggest that LJGP inhibits HT-29 cell proliferation by inducing apoptosis, which may be mediated via multiple pathways, including the Fas signaling pathway, the mitochondrial pathway, and cell cycle arrest. Therefore, LJGP can be a useful treatment option for colon cancer in humans.
Collapse
Affiliation(s)
- Hiroe Go
- Department of Food Science and Biotechnology, Pukyong National University, Busan, South Korea
| | | | | |
Collapse
|
22
|
Bordeleau F, Galarneau L, Gilbert S, Loranger A, Marceau N. Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Mol Biol Cell 2010; 21:1698-713. [PMID: 20357007 PMCID: PMC2869376 DOI: 10.1091/mbc.e09-05-0373] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte and hepatoma cell IFs are made solely of keratins 8/18 (K8/K18). Cell adhesion and migration involve integrin interactions with focal adhesion kinase (FAK) and protein kinase C (PKC). Here we report a new regulatory function for K8/K18 IFs in the PKC-mediated integrin/FAK-dependent adhesion and migration of simple epithelial cells. Keratins are intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatocyte and hepatoma cell IFs are made solely of keratins 8/18 (K8/K18), the hallmark of all simple epithelia. Cell attachment/spreading (adhesion) and migration involve the formation of focal adhesions at sites of integrin interactions with extracellular matrix, actin adaptors such as talin and vinculin, and signaling molecules such as focal adhesion kinase (FAK) and member(s) of the protein kinase C (PKC) family. Here, we identify the novel PKCδ as mediator of the K8/K18 modulation of hepatoma cell adhesion and migration. We also demonstrate a K8/K18-dependent relationship between PKCδ and FAK activation through an integrin/FAK-positive feedback loop, in correlation with a reduced FAK time residency at focal adhesions. Notably, a K8/K18 loss results to a time course modulation of the receptor of activated C-kinase-1, β1-integrin, plectin, PKC, and c-Src complex formation. Although the K8/K18 modulation of hepatocyte adhesion also occurs through a PKC mediation, these differentiated epithelial cells exhibit minimal migrating ability, in link with marked differences in protein partner content and distribution. Together, these results uncover a key regulatory function for K8/K18 IFs in the PKC-mediated integrin/FAK-dependent adhesion and migration of simple epithelial cells.
Collapse
Affiliation(s)
- François Bordeleau
- Centre de Recherche en Cancérologie and Département de Médecine de l'Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Quebec City, QC, Canada
| | | | | | | | | |
Collapse
|
23
|
Chen HL, Yuh CH, Wu KK. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis. PLoS One 2010; 5:e9318. [PMID: 20174467 PMCID: PMC2824827 DOI: 10.1371/journal.pone.0009318] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/28/2010] [Indexed: 12/13/2022] Open
Abstract
Background Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. Methodology/Principal Findings As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. Conclusion/Significance These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.
Collapse
Affiliation(s)
- Hua-Ling Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chiou-Hwa Yuh
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K. Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Therapeutic effects of all trans-retinoic acid combined with transarterial chemoembolization on Walker-256 hepatoma in rats. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2010; 30:113-8. [PMID: 20155467 DOI: 10.1007/s11596-010-0121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Indexed: 10/19/2022]
Abstract
In order to investigate the inhibitory effects of all trans-retinoic acid (ATRA) on differentiation and apoptosis of Walker-256 hepatocellular carcinoma cells and the therapeutic effects of ATRA combined with transarterial chemoembolization (TACE) on rat Walker-256 transplanted hepatocarcinoma, Walker-256 hepatocarcinoma cell lines were treated with ATRA at different concentrations. After culture for 48 h, the inhibitory rate of cell proliferation was determined by MTT assay; the changes of Fas and Bcl-2 mRNA expression were determined by RT-PCR, and the expression levels of Caspase3 and Caspase8 proteins were detected by Western blot. Twenty-seven Wistar rat models of hepatocarcinoma were set up successfully by implanting Walker-256 cell lines. The tumor volume at the 11th day after implantation (V(preoperation)) was measured by magnetic resonance imaging (MRI). The 27 rats were randomly and equally divided into three groups, and the therapy scheme was performed as follows: group A (ATRA 0.1 mg+mitomycin 0.05 mL+lipiodol 0.05 mL+gelfoam powder 0.025 mg); group B (mitomycin 0.05 mg+lipiodol 0.05 ml+gelfoam 0.025 mg; group C (0.9% NaCl 0.2 mL). After another 11 days, MRI was performed once again to measure the tumor volume (V(postoperation)). The expression of factor and Ki VIII -67 in the tumor tissues was detected by immunohistochemistry. The results showed that ATRA could suppress proliferation of Walker-256 cell lines. After treatment of Walker-256 cell lines with ATRA, the expression of Fas mRNA was significantly up-regulated and the Bcl-2 mRNA was significantly down-regulated by ATRA at the concentration of 10 mumol/L as compared with the control group (P<0.05). After treatment with 10 mumol/L ATRA for 48 h, the Caspase3 and Caspase8 were significantly activated as compared with the control group (P<0.05). Significant difference existed in growth rate among the three groups (P<0.01) and between either two groups (P<0.05). The expression rate of factor VIII and Ki-67 was gradually increased from group A, group B to group C. The study suggests that ATRA could inhibit the proliferation of Walker-256 cells and the effectiveness of the combined therapy (ATRA+TACE) for treating transplanted hepatoma of rats is superior to that of TACE alone.
