1
|
Dai L, Liu M, Ke W, Chen L, Fang X, Zhang Z. Lysosomal dysfunction in α-synuclein pathology: molecular mechanisms and therapeutic strategies. Cell Mol Life Sci 2024; 81:382. [PMID: 39223418 PMCID: PMC11368888 DOI: 10.1007/s00018-024-05419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In orchestrating cell signaling, facilitating plasma membrane repair, supervising protein secretion, managing waste elimination, and regulating energy consumption, lysosomes are indispensable guardians that play a crucial role in preserving intracellular homeostasis. Neurons are terminally differentiated post-mitotic cells. Neuronal function and waste elimination depend on normal lysosomal function. Converging data suggest that lysosomal dysfunction is a critical event in the etiology of Parkinson's disease (PD). Mutations in Glucosylceramidase Beta 1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) confer an increased risk for the development of parkinsonism. Furthermore, lysosomal dysfunction has been observed in the affected neurons of sporadic PD (sPD) patients. Given that lysosomal hydrolases actively contribute to the breakdown of impaired organelles and misfolded proteins, any compromise in lysosomal integrity could incite abnormal accumulation of proteins, including α-synuclein, the major component of Lewy bodies in PD. Clinical observations have shown that lysosomal protein levels in cerebrospinal fluid may serve as potential biomarkers for PD diagnosis and as signs of lysosomal dysfunction. In this review, we summarize the current evidence regarding lysosomal dysfunction in PD and discuss the intimate relationship between lysosomal dysfunction and pathological α-synuclein. In addition, we discuss therapeutic strategies that target lysosomes to treat PD.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Miao Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
2
|
Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Elewa YHA, AL‐Farga A, Aqlan F, Zahran MH, Batiha GE. Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night. CNS Neurosci Ther 2024; 30:e14521. [PMID: 38491789 PMCID: PMC10943276 DOI: 10.1111/cns.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ammar AL‐Farga
- Biochemistry Department, College of SciencesUniversity of JeddahJeddahSaudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbb GovernorateYemen
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurEgypt
| |
Collapse
|
3
|
Zhang P, Lu R. The Molecular and Biological Function of MEF2D in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:379-403. [PMID: 39017853 DOI: 10.1007/978-3-031-62731-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
4
|
Kovach AE, Wood BL. Updates on lymphoblastic leukemia/lymphoma classification and minimal/measurable residual disease analysis. Semin Diagn Pathol 2023; 40:457-471. [PMID: 37953192 DOI: 10.1053/j.semdp.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Lymphoblastic leukemia/lymphoma (ALL/LBL), especially certain subtypes, continues to confer morbidity and mortality despite significant therapeutic advances. The pathologic classification of ALL/LBL, especially that of B-ALL, has recently substantially expanded with the identification of several distinct and prognostically important genetic drivers. These discoveries are reflected in both current classification systems, the World Health Organization (WHO) 5th edition and the new International Consensus Classification (ICC). In this article, novel subtypes of B-ALL are reviewed, including DUX4, MEF2D and ZNF384-rearranged B-ALL; the rare pediatric entity B-ALL with TLF3::HLF, now added to the classifications, is discussed; updates to the category of B-ALL with BCR::ABL1-like features (Ph-like B-ALL) are summarized; and emerging genetic subtypes of T-ALL are presented. The second half of the article details current approaches to minimal/measurable residual disease (MRD) detection in B-ALL and T-ALL and presents anticipated challenges to current approaches in the burgeoning era of antigen-directed immunotherapy.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Zaafar D, Batiha GES. Orexin pathway in Parkinson's disease: a review. Mol Biol Rep 2023; 50:6107-6120. [PMID: 37155018 DOI: 10.1007/s11033-023-08459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease (NDD) caused by dopaminergic neuron degeneration in the substantia nigra (SN). Orexin is a neuropeptide that plays a role in the pathogenesis of PD. Orexin has neuroprotective properties in dopaminergic neurons. In PD neuropathology, there is also degeneration of orexinergic neurons in the hypothalamus, in addition to dopaminergic neurons. However, the loss of orexinergic neurons in PD began after the degeneration of dopaminergic neurons. Reduced activity of orexinergic neurons has been linked to developing and progressing motor and non-motor symptoms in PD. In addition, the dysregulation of the orexin pathway is linked to the development of sleep disorders. The hypothalamic orexin pathway regulates various aspects of PD neuropathology at the cellular, subcellular, and molecular levels. Finally, non-motor symptoms, particularly insomnia and disturbed sleep, promote neuroinflammation and the accumulation of neurotoxic proteins as a result of defects in autophagy, endoplasmic reticulum (ER) stress, and the glymphatic system. As a result, this review aimed to highlight the potential role of orexin in PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al Beheira, Egypt.
| |
Collapse
|
6
|
Li B, Bai Y, Yion C, Wang H, Su X, Feng G, Guo M, Peng W, Shen B, Zheng B. Single-Atom Nanocatalytic Therapy for Suppression of Neuroinflammation by Inducing Autophagy of Abnormal Mitochondria. ACS NANO 2023; 17:7511-7529. [PMID: 37018124 DOI: 10.1021/acsnano.2c12614] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Catalysts have achieved efficacy in scavenging reactive oxygen species (ROS) to eliminate neuroinflammation, but it ignores the essential fact of blocking the source of ROS regeneration. Here, we report the single-atom catalysts (SACs) Pt/CeO2, which can effectively catalyze the breakdown of existing ROS and induce mitochondrial membrane potential (Δψm) depolarization by interfering with the α-glycerophosphate shuttle pathway and malate-aspartate shuttle pathway, indirectly triggering the self-clearance of dysfunctional mitochondria and thus eradicating the source of ROS generation. In a therapeutic model of Parkinson's disease (PD), Pt/CeO2 wrapped by neutrophil-like (HL-60) cell membranes and modified by rabies virus glycoprotein (RVG29) effectively crosses the blood-brain barrier (BBB), enters dopaminergic neurons entering the neuroinflammatory region breaking down existing ROS and inducing mitophagy by electrostatic adsorption targeting mitochondria to prevent ROS regeneration after catalyst discharge. This strategy of efficiently eliminating ROS at the lesion and fundamentally blocking the source of ROS production can address both symptoms and root causes and provides a mechanism of explanation and action target for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yang Bai
- Department of Stomatology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Chan Yion
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Hua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Su
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Guoqing Feng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Mingming Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Wenchang Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
| | - Boxi Shen
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair of Tianjin Economic-Technological Development Area, Healthina Biomedicine (Tianjin) Co. Ltd., No. 286 AnShan West Road, NanKai District, Tianjin 300190, China
| |
Collapse
|
7
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
8
|
Mak S, Li W, Fu H, Luo J, Cui W, Hu S, Pang Y, Carlier PR, Tsim KW, Pi R, Han Y. Promising tacrine/huperzine A-based dimeric acetylcholinesterase inhibitors for neurodegenerative disorders: From relieving symptoms to modifying diseases through multitarget. J Neurochem 2021; 158:1381-1393. [PMID: 33930191 PMCID: PMC8458250 DOI: 10.1111/jnc.15379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
Neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, are devastating diseases in the elderly world, which are closely associated with progressive neuronal loss induced by a variety of genetic and/or environmental factors. Unfortunately, currently available treatments for neurodegenerative disorders can only relieve the symptoms but not modify the pathological processes. Over the past decades, our group by collaborating with Profs. Yuan-Ping Pang and Paul R. Carlier has developed three series of homo/hetero dimeric acetylcholinesterase inhibitors derived from tacrine and/or huperzine A. The representative dimers bis(3)-Cognitin (B3C), bis(12)-hupyridone, and tacrine(10)-hupyridone might possess disease-modifying effects through the modulation of N-methyl-d-aspartic acid receptors, the activation of myocyte enhancer factor 2D gene transcription, and the promotion of neurotrophic factor secretion. In this review, we summarize that the representative dimers, such as B3C, provide neuroprotection against a variety of neurotoxins via multiple targets, including the inhibitions of N-methyl-d-aspartic acid receptor with pathological-activated potential, neuronal nitric oxide synthase, and β-amyloid cascades synergistically. More importantly, B3C might offer disease-modifying potentials by activating myocyte enhancer factor 2D transcription, inducing neuritogenesis, and promoting the expressions of neurotrophic factors in vitro and in vivo. Taken together, the novel dimers might offer synergistic disease-modifying effects, proving that dimerization might serve as one of the strategies to develop new generation of therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shinghung Mak
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenming Li
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongjun Fu
- Department of Neuroscience, Chronic Brain Injury, The Ohio State University, Columbus, OH, USA
| | - Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China
| | - Shengquan Hu
- Shenzhen Institute of Geriatrics, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuanping Pang
- Mayo Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, MN, USA
| | | | - Karl Wahkeung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Pi
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
9
|
Melnik BC. Synergistic Effects of Milk-Derived Exosomes and Galactose on α-Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:1059. [PMID: 33494388 PMCID: PMC7865729 DOI: 10.3390/ijms22031059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
10
|
Shi L, Tian Z, Fu Q, Li H, Zhang L, Tian L, Mi W. miR-217-regulated MEF2D-HDAC5/ND6 signaling pathway participates in the oxidative stress and inflammatory response after cerebral ischemia. Brain Res 2020; 1739:146835. [PMID: 32311345 DOI: 10.1016/j.brainres.2020.146835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022]
Abstract
Multiple factors are known to contribute to the pathogenesis of cerebral ischemic injury, including microRNAs (miRNAs). However, the precise mechanism of miRNAs involvement in cerebral ischemia remains largely unclear. In the current study, we found that miR-217 was significantly upregulated in ischemic stroke models, and the upregulation of miR-217 was associated with the development of post-stroke cognitive impairment. Further investigation revealed that myocyte enhancer factor 2D (MEF2D) was the direct target of miR-217. In vitro experiments showed that miR-217 promoted aggregation of histone deacetylase 5 (HDAC5) in cell nuclei by targeting MEF2D, which led to decreased expression of interleukin (IL)-10. In addition, miR-217 inhibited the expression of NADH dehydrogenase subunit 6 (ND6) in a MEF2D-dependent manner. Overexpression of MEF2D can reverse oxygen-glucose deprivation (OGD)-induced downregulation of ND6 and OGD-mediated neuronal apoptosis, and also reduce the elevated generation of reactive oxygen species (ROS) induced by OGD. Additionally, we found that in vivo administration of MEF2D overexpression plasmids increased IL-10 production and ameliorated cognitive impairment after cerebral ischemia. Taken together, these findings reveal a novel pathogenetic mechganism of cerebral ischemia-related brain injury involving the miR-217/MEF2D/HDAC5 axis and the miR-217/MEF2D/ND6 axis.