Collapse
|
25
|
Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D, Wagner W. Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 2010; 95:867-74. [PMID: 20053868 DOI: 10.3324/haematol.2009.011692] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Research on mesenchymal stromal cells has created high expectations for a variety of therapeutic applications. Extensive propagation to yield enough mesenchymal stromal cells for therapy may result in replicative senescence and thus hamper long-term functionality in vivo. Highly variable proliferation rates of mesenchymal stromal cells in the course of long-term expansions under varying culture conditions may already indicate different propensity for cellular senescence. We hypothesized that senescence-associated regulated genes differ in mesenchymal stromal cells propagated under different culture conditions. DESIGN AND METHODS Human bone marrow-derived mesenchymal stromal cells were cultured either by serial passaging or by a two-step protocol in three different growth conditions. Culture media were supplemented with either fetal bovine serum in varying concentrations or pooled human platelet lysate. RESULTS All mesenchymal stromal cell preparations revealed significant gene expression changes upon long-term culture. Especially genes involved in cell differentiation, apoptosis and cell death were up-regulated, whereas genes involved in mitosis and proliferation were down-regulated. Furthermore, overlapping senescence-associated gene expression changes were found in all mesenchymal stromal cell preparations. CONCLUSIONS Long-term cell growth induced similar gene expression changes in mesenchymal stromal cells independently of isolation and expansion conditions. In advance of therapeutic application, this panel of genes might offer a feasible approach to assessing mesenchymal stromal cell quality with regard to the state of replicative senescence.
Collapse
|
26
|
Na N, Chandel NS, Litvan J, Ridge KM. Mitochondrial reactive oxygen species are required for hypoxia-induced degradation of keratin intermediate filaments. FASEB J 2009; 24:799-809. [PMID: 19897662 DOI: 10.1096/fj.08-128967] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hypoxia can cause stress and structural changes to the epithelial cytoskeleton. The intermediate filament (IF) network is known to reorganize in response to stress. We examined whether rats exposed to hypoxia had altered keratin IF expression in their alveolar epithelial type II (ATII) cells. There was a significant decrease in keratin protein levels in hypoxic ATII cells compared with those in ATII cells isolated from normoxic rats. To define the mechanisms regulating this process we studied changes to the keratin IF network in A549 cells (an alveolar epithelial cell line) exposed to 1.5% oxygen. We observed a time-dependent disassembly-degradation of keratin 8 and 18 proteins, which was associated with an increase in reactive oxygen species (ROS). Hypoxia-treated A549 cells deficient in mitochondrial DNA or A549 cells treated with a small interfering RNA against the Rieske iron-sulfur protein of mitochondrial complex III did not have increased levels of ROS nor was the keratin IF network disassembled and degraded. The superoxide dismutase (SOD)/catalase mimetic (EUK-134) prevented the hypoxia-mediated keratin IF degradation as did the overexpression of SOD1 but not of SOD2. Accordingly, we provide evidence that hypoxia promotes the disassembly and degradation of the keratin IF network via mitochondrial complex III-generated reactive oxygen species.-Na, N., Chandel, N. S., Litvan, J., Ridge, K. M. Mitochondrial reactive oxygen species are required for hypoxia-induced degradation of keratin intermediate filaments.
Collapse
Affiliation(s)
- Ni Na
- Northwestern University Medical School, Pulmonary and Critical Care Medicine, 240 East Huron, McGaw 2328, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
27
|
Liovic M, D'Alessandro M, Tomic-Canic M, Bolshakov VN, Coats SE, Lane EB. Severe keratin 5 and 14 mutations induce down-regulation of junction proteins in keratinocytes. Exp Cell Res 2009; 315:2995-3003. [DOI: 10.1016/j.yexcr.2009.07.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 11/29/2022]
|
28
|
Merjava S, Neuwirth A, Mandys V, Jirsova K. Cytokeratins 8 and 18 in adult human corneal endothelium. Exp Eye Res 2009; 89:426-31. [PMID: 19409893 DOI: 10.1016/j.exer.2009.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 01/01/2023]
Abstract
The aim of this study was to determine if cytokeratins (CKs) 8 and 18--typical epithelial cell markers--are constitutively expressed in adult human corneal endothelium. Cryosections, paraffin-embedded sections and corneal endothelial imprints obtained from eleven adult human corneal discs not suitable for transplantation were used. Different fixative solutions were applied before indirect immunofluorescent or enzymatic staining was performed with antibodies against CK8 (Chemicon), CK18 (Dako and Sigma) and CK8/18 (Novocastra). Semi-quantitative RT-PCR and Western blotting (mRNA or proteins were isolated from Millicell membranes) were used to determine cytokeratin mRNA and protein levels. Approximately 50% of the corneal endothelial cells were positive for CK8 (Chemicon), CK18 (Sigma) and the CK pair 8/18 (Novocastra) in the endothelium when acetone was used for fixation. Four and 52% CK18-positive cells were observed using immunofluorescent and enzymatic immunohistochemistry, respectively, when the CK18 antibody from Dako was used. No signal was detected when 4% formalin or 10% paraformaldehyde was used as a fixative, irrespective of the antibody used. CK8 and CK18 proteins and mRNAs were detected in the endothelium of all tested corneas by Western blotting or semi-quantitative RT-PCR, respectively. We detected both CK8 and CK18 in the endothelium of all specimens at both the protein and mRNA levels. These results clearly demonstrate that cells of the corneal endothelium express CKs 8 and 18 and share some features with simple epithelia.
Collapse
Affiliation(s)
- Stanislava Merjava
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, General Teaching Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|