Collapse
Affiliation(s)
- Likai Shi
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Zhenpu Tian
- Department of Anesthesiology, Hainan Hospital of the Chinese People's Liberation Army (PLA) General Hospital, Jianglin Road, Haitang District, Sanya, Hainan 572013, China
| | - Qiang Fu
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Hao Li
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Lifeng Zhang
- Department of Anesthesiology, Hainan Hospital of the Chinese People's Liberation Army (PLA) General Hospital, Jianglin Road, Haitang District, Sanya, Hainan 572013, China
| | - Li Tian
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, No. 1878 Sichuanbei Road, Shanghai 200081,China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
11
|
Parousis A, Carter HN, Tran C, Erlich AT, Mesbah Moosavi ZS, Pauly M, Hood DA. Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells. Autophagy 2018; 14:1886-1897. [PMID: 30078345 PMCID: PMC6152519 DOI: 10.1080/15548627.2018.1491488] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy/autophagy is a survival mechanism that facilitates protein turnover in post-mitotic cells in a lysosomal-dependent process. Mitophagy is a selective form of autophagy, which arbitrates the selective recognition and targeting of aberrant mitochondria for degradation. Mitochondrial content in cells is the net balance of mitochondrial catabolism via mitophagy, and organelle biogenesis. Although the latter process has been well described, mitophagy in skeletal muscle is less understood, and it is currently unknown how these two opposing mechanisms converge during contractile activity. Here we show that chronic contractile activity (CCA) in muscle cells induced mitochondrial biogenesis and coordinately enhanced the expression of TFEB (transcription factor EB) and PPARGC1A/PGC-1α, master regulators of lysosome and mitochondrial biogenesis, respectively. CCA also enhanced the expression of PINK1 and the lysosomal protease CTSD (cathepsin D). Autophagy blockade with bafilomycin A1 (BafA) reduced mitochondrial state 3 and 4 respiration, increased ROS production and enhanced the accumulation of MAP1LC3B-II/LC3-II and SQSTM1/p62. CCA ameliorated this mitochondrial dysfunction during defective autophagy, increased PPARGC1A, normalized LC3-II levels and reversed mitochondrially-localized SQSTM1 toward control levels. NAC emulated the LC3-II reductions induced by contractile activity, signifying that a decrease in oxidative stress could represent a mechanism of autophagy normalization brought about by CCA. CCA enhances mitochondrial biogenesis and lysosomal activity, and normalizes autophagy flux during autophagy suppression, partly via ROS-dependent mechanisms. Thus, contractile activity represents a potential therapeutic intervention for diseases in which autophagy is inhibited, such as vacuolar myopathies in skeletal muscle, by establishing a healthy equilibrium of anabolic and catabolic pathways. ABBREVIATIONS AMPK: AMP-activated protein kinase; BafA: bafilomycin A1; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CCA: chronic contractile activity; COX4I1: cytochrome c oxidase subunit 4I1; DMEM: Dulbecco's modified Eagle's medium; GFP: green fluorescent protein; LSD: lysosomal storage diseases; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PINK1: PTEN induced putative kinase 1; ROS: reactive oxygen species; SOD2: superoxide dismutase 2, mitochondrial; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Alexa Parousis
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Heather N. Carter
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Claudia Tran
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Avigail T. Erlich
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Zahra S. Mesbah Moosavi
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Marion Pauly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A. Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
12
|
Xu H, Li J, Wang Z, Feng M, Shen Y, Cao S, Li T, Peng Y, Fan L, Chen J, Gu C, Yan F, Wang L, Chen G. Methylene blue attenuates neuroinflammation after subarachnoid hemorrhage in rats through the Akt/GSK-3β/MEF2D signaling pathway. Brain Behav Immun 2017; 65:125-139. [PMID: 28457811 DOI: 10.1016/j.bbi.2017.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a serious medical problem with few effective pharmacotherapies available, and neuroinflammation has been identified as an important pathological process in early brain injury (EBI) after SAH. Methylene blue (MB) is an older drug that has been recently proven to exert extraordinary neuroprotective effects in several brain insults. However, no study has reported the beneficial effects of MB in SAH. In the current investigation, we studied the neuroprotective effects of MB in EBI after SAH and focused on its anti-inflammatory role. A total of 303 rats were subjected to an endovascular perforation process to produce an SAH model. We found that MB could significantly ameliorate brain edema secondary to BBB disruption and alleviate neurological dysfunction after SAH. MB administration also promoted the phosphorylation of Akt and GSK-3β, leading to an increased concentration of MEF2D in the nucleus. The cytokine IL-10 was up-regulated, and IL-1β, IL-6 and TNF-α were down-regulated after MB administration. MB administration could also alleviate neutrophil infiltration and microglia activation after SAH. MK2206, a selective inhibitor of Akt, abolished the neuroprotective effects of MB, inhibited the phosphorylation of Akt and prevented the nuclear localization of MEF2D. MK2206 also reduced the expression of IL-10 and increased the expression of pro-inflammatory cytokines. In conclusion, these data suggested that MB could ameliorate neuroinflammatory responses after SAH, and its anti-inflammatory effects might be exerted via activation of the Akt/GSK-3β/MEF2D pathway.
Collapse
Affiliation(s)
- Hangzhe Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Zhijiang Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Majing Feng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China; Department of Neurosurgery, Changxing People's Hospital, Taihuzhong Road 66th, Changxin, Huzhou 313100, China
| | - Yongfeng Shen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China; Department of Neurosurgery, Hangzhou First People's Hospital, Huansha Road 261st, Hangzhou 310006, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Linfeng Fan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Jingyin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Chi Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou 310016, China.
| |
Collapse
|
13
|
Wang R, Yang S, Nie T, Zhu G, Feng D, Yang Q. Transcription Factors: Potential Cell Death Markers in Parkinson's Disease. Neurosci Bull 2017; 33:552-560. [PMID: 28791585 DOI: 10.1007/s12264-017-0168-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/07/2017] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a long preclinical phase. The continuous loss of dopaminergic (DA) neurons is one of the pathogenic hallmarks of PD. Diagnosis largely depends on clinical observation, but motor dysfunctions do not emerge until 70%-80% of the nigrostriatal nerve terminals have been destroyed. Therefore, a biomarker that indicates the degeneration of DA neurons is urgently needed. Transcription factors are sequence-specific DNA-binding proteins that regulate RNA synthesis from a DNA template. The precise control of gene expression plays a critical role in the development, maintenance, and survival of cells, including DA neurons. Deficiency of certain transcription factors has been associated with DA neuron loss and PD. In this review, we focus on some transcription factors and discuss their structure, function, mechanisms of neuroprotection, and their potential for use as biomarkers indicating the degeneration of DA neurons.
Collapse
Affiliation(s)
- Ronglin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Shaosong Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Tiejian Nie
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
14
|
Pon JR, Marra MA. MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget 2016; 7:2297-312. [PMID: 26506234 PMCID: PMC4823036 DOI: 10.18632/oncotarget.6223] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
The MEF2 transcription factors have roles in muscle, cardiac, skeletal, vascular, neural, blood and immune system cell development through their effects on cell differentiation, proliferation, apoptosis, migration, shape and metabolism. Altered MEF2 activity plays a role in human diseases and has recently been implicated in the development of several cancer types. In particular, MEF2B, the most divergent and least studied protein of the MEF2 family, has a role unique from its paralogs in non-Hodgkin lymphomas. The use of genome-scale technologies has enabled comprehensive MEF2 target gene sets to be identified, contributing to our understanding of MEF2 proteins as nodes in complex regulatory networks. This review surveys the molecular interactions of MEF2 proteins and their effects on cellular and organismal phenotypes. We include a discussion of the emerging roles of MEF2 proteins as oncogenes and tumor suppressors of cancer. Throughout this article we highlight similarities and differences between the MEF2 family proteins, including a focus on functions of MEF2B.
Collapse
Affiliation(s)
- Julia R Pon
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Gu Z, Churchman M, Roberts K, Li Y, Liu Y, Harvey RC, McCastlain K, Reshmi SC, Payne-Turner D, Iacobucci I, Shao Y, Chen IM, Valentine M, Pei D, Mungall KL, Mungall AJ, Ma Y, Moore R, Marra M, Stonerock E, Gastier-Foster JM, Devidas M, Dai Y, Wood B, Borowitz M, Larsen EE, Maloney K, Mattano LA, Angiolillo A, Salzer WL, Burke MJ, Gianni F, Spinelli O, Radich JP, Minden MD, Moorman AV, Patel B, Fielding AK, Rowe JM, Luger SM, Bhatia R, Aldoss I, Forman SJ, Kohlschmidt J, Mrózek K, Marcucci G, Bloomfield CD, Stock W, Kornblau S, Kantarjian HM, Konopleva M, Paietta E, Willman CL, Loh ML, Hunger SP, Mullighan CG. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun 2016; 7:13331. [PMID: 27824051 PMCID: PMC5105166 DOI: 10.1038/ncomms13331] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022] Open
Abstract
Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered.
Collapse
Affiliation(s)
- Zhaohui Gu
- Department of Pathology and Hematological Malignancies Program, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 342, Memphis, Tennessee 38105, USA
| | - Michelle Churchman
- Department of Pathology and Hematological Malignancies Program, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 342, Memphis, Tennessee 38105, USA
| | - Kathryn Roberts
- Department of Pathology and Hematological Malignancies Program, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 342, Memphis, Tennessee 38105, USA
| | - Yongjin Li
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yu Liu
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Richard C Harvey
- University of New Mexico Cancer Center, Albuquerque, New Mexico 87106, USA
| | - Kelly McCastlain
- Department of Pathology and Hematological Malignancies Program, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 342, Memphis, Tennessee 38105, USA
| | - Shalini C Reshmi
- The Research Institute, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Debbie Payne-Turner
- Department of Pathology and Hematological Malignancies Program, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 342, Memphis, Tennessee 38105, USA
| | - Ilaria Iacobucci
- Department of Pathology and Hematological Malignancies Program, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 342, Memphis, Tennessee 38105, USA
| | - Ying Shao
- Department of Pathology and Hematological Malignancies Program, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 342, Memphis, Tennessee 38105, USA
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - I-Ming Chen
- University of New Mexico Cancer Center, Albuquerque, New Mexico 87106, USA
| | - Marcus Valentine
- Cytogenetic Shared Resource, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Deqing Pei
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Marco Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Eileen Stonerock
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Julie M Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Meenakshi Devidas
- Department of Biostatistics, Colleges of Medicine and Public Health &Health Professions, University of Florida, Gainesville, Florida 32611, USA
| | - Yunfeng Dai
- Department of Biostatistics, Colleges of Medicine and Public Health &Health Professions, University of Florida, Gainesville, Florida 32611, USA
| | - Brent Wood
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Michael Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA
| | - Eric E Larsen
- Maine Children's Cancer Program, Scarborough, Maine 04074, USA
| | - Kelly Maloney
- Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80045, USA
| | | | - Anne Angiolillo
- Children's National Medical Center, Washington, DC 20010, USA
| | - Wanda L Salzer
- US Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, USA
| | - Michael J Burke
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Francesca Gianni
- Department of Hematology and Bone Marrow Transplantation, Papa Giovanni XXIII Hospital Piazza OMS 1 24127, Bergamo, Italy
| | - Orietta Spinelli
- Department of Hematology and Bone Marrow Transplantation, Papa Giovanni XXIII Hospital Piazza OMS 1 24127, Bergamo, Italy
| | - Jerald P Radich
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Anthony V Moorman
- Leukemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Bella Patel
- Department of Haemato-Oncology, Barts Cancer Institute, London EC1M 6BQ, UK
| | - Adele K Fielding
- Department of Hematology, UCL Cancer Institute, London WC1E 6BT, UK
| | - Jacob M Rowe
- Hematology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Selina M Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Ibrahim Aldoss
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Stephen J Forman
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California 91010, USA
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
- Alliance for Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California 91010, USA
| | - Clara D Bloomfield
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Wendy Stock
- University of Chicago Medical Center, Chicago, Illinois 60637, USA
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elisabeth Paietta
- Cancer Center, Montefiore Medical Center North Division, Bronx, New York 10467, USA
| | - Cheryl L Willman
- University of New Mexico Cancer Center, Albuquerque, New Mexico 87106, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, San Francisco, California 94158, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94115, USA
| | - Stephen P Hunger
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Charles G Mullighan
- Department of Pathology and Hematological Malignancies Program, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 342, Memphis, Tennessee 38105, USA
| |
Collapse
|
16
|
Huang L, Deng M, He Y, Lu S, Liu S, Fang Y. β-asarone increases MEF2D and TH levels and reduces α-synuclein level in 6-OHDA-induced rats via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway: Chaperone-mediated autophagy activation, macroautophagy inhibition and HSP70 up-expression. Behav Brain Res 2016; 313:370-379. [DOI: 10.1016/j.bbr.2016.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
|
17
|
Zhang Q, Xie H, Ji Z, He R, Xu M, He Y, Huang J, Pan S, Hu Y. Cdk5/p25 specific inhibitory peptide TFP5 rescues the loss of dopaminergic neurons in a sub-acute MPTP induced PD mouse model. Neurosci Lett 2016; 632:1-7. [PMID: 27542341 DOI: 10.1016/j.neulet.2016.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is pathologically characterized by progressively loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the formation of Lewy bodies. In 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) induced PD mice models, the calpain- cyclin-dependent kinase 5 (Cdk5)-myocyte enhancer factor 2 (MEF2) signaling has been proven in governing dopaminergic neuronal death. Under MPTP insult, p35 is cleaved by calpain into p25, which binds to Cdk5 and exhibits hyperactivity of Cdk5/p25. Cdk5/p25 inactivates MEF2, a survivor factor, which is critical for DA neuronal death. In this study, neuroprotective effect of the Cdk5/p25 specific peptide, TFP5, was evaluated in sub-acute MPTP induced PD mouse model by intraperitoneal (i.p.) injection of MPTP for five consecutive days. The results indicated that the levels of p35 and p25, and p25/p35 ratio increased in the sub-acute MPTP mice. TFP5 broadly reached cortex neuron, hippocampus and SNpc areas after i.p. injections. Pretreatment with 45mg/kg/day TFP5, as well as 10mgkg/day Cdk5 inhibitor roscovitine, for three days significantly rescued DA neuronal loss up to 9.8% or 9.7% respectively compared to the saline treated group. Treatment of TFP5 and roscovitine reduced the levels of inactive form of MEF2 and cleaved caspase 3, thus protected apoptosis of DA neurons against MPTP insult. Our results propose that TFP5 might be a potential therapeutic candidate for PD.
Collapse
Affiliation(s)
- Qishan Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, PR China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Rongni He
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Miaojing Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yong He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, PR China
| | - Jianou Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The 421 Hospital, Guangzhou, Guangdong, PR China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
18
|
Chaperone-Mediated Autophagy and Mitochondrial Homeostasis in Parkinson's Disease. PARKINSONS DISEASE 2016; 2016:2613401. [PMID: 27413575 PMCID: PMC4927950 DOI: 10.1155/2016/2613401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/04/2016] [Accepted: 05/29/2016] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD), a complex neurodegenerative disorder, is pathologically characterized by the formation of Lewy bodies and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial dysfunction is considered to be one of the most important causative mechanisms. In addition, dysfunction of chaperone-mediated autophagy (CMA), one of the lysosomal proteolytic pathways, has been shown to play an important role in the pathogenesis of PD. An exciting and important development is recent finding that CMA and mitochondrial quality control may be linked. This review summarizes the studies revealing the link between autophagy and mitochondrial function. Discussions are focused on the connections between CMA and mitochondrial failure and on the role of MEF2D, a neuronal survival factor, in mediating the regulation of mitochondria in the context of CMA. These new findings highlight the need to further explore the possibility of targeting the MEF2D-mitochondria-CMA network in both understanding the PD pathogenesis and developing novel therapeutic strategies.
Collapse
|
19
|
Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 2015; 10:2208-22. [PMID: 25484084 PMCID: PMC4502690 DOI: 10.4161/15548627.2014.981787] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1-3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death.
Collapse
Key Words
- ACTB, actin
- AIFM1, apoptosis-inducing factor, mitochondrion-associated, 1
- APC, adenomatous polyposis coli
- ATG12, autophagy-related 12
- ATG5, autophagy-related 5
- ATG7, autophagy-related 7
- CAPS12, caspase 12
- CASP3, caspase 3
- CCI, controlled cortical impact
- CD68, CD68 molecule
- CSPG4, chondroitin sulfate proteoglycan 4
- CTSD, cathepsin D
- GFP, green fluorescent protein
- LAMP1, lysosomal-associated membrane protein 1
- LAMP2, lysosomal-associated membrane protein 2
- LC3, microtubule associated protein 1 light chain 3
- RBFOX3, RNA binding protein, fox-1 homolog (C. elegans) 3
- SPTAN1, spectrin, α, non-erythrocytic 1
- SQSTM1, sequestosome 1
- TBI, traumatic brain injury
- ULK1, unc-51 like autophagy activating kinase 1
- autophagy
- autophagy flux
- lysosome
- neuronal cell death
- traumatic brain injury
- β; AIF1/IBA1, allograft inflammatory factor 1
Collapse
Affiliation(s)
- Chinmoy Sarkar
- a Shock, Trauma and Anesthesiology Research (STAR) Center; Department of Anesthesiology ; University of Maryland School of Medicine ; Baltimore , MD USA
| | | | | | | | | | | |
Collapse
|
20
|
Indirubin-3-Oxime Effectively Prevents 6OHDA-Induced Neurotoxicity in PC12 Cells via Activating MEF2D Through the Inhibition of GSK3β. J Mol Neurosci 2015; 57:561-70. [PMID: 26346600 DOI: 10.1007/s12031-015-0638-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
Indirubin-3-oxime (I3O), a synthetic derivative of indirubin, was originally designed as potent inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3β (GSK3β) for leukemia therapy. In the current study, we have shown, for the first time, that I3O prevented 6-hydroxydopamine (6OHDA)-induced neuronal apoptosis and intracellular reactive oxygen species accumulation in PC12 cells in a concentration-dependent manner. GSK3β inhibitors but not CDK5 inhibitors reduced the neurotoxicity induced by 6OHDA. Moreover, the activation of GSK3β was observed after 6OHDA treatment. Furthermore, 6OHDA substantially decreased the transcriptional activity of myocyte enhancer factor 2D (MEF2D), a transcription factor that plays an important role in dopaminergic neuron survival, and reduced nuclear localized MEF2D expression. Interestingly, indirubin-3-oxime and GSK3β inhibitors prevented 6OHDA-induced dysregulation of MEF2D. In addition, short hairpin RNA-mediated decrease of MEF2D expression significantly abolished the neuroprotective effects of indirubin-3-oxime. Collectively, our results strongly suggested that indirubin-3-oxime prevented 6OHDA-induced neurotoxicity via activating MEF2D, possibly through the inhibition of GSK3β. In view of the capability of indirubin-3-oxime to cross the blood-brain barrier, our findings further indicated that indirubin-3-oxime might be a novel drug candidate for neurodegenerative disorders, including Parkinson's disease in particular.
Collapse
|
21
|
Baker B, Geng S, Chen K, Diao N, Yuan R, Xu X, Dougherty S, Stephenson C, Xiong H, Chu HW, Li L. Alteration of lysosome fusion and low-grade inflammation mediated by super-low-dose endotoxin. J Biol Chem 2015; 290:6670-8. [PMID: 25586187 PMCID: PMC4358298 DOI: 10.1074/jbc.m114.611442] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/02/2015] [Indexed: 11/06/2022] Open
Abstract
Subclinical super-low-dose endotoxin LPS is a risk factor for the establishment of low-grade inflammation during the pathogenesis and progression of chronic diseases. However, the underlying mechanisms are not well understood. At the cellular level, a disruption of lysosome fusion with endosomes or autophagosomes may contribute to the potentiation of low-grade inflammation. In this study, we identified that subclinical super-low-dose endotoxin LPS can potently inhibit the process of endosome acidification and lysosome fusion with endosomes or autophagosomes in primary macrophages. Super-low-dose LPS induced the inhibitory phosphorylation of VPS34, thus leading to the disruption of endosome-lysosome fusion. This effect may depend upon the clearance and relocation of Tollip in macrophages by super-low-dose LPS. Consistent with this notion, Tollip-deficient macrophages had constitutively elevated levels of VPS34 inhibitory phosphorylation and constitutive disruption of endosome-lysosome fusion. By employing a skin excision wound-healing model, we observed that Tollip-deficient mice had significantly elevated levels of cell stress and reduced wound repair. This study reveals a novel mechanism responsible for the modulation of endosome-lysosome fusion and low-grade inflammation in innate macrophages.
Collapse
Affiliation(s)
- Bianca Baker
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Shuo Geng
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Keqiang Chen
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Na Diao
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Ruoxi Yuan
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Xiguang Xu
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Sean Dougherty
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Caroline Stephenson
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Huabao Xiong
- the Department of Medicine, Mt. Sinai School of Medicine, New York, New York 10029, and
| | - Hong Wei Chu
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Liwu Li
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910,
| |
Collapse
|
22
|
Yang S, Gao L, Lu F, Wang B, Gao F, Zhu G, Cai Z, Lai J, Yang Q. Transcription factor myocyte enhancer factor 2D regulates interleukin-10 production in microglia to protect neuronal cells from inflammation-induced death. J Neuroinflammation 2015; 12:33. [PMID: 25890150 PMCID: PMC4339472 DOI: 10.1186/s12974-015-0258-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammatory responses have been recognized as an important aspect in the pathogenesis of Parkinson's disease (PD). Transcriptional regulation plays a critical role in the process of inflammation. Transcription factor myocyte enhancer factor 2D (MEF2D) is identified as a central factor in transmission of extracellular signals and activation of the genetic programs in response to a wide range of stimuli in several cell types, including neurons. But its presence and function in microglia have not been reported. We therefore investigated the effect of MEF2D in activated microglia on the progress of neuroinflammation and the survival of neurons. METHODS BV2 cells and primary cultured glial cells were stimulated with lipopolysaccharide (LPS). Samples from cells were examined for MEF2D expression, interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α) by immunoblotting, quantitative real-time PCR (qPCR) or enzyme-linked immunosorbent assay (ELISA). The activity of MEF2D was examined by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Recombinant lentivirus expressing shRNA specific to MEF2D was used to silence MEF2D expression in BV2 cells. The role of IL-10 transcriptionally induced by MEF2D on neuronal survival was assessed by anti-IL-10 neutralizing antibody. The survival of neurons was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Male C57bl/6 mice were used to establish an acute PD model. Brain sections and cell slides were tested by immunofluorescence. RESULTS We demonstrated that MEF2D was present in microglia. Activation of microglia was associated with an increase in MEF2D level and activity in response to different stimuli in vivo and in vitro. MEF2D bound to a MEF2 consensus site in the promoter region of IL-10 gene and stimulated IL-10 transcription. Silencing MEF2D decreased the level of IL-10, increased the TNF-α mRNA, and promoted inflammation-induced cytotoxicity, consistent with the result of inhibiting IL-10 activity with an anti-IL-10 neutralizing antibody. CONCLUSIONS Our study identifies MEF2D as a critical regulator of IL-10 gene expression that negatively controls microglia inflammation response and prevents inflammation-mediated cytotoxicity.
Collapse
Affiliation(s)
- Shaosong Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Fangfang Lu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Zhibiao Cai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Juan Lai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
23
|
Park EJ, Choi DH, Kim Y, Lee EW, Song J, Cho MH, Kim JH, Kim SW. Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicol In Vitro 2014; 28:1402-12. [DOI: 10.1016/j.tiv.2014.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/30/2014] [Accepted: 07/19/2014] [Indexed: 02/08/2023]
|
24
|
Zhang H, Duan C, Yang H. Defective autophagy in Parkinson's disease: lessons from genetics. Mol Neurobiol 2014; 51:89-104. [PMID: 24990317 DOI: 10.1007/s12035-014-8787-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/09/2014] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative movement disorder. Genetic studies over the past two decades have greatly advanced our understanding of the etiological basis of PD and elucidated pathways leading to neuronal degeneration. Recent studies have suggested that abnormal autophagy, a well conserved homeostatic process for protein and organelle turnover, may contribute to neurodegeneration in PD. Moreover, many of the proteins related to both autosomal dominant and autosomal recessive PD, such as α-synuclein, PINK1, Parkin, LRRK2, DJ-1, GBA, and ATPA13A2, are also involved in the regulation of autophagy. We propose that reduced autophagy enhances the accumulation of α-synuclein, other pathogenic proteins, and dysfunctional mitochondria in PD, leading to oxidative stress and neuronal death.
Collapse
Affiliation(s)
- H Zhang
- Center of Parkinson's Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing, 100069, China
| | | | | |
Collapse
|
25
|
Mishra AK, ur Rasheed MS, Shukla S, Tripathi MK, Dixit A, Singh MP. Aberrant Autophagy and Parkinsonism: Does Correction Rescue from Disease Progression? Mol Neurobiol 2014; 51:893-908. [DOI: 10.1007/s12035-014-8744-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
|
26
|
Wei G, Yin Y, Li W, Bito H, She H, Mao Z. Calpain-mediated degradation of myocyte enhancer factor 2D contributes to excitotoxicity by activation of extrasynaptic N-methyl-D-aspartate receptors. J Biol Chem 2012; 287:5797-805. [PMID: 22215669 DOI: 10.1074/jbc.m111.260109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic and extrasynaptic NMDA receptors (NMDARs) appear to play opposite roles in neuronal survival and death. Here we report the new findings on the dysregulation of survival factor, myocyte enhancer factor 2D (MEF2D), by extrasynaptic NMDARs. Excitotoxicity led to the NMDAR-dependent degradation of MEF2D protein and inhibition of its transactivation activity in mature cortical neurons. The activation of extrasynaptic NMDARs alone was sufficient for degradation of MEF2D. Calpain directly cleaved MEF2D in vitro and blocking this protease activity greatly attenuated NMDAR signaled degradation of MEF2D in neurons. Consistently, inhibition of calpain protected cortical neurons from NMDA-induced excitotoxicity. Furthermore, knockdown of MEF2D sensitized neurons to NMDA-induced excitotoxicity, which was not protected by calpain inhibition. Collectively, these findings suggest that dysregulation of MEF2D by calpain may mediate excitotoxicity via an extrasynaptic NMDAR-dependent manner.
Collapse
Affiliation(s)
- Gengze Wei
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
27
|
Sala G, Tremolizzo L, Melchionda L, Stefanoni G, Derosa M, Susani E, Pagani A, Perini M, Pettini P, Tavernelli F, Zarcone D, Ferrarese C. A panel of macroautophagy markers in lymphomonocytes of patients with amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 13:119-24. [DOI: 10.3109/17482968.2011.611139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Li B, Zhang Y, Yuan Y, Chen N. A new perspective in Parkinson's disease, chaperone-mediated autophagy. Parkinsonism Relat Disord 2011; 17:231-5. [PMID: 21215675 DOI: 10.1016/j.parkreldis.2010.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease characterized by loss of dopaminergic neurons and aggregation of alpha-synuclein. Although the role of alpha-synuclein in the pathology of PD is still unclear, the fact that its aggregation contributes to the loss of dopaminergic neurons has been confirmed. Therefore, controlling the alpha-synuclein protein level may be critical for PD pathogenesis and may provide potential therapeutics. Wild-type alpha-synuclein is physiologically degraded by chaperone-mediated autophagy (CMA), and dysfunction of CMA results in alpha-synuclein aggregation and compensative macroautophagy activation which finally leads to cell death. Therefore, CMA may participate in PD pathogenesis as a very important factor, and up-regulating CMA activity could degrade overloaded alpha-synuclein. In view of potential compensative effects, maintenance of the balance of CMA activity will be another major challenge in the future development of the therapeutic strategy. Herein we review the current knowledge of the role of CMA in PD.
Collapse
Affiliation(s)
- Boyu Li
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization, Ministry of Education), Beijing, PR China
| | | | | | | |
Collapse
|
29
|
